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ABSTRACT

Let t be a positive integer. An E-W matrix is a square (− 1, 1)-matrix 
of order 4t + 2 satisfying that the absolute value of its determinant 
attains Ehlich–Wojtas’ bound. We show that the Smith normal form of 
every skew E-W matrix follows this pattern

diag[1, 2, . . . , 2︸ ︷︷ ︸
2t

,m2t+2,m2t+3, . . . ,m4t+2],

wherem2t+3 > 2 and the productm1 · · ·mk divides 2
2�k/2�t�k/2�, for

1 ≤ k ≤ 4t.
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1. Introduction

Here and throughout this paper, for convenience, when we say determinant of a matrix we 
mean the absolute value of the determinant. Let M be a D-optimal design of order n, that is,  
an n by n (1, −1)-matrix having maximal determinant. Hadamard gave the upper bound 
nn/2 for det M. This bound can be attained only if n is a multiple of 4. A D-optimal design 
that attains it is called a Hadamard matrix, and it is an outstanding conjecture that one 
exists for any multiple of 4. For other orders more stringent bounds have been established. 
For n ≡ 2 mod 4, Ehlich [1] and independently Wojtas [2] proved that

det M ≤ (2n − 2)(n − 2) 2
1 n−1.

This bound can be attained only if 2n − 2 is the sum of two squares. A D-optimal design 
that attains it is called an E-W matrix. It has been conjectured that E-W matrices of order 
n exist when 2n − 2 = α2 + β2 for some positive integers α and β . The construction 
and classification of Hadamard matrices and other D-optimal designs have become an 
important research field (see [3–6]).

Two (− 1, 1)-matrices are Hadamard equivalent provided one can be obtained from 
the other by a sequence of the following operations: row permutation, row negation and 
the corresponding column operations. The lack of a clear notion of a canonical form 
under this equivalence might explains the difficulty of classifying (− 1, 1)-matrices. For 
instance, the question of classifying Hadamard matrices is only solved for orders less than 
36.[5] More generally, two integral matrices are integrally equivalent provided one can be
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obtained from the other by a sequence of the following operations: row permutation, row
negation, addition of an integer multiple of one row to another and the corresponding
column operations.

Obviously, Hadamard equivalence implies integral equivalence but the converse is false.
On the other hand, integral equivalence has associated a clear notion of a canonical form
but Hadamard equivalence does not.

Let A be an integral matrix of order n and rank r. Then A is integrally equivalent to a
diagonal matrix

diag[a1, a2, . . . , ar , 0, . . . , 0],
known as the Smith normal form of A, in which ai divides ai+1 for i = 1, . . . , r − 1.
The diagonal elements a1, . . . , ar , 0, . . . , 0 are the invariant factors of A. They are uniquely
determined up to sign.

One way to construct E-W matrices is to find two commuting (− 1, 1)-matrices A and
B of order 2t + 1 such that AAT + BBT = 4tI + 2J . Under this assumption the matrix

M =
(

A B
−BT AT

)
(1)

is an E-W matrix. In this situation, a bound for the minimum number of 2′s which can
appear in the Smith normal from of such matrices is provided in the following result.
Theorem 1.1: [7, Theorem 4] Let M be an E-W-matrix in the form of (1). Then the
Smith normal form of M has one element 1 and at least �log2 (4t + 1)� + 1 elements equal
to 2.
Remark 1: We cannot claim that every E-W matrix is equal (equivalent) to a matrix in
the form of (1) (see [8]).

A (− 1, 1)-matrix M of order n is said to be of skew type if M + MT = 2I , where I
denotes the identity matrix and MT the transpose of M. A Hadamard matrix H of skew
type is called a skew Hadamard matrix. Whenever a skew (− 1, 1)-matrix is mentioned in
this paper, we mean a (− 1, 1)-matrix of skew type.

It was conjectured that skew Hadamard matrices exist for any order multiple of 4.
However, it was proved [9] that skew E-Wmatrices may only exist when 2n − 3 = α2 for
some integer α (i.e. β = 1), a condition which is believed to be sufficient. In [9] examples
of skew E-Wmatrices for small orders have been provided.

The Smith normal form of every skew Hadamard matrix was computed in [10]. Anal-
ogously, we investigate the Smith normal form of every skew E-W matrices. Now the
situation is more complicated and we have only obtained a partial result. We now state our
main result.
Theorem 1.2: A skew E-W matrix of order 4t + 2 has Smith normal form

diag[1, 2, . . . , 2︸ ︷︷ ︸
2t

,m2t+2,m2t+3, . . . ,m4t+2], (2)

where m2t+3 > 2.
Additionally, we will prove in the last section that the product m1 · · ·mk divides

22�k/2�t�k/2�, for 1 ≤ k ≤ 4t. Furthermore, if t and 4t + 1 are square free thenm2t+2 = 2
and 4t + 1 dividesm4t+2.



