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Abstract
A quasi-orthogonal cocycle, defined over a group of order congruent to 2 modulo 4, 
is naturally analogous to an orthogonal cocycle (i.e., one defined over a group of 
order divisible by 4, and whose display matrix is Hadamard). Here we extend the 
theory of quasi-orthogonal cocycles in new directions, using equivalences with 
various optimal binary and quaternary sequences.
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1 Introduction

The theory of quasi-orthogonal cocycles and associated combinatorial objects has 
been explored in recent papers [4–6]. The current paper makes further progress in 
understanding the significance of these cocycles.
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Specifically, we examine optimal binary and quaternary sequences for periodic,
negaperiodic, and aperiodic autocorrelation, from the cocyclic point of view. We
thereby obtain a sufficient condition (in terms of quasi-orthogonal cocycles over Z2m ,
m odd) for a conjecture of Littlewood about the asymptotic behavior of the merit
factor of binary sequences. It is known that this problem is related to the L4-norm of
complex-valued polynomials with ± 1 coefficients on the unit circle. In addition, we
establish: a characterization of binary periodic optimal sequences of length 2m via
binary sequences of length m; a method for constructing an EW matrix (a kind of D-
optimal matrix) from optimal quaternary sequences; a bijection between negaperiodic
Golay pairs of binary sequences of length 2m and periodic Golay pairs of quaternary
sequences of length m. Applying the latter bijection, we discover a new quaternary
complex Hadamard matrix of order 70.

2 Cocycles

This section reviews some elementary 2-cohomology and other basic results. For
groups G and U , where U is finite abelian, a map ψ : G × G → U such that

ψ(g, h)ψ(gh, k) = ψ(g, hk)ψ(h, k) ∀g, h, k ∈ G

is a cocycle. The group of these cocycles is denoted Z2(G,U ). Given a map φ : G →
U , the coboundary ∂φ ∈ Z2(G,U ) is defined by ∂φ(g, h) = φ(g)−1φ(h)−1φ(gh).
The coboundaries forma subgroup B2(G,U )of Z2(G,U ). For convenience, our cocy-
cles are normalized, i.e., ψ(1, 1) = 1. Each cocyclic matrix Mψ = [ψ(g, h)]g,h∈G
over G usually has first row and column indexed by 1G .

Lemma 1 [11, Lemma 6.6] MψM�
ψ has (i, j)th entry

ψ(gi g
−1
j , g j )

∑
g∈Gψ(gi g

−1
j , g).

Let U = 〈−1〉 ∼= Z2. In this case, if Mψ is a Hadamard matrix (so that |G| = 2 or
|G| ≡ 0 mod 4), then ψ is said to be orthogonal.

The row excess RE(M) of a cocyclic {± 1}-matrix M indexed by G is the sum of
the absolute values of all row sums, apart from the row indexed by 1G . By Lemma 1,
ψ is orthogonal precisely when RE(Mψ) = 0.

Henceforth we are interested mainly in cocycles over G of just even order, i.e.,
|G| = 4t + 2 > 2.

Proposition 1 [4, Proposition 1] Let ψ ∈ Z2(G,Z2).

(i) RE(Mψ) ≥ 4t , and RE(Mψ) ≥ 8t + 2 if ψ ∈ B2(G,Z2).
(ii) RE(Mψ) = 4t if and only if n/2 rows of Mψ each sum to 0 and the remaining

non-initial rows each have sum ± 2.



(iii) Let ψ ∈ B2(G,Z2). Then RE(Mψ) = 8t + 2 if and only if every non-initial row
sum of Mψ is ± 2.

By analogy with the definition of orthogonal cocycles, we call ψ quasi-orthogonal
if RE(Mψ) is minimal: RE(Mψ) = 4t for ψ /∈ B2(G,Z2), and RE(Mψ) = 8t + 2
for ψ ∈ B2(G,Z2). The analogy between orthogonal and quasi-orthogonal cocycles
was noticed originally in connection with themaximal determinant problem for square
binary matrices (to be discussed below).

3 Optimal sequences, arrays, andmatrices

Let s = (s1, . . . , sr ) where si > 1, and let G be the abelian group Zs1 × · · · × Zsr .
An s-array is just a map φ : G → C where C = {± 1} or {± 1,± i}. Of course, a
sequence is an s-array with r = 1.

Letw be a non-negative integer. The periodic autocorrelation at shiftw of an array
φ : G → C is

Rφ(w) =
∑

g∈G
φ(g)φ(g + w),

reading arguments modulo n; the overline denotes complex conjugate.
A sequence φ of length n such that Rφ(w) = 0 for 0 < w < n is perfect. No

perfect binary (resp., quaternary) sequences of length n > 4 (resp., n > 16) are
known; see [2,16]. Consequently, we search for sequences with next best possible
periodic autocorrelation (according to [3, p. 2940] and [15]). A binary sequence φ of
length n ≡ 2 mod 4 is an OBS (optimal binary sequence) if |Rφ(w)| = 2 for all w,
0 < w < n. A quaternary sequence φ of odd length n is an OQS (optimal quaternary
sequence) if Rφ(w) ∈ {± 1} for all w, 0 < w < n (Rφ(w) is real by [6, Corollary 2]).

Let |G| ≡ 2 mod 4. A binary array φ on G is an OBA (optimal binary array) if
|Rφ(w)| = 2 for all nonzero w ∈ G. When G = Z2 × Zm , this definition coincides
with the definition of OBS. The following two facts from [5,6] relate (normalized)
optimal arrays and sequences to quasi-orthogonal cocycles (we remark that Result 1
is Proposition 1 (iii) combined with the identity Rφ(w) = φ(w)

∑
g∈G ∂φ(w, g)).

Result 1 Let |G| = 2m, m odd. A binary s-array φ on G is an OBA if and only if
∂φ is quasi-orthogonal.

Result 2 There exists an OQS of odd length m if and only if there exists a quasi-
orthogonal cocycle over Z2 × Zm that is not a coboundary.

Result 1 leads to a new characterization of optimal binary sequences, which we
give next. Result 2 will be applied to construction of EW matrices.



Theorem 1 Let m be odd. A binary sequence φ = (φ(0), . . . , φ(2m − 1)) is an OBS
if and only if there exist binary sequences a, b each of length m such that

|Ra(w) + Rb(w)| = 2, 1 ≤ w ≤ m − 1,

|Ra,b(0)| = 1,

|Ra,b(w) + Ra,b(m − w)| = 2, 1 ≤ w ≤ (m − 1)/2,

where Ra,b(w) = ∑2m−1
k=0 a(k)b(k + w) is the periodic cross-correlation function.

Proof Define

a( j) =
{

φ( j) j even
φ(m + j) j odd,

b( j) =
{

φ(m + j) j even
φ( j) j odd,

and ϕ =
[
a(0) · · · a(m − 1)
b(0) · · · b(m − 1)

]

. We calculate that

Rφ(w) = Rϕ(w mod 2, w mod m).

Hence, φ is optimal if and only if the (2,m)-array ϕ is an OBA; which, by Result 1,
is equivalent to ∂ϕ ∈ B2(Z2 × Zm, 〈−1〉) being quasi-orthogonal.

Let

M =
[
A B
B A

]

where A, B are the m × m back-circulant {± 1}-matrices with first rows (a(0), . . . ,
a(m − 1)) and (b(0), . . . , b(m − 1)), respectively. The normalization of M is M∂ϕ =
DMD for a diagonal matrix D. Thus, by Lemma 1, the entries of MM� are row sums
of M∂ϕ up to sign. Proposition 1 then implies that ∂ϕ is quasi-orthogonal if and only
if

abs(MM�) = 2mI + 2(J − I ) (1)

where J is the all 1s matrix, and abs(X) is obtained from X by taking the absolute
value of each entry. Since A and B are back-circulant, they are symmetric, so from
(1) we get

abs(A2 + B2) = 2mI + 2(J − I ) (2)

abs(AB + BA) = 2J . (3)

By inspection, (2) is equivalent to |Ra(w) + Rb(w)| = 2 for 1  ≤ w ≤ m − 1, and (3) 
is equivalent to the remaining conditions in the statement of the theorem. �




Example 1 If φ = (1,−1, 1,−1, 1, 1,−1,−1, 1, 1, 1, 1, 1, 1) then Rφ = (14, 2,
2, 2, 2, 2, 2,−2, 2, 2, 2, 2, 2, 2). Also a = (1, 1, 1, 1, 1, 1,−1), b = (−1,−1,
1,−1, 1, 1, 1), Ra = (7, 3, 3, 3, 3, 3, 3), Rb = (7,−1,−1,−1,−1,−1,−1), and
Ra,b = (−1, 3, 3,−1, 3,−1,−1).

For the rest of this section, ‘determinant’ of a matrix means the absolute value of
its determinant.

LetM be a D-optimal design of order n: an n×n {± 1}-matrix with largest possible
determinant at the given order. Hadamard famously proved that det M ≤ nn/2. For
orders n �≡ 0 mod 4, more stringent bounds have been established. Let n ≡ 2 mod 4;
Ehlich [9] and independently Wojtas [17] proved that

det M ≤ (2n − 2)(n − 2)
1
2 n−1.

This bound can be attained only if n−1 is the sum of two squares. A D-optimal design
that attains the Ehlich–Wojtas bound is called an EW matrix. If a cocyclic matrix Mψ

is EW, then ψ is quasi-orthogonal [1]. Below, we go in the other direction, providing
a construction of EW matrices from a type of OQS.

Theorem 2 Suppose that there exists a quaternary sequence f of odd length m such
that R f (w) = 1 for all w, 0 < w < m. Let C be the circulant matrix with first row
[ f (0), f (1), . . . , f (m − 1)], and write C = 1−i

2 (A + iB) where A, B are {± 1}-
matrices of order m. Further, let

M =
[

A B
−B A

]

.

Then

MM� =
[
L 0
0 L

]

(4)

where L = 2(m − 1)Im + 2Jm, A = Re(C) − Im(C), and B = Re(C) + Im(C).
Hence M is an EW matrix and 2m − 1 must be the sum of two squares.

Proof By the definitions,

MM� =
[

AA� + BB� − AB� + BA�
−BA� + AB� AA� + BB�

]

and

CC∗ = 1

2
(AA� + BB� − iAB� + iBA�),

where ∗ denotes complex conjugate transpose. Also, CC∗ = (m − 1)I + J because
R f (w) = 1 for 1 ≤ w ≤ m − 1. The result is now clear. �




Example 2 Let f1 = (1, i, 1) and f2 = (1,−1, 1, 1, 1). Then R f1 = (3, 1, 1),

R f2 = (5, 1, 1, 1, 1), A1 =
⎡

⎣
1 −1 1
1 1 −1

−1 1 1

⎤

⎦, B1 = J3, and A2 = B2 =
⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 − 1 1 1 1
1 1 − 1 1 1
1 1 1 − 1 1
1 1 1 1 − 1

−1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

At first glance, Theorem 2 does not extend to OQS f such that R f (w) takes on
values −1. But a Hadamard equivalent of the matrix M in that situation could satisfy
(4). Note that, conversely, an EW matrix M certainly satisfies (4) up to equivalence.

4 Negaperiodic optimal sequences

Let φ = (φ(0), . . . , φ(n − 1)) be a binary sequence, and denote the concatenation
φ | −φ by φ′. Then

N Rφ(w) :=
n−1∑

k=0

φ(k)φ′(k + w)

is the negaperiodic autocorrelation of φ at shift w. It is well known that

max
0<w<n

|N Rφ(w)| ≥
{
0 n even
1 n odd.

Sequences φ such that N Rφ(w) = 0 for 1  ≤ w ≤ n − 1 do not exist at lengths 
n > 2 [13, Result 4.8]. Hence, if n is even, then |N Rφ(w)| ≥  2 for some w. A binary 
sequence φ of length 2m such that N Rφ(w) ∈ {0, ± 2} for all w, 0  < w  < 2m, has 
optimal negaperiodic autocorrelation. In [6], we showed that there exists a binary 
sequence of length 2m ≡ 2 mod 4 with optimal negaperiodic autocorrelation if and 
only if there exists a quasi-orthogonal cocycle over Z2 × Zm that is not a coboundary.

A pair φ1, φ2 of binary (resp., quaternary) sequences, each of length n, such that 
N Rφ1 (w) + N Rφ2 (w) = 0 (resp.,  Rφ1 (w) + Rφ2 (w) = 0) for 1 ≤ w ≤ n − 1 is a  
negaperiodic Golay pair (NGP) (resp., quaternary periodic Golay pair).

An n × n matrix H with entries in {± 1, ± i} is a quaternary complex Hadamard 
matrix or Butson Hadamard matrix (denoted BH(n, 4)) if  HH∗ = nI  . We discuss 
how to construct BH(n, 4) from negaperiodic Golay pairs. In particular, we construct 
a BH(70, 4) that seems to be new. Previously there were two known inequivalent 
BH (70, 4), one due to Djokovic [7] and the other due to Egan [8].



Lemma 2 Let m be odd. There is a bijection between the set of negaperiodic Golay
pairs of length 2m (denoted PUGP(2m, 2, 1) in [8]) and the set of periodic Golay
pairs of quaternary sequences of length m (PUGP(m, 4, 0) in [8]).

Proof Let ϕ be a binary sequence of length 2m, and (per [6, Lemma 1]) let φ be the
(2,m)-array associated to ϕ, defined as follows. For m ≡ 1 mod 4:

φ(a, k) =

⎧
⎪⎪⎨

⎪⎪⎩

ϕ(k + am) k ≡ 0 mod 4
(−1)1−aϕ(k + (1 − a)m) k ≡ 1 mod 4
−ϕ(k + am) k ≡ 2 mod 4
(−1)aϕ(k + (1 − a)m) k ≡ 3 mod 4

and for m ≡ 3 mod 4:

φ(a, k) =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)aϕ(k + am) k ≡ 0 mod 4
ϕ(k + (1 − a)m) k ≡ 1 mod 4
(−1)1−aϕ(k + am) k ≡ 2 mod 4
−ϕ(k + (1 − a)m) k ≡ 3 mod 4.

Furthermore (per [6, Remark 1]), let f be the associated quaternary sequence of length
m defined by

f (k) = 1 − i

2
(φ(0, k) + iφ(1, k)),

φ(a, k) =
{
Re( f (k)) − Im( f (k)) if a = 0
Re( f (k)) + Im( f (k)) if a = 1.

By routine computation, (ϕ1, ϕ2) is an NGP(2m) if and only if ( f1, f2) is a periodic
Golay pair of quaternary sequences of length m. �

Example 3

f1 = (1, i, i,−i, 1, 1,−i, 1,−1,−1,−i,−i,−1,−i,−i, i, i, 1,

− i,−i,−i, i,−i, 1,−1, 1, 1, 1,−i,−1,−1, 1, 1, i, 1)

and

f2 = (1, i,−1,−i,−i, 1, i,−1, i, 1,−i, i,−i, 1,−i,−i, 1,−i, i, 1, i,

− i, i,−1, i,−i,−1,−i,−i,−1,−i, i,−i,−1, i)

is the quaternary periodic Golay pair as in Lemma 2 associated to the NGP of length
70 in [12, p. 662].

The following is a special case of [8, Theorem 3.2].



Theorem 3 Let ( f1, f2) be a quaternary periodic Golay pair of odd length m. Then

H =
[

A B
−B∗ A∗

]

is a BH(2m, 4), where A and B are circulant matrices with first rows [ f1(0), . . . ,
f1(m − 1)] and [ f2(0), . . . , f2(m − 1)], respectively.
Corollary 1 Theorem 3 and Example 3 furnish a new BH(70, 4).

Our method of constructing BH(70, 4) is similar to the one in [8]; Egan uses a
bijection between PUGP(m, 4, 1) and PUGP(2m, 2, 1).

We point out that

PUGP(2m, 2, 0) �= PUGP(2m, 2, 1)

and

GP(2m) = PUGP(2m, 2, 0) ∩ PUGP(2m, 2, 1),

whereGP(2m) denotes the set of binary (aperiodic)Golay pairs of length 2m. Egan [8,
Theorem 2.2] proved that

GP(m, 4) = ∩3
k=0PUGP(m, 4, k)

where GP(m, 4) denotes the set of quaternary (aperiodic) Golay pairs. Thus,
GP(m, 4) = ∩3

k=1PUGP(m, 4, k).

5 Aperiodic optimal sequences

The aperiodic autocorrelation at shift w of a binary sequence φ of length n is

Cφ(w) =
∑

0≤k<n−w

φ(k)φ(k + w).

We observe that

Rφ(w) = Cφ(w) + Cφ(n − w), N Rφ(w) = Cφ(w) − Cφ(n − w). (5)

Typically, sequences with good aperiodic autocorrelation are identified among 
sequences with good periodic autocorrelation. By (5), it might be advisable to search 
also among the sequences with good negaperiodic autocorrelation as a first step. We 
show how this task reduces yet again to the existence problem for quasi-orthogonal 
cocycles.



Lemma 3 Let φ be a binary sequence of length 2m. Define μ ∈ Z2(Z2m, 〈−1〉)\
B2(Z2m, 〈−1〉) by μ( j, k) = (−1)�( j+k)/2m�, and put ψ = μ∂φ. Then

N Rφ(w) = φ(0)φ(w)ψ(n − w,w)

2m−1∑

j=0

ψ(n − w, j) ∀w, 0 < w < 2m.

Proof If A is the 2m×2m nega-back-circulant {± 1}-matrix with first row [φ(0), . . . ,
φ(2m − 1)], then [AA�]1, j = N Rφ( j − 1). We normalize B = A ◦ Mμ to obtain
the coboundary matrix M∂φ , i.e., M∂φ = DBD where D is the diagonal matrix
with [D] j, j = φ( j − 1) and ◦ denotes Hadamard (componentwise) product. Since
Mψ = M∂φ ◦ Mμ = D(B ◦ Mμ)D = DAD, we have AA� = DMψM�

ψ D, so

N Rφ( j − 1) = φ(0)φ( j − 1)[MψM�
ψ ]1, j .

By Lemma 1, we are done. �

Corollary 2 Let m be odd. Then φ = (φ(0), . . . , φ(2m − 1)) ∈ {± 1}2m is optimal
negaperiodic if and only if the cocycle μ∂φ is quasi-orthogonal.

Proof This follows from Proposition 1 and Lemma 3. �

The final topic that we consider concerns the merit factor of a binary sequence φ

of length n:

F(φ) = n2

2
∑

0<w<n |Cφ(w)|2 .

The growth rate of the optimal merit factor, as sequence length increases, is related
to a classical conjecture of Littlewood [14] about the asymptotic behavior of norms
of polynomials on the unit circle. We bound F(φ) relying on the existence of quasi-
orthogonal coboundaries and non-coboundary cocycles over Z2m , m odd.

Proposition 2 Suppose that φ is an OBS of length n ≡ 2 mod 4, and let μ be as in
Lemma 3. If μ∂φ is quasi-orthogonal, then Cφ(w) ∈ {0,± 1,± 2}, with |Cφ(w)| = 1
for n/2 different values w. Hence

n2

5n − 8
≤ F(φ) ≤ n. (6)

Proof Each non-initial row sum of M∂φ is ± 2 by Result 1. On the other hand, if
ψ = μ∂φ is quasi-orthogonal, then Mψ has n

2 rows summing to zero, and n−2
2 rows

summing to ± 2 (Proposition 1). Therefore, (5) and Lemma 3 yield that

Cφ(w) + Cφ(n − w) = ± 2
Cφ(w) − Cφ(n − w) = 0



for n/2 values w, and

Cφ(w) + Cφ(n − w) = ± 2
Cφ(w) − Cφ(n − w) = ± 2

otherwise. The conclusion follows. �

Example 4 Ifφ = (1,−1, 1,−1, 1, 1,−1,−1, 1, 1, 1, 1, 1, 1) thenCφ = (14, 1, 2, 1,
2, 1, 0,−1, 2, 1, 0, 1, 0, 1), Rφ = (14, 2, 2, 2, 2, 2, 2,−2, 2, 2, 2, 2, 2, 2), and F(φ) =
5.15789...

Define β(n) to be the maximum of F(φ) as φ ranges over the set of all binary
sequences of length n.

Conjecture 1 (Littlewood [14]) lim supn→∞ β(n) = ∞.

Corollary 3 If there exists an infinite family of sequences φ satisfying the hypotheses
of Proposition 2, then Conjecture 1 is true.

Golay [10] made an opposing conjecture about β(n), as follows.

Conjecture 2 lim supn→∞ β(n) = 12.32 . . .

This second conjecture appears to have a stronger foundation. So we suspect that
there does not exist an infinite family of quasi-orthogonal coboundaries ∂φ over Z2 ×
Zm with μ∂φ quasi-orthogonal too.

Experimental evidence is sparse. After carrying out exhaustive computer searches
up to m = 13, apart from m = 11 we always found φ such that ∂φ and μ∂φ are
quasi-orthogonal. For 23 ≤ m ≤ 30, such cocycles do not exist: the optimal merit
factor is known, and it is smaller than the lower bound in (6).
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