Notation. Throughout this paper upper case letters denote matrices, whose sizes are usually 
evident, in which case they are suppressed; otherwise Mr,s denotes a matrix with r rows 
and s columns, and Mr denotes Mr,r . I is the identity matrix and J is the all-ones matrix. 
MT denotes the transpose of M. The notation �x� means the largest integer not greater 
than the real number x.

2. Proof of Theorem 1.2

The proof uses elementary linear algebra and falls naturally into a similar scheme to the 
proof of [10, Theorem 2]. Along this section we will introduce some definitions and results 
that we will need to conclude with the desired result.

An E-W tournament of order 4t + 1 is a directed graph whose adjacency matrix A 
satisfies (after permutations of row and columns)

A + AT = J − I , AAT =
[
X Y
Z W

]
and ATA =

[
X̃ Ỹ
Z̃ W

]
(3)

where

• X =
[
X1 X2
X3 X4

]
and X̃ =

[
X4 X2
X3 X1

]
with

X1 = tIt + (t − 1)Jt , X4 = tIt + (t + 1)Jt , X2 = X3 = (t − 1)Jt .

• Y =
[

(t − 1)Jt,2t+1
t Jt,2t+1

]
and Ỹ =

[
t Jt,2t+1

(t − 1)Jt,2t+1

]
.

• Z = YT and Z̃ = ỸT .

• W =
[
W1 W2
W3 W4

]
with

W1 = tIα + tJα , W2 = WT
3 = (t − 1)Jα,β , W4 = tIβ + tJβ ,

where α + β = 2t + 1 and α,β ≥ 0.

Example 2.1: The directed graph T = (V ,E) with adjacency matrix

A =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 1 1 1
1 0 0 1 0
1 0 0 0 1
1 0 1 0 0

⎤
⎥⎥⎥⎥⎦

is an E-W tournament of order 5.
The relationship between E-W tournaments and skew EW-matrices has been analysed

in [11] and summarized in the following lemma.
Lemma 2.2: Given M a skew E-W matrix of order 4t + 2. Then,



• M is Hadamard equivalent to a matrix of the form
⎡
⎢⎢⎢⎣

1 1 · · · 1
−1

... AT − A + I
−1

⎤
⎥⎥⎥⎦ . (4)

where A is the adjacency matrix of an E-W tournament with order 4t + 1.
• M is integrally equivalent to the direct sum [1] ⊕ 2(AT + I).

Proof: The first step consists of multiplying suitable rows and columns of M by −1 in
such a way that the first row becomes the all-ones vector and the skew character does
not change. After that, we construct a (0, 1)-matrix A of order 4t + 1 as the submatrix of
1
2 (J−M) obtained by deleting the first row and column. Finally, using blockmultiplication
and the identityM + MT = 2I is showed in [11, Lemma 2.2] that A satisfies (3).

Now, adding row 1 to all other rows, and then subtracting column 1 from all other
columns in (4), it follows that M is integrally equivalent to the direct sum
[1] ⊕ 2(AT + I). �

In the following result, some immediate consequences of Lemma 2.2 are listed.
Corollary 2.3: Assume the same hypothesis and notation as in Lemma 2.2. We have:

• det (AT + I) = t2t(4t + 1).
• The invariant factors b1, . . . , b4m+1 of AT + I and m2, . . . ,m4t+1 of M (where M is of
the form (4)) are related by mi = 2bi−1 for i = 2, . . . , 4t + 2.

• m1 = 1.

The p-rank of an integer matrix A is the rank of A over a field of characteristic p and
is denoted by rankp(A). The p-rank is considered a standard tool for studying the Smith
normal form of A since the p-rank of A is related to the invariant factors a1, . . . , ar in a
simple manner:

rankp(A) = max{i : p does not divide ai}. (5)

In the following result, we investigate the p-rank of A + I where A is the adjacency
matrix of an E-W tournament.
Lemma 2.4: Let A be the adjacency matrix of an E-W tournament of order 4t + 1 and let
p be a prime divisor of t. Then rankp(A + I) is equal to either 2t or 2t + 1.
Proof: Since (A+ I)(A+ I)T = AAT + J , from (3) by a simple observation it follows that
rankp

(
(A + I)(A + I)T

) = 2.

nullityp(A + I) = 4t + 1 − rankp(A + I) ≥ rankp(A + I) − 2.

Thus rankp(A + I) ≤ 2t + 1.
On the other hand, using properties of the ranks and (3) it follows that

4t = rankp(J + I) = rankp((A + I) + (A + I)T )

≤ rankp(A + I) + rankp(A + I)T = 2 · rankp(A + I),

which implies that rankp(A + I) ≥ 2t. Therefore rankp(A + I) is either 2t or 2t + 1. �



Corollary 2.5: Assume the same hypothesis and notation as in Lemma 2.4. If p divides bk
(the k-th invariant factor of A + I) then k > 2t.
Proof: Combining that rankp(A + I) < k by (5) and Lemma 2.4. �

Finally, assuming that p is a prime divisor of b2t and taking into account that b1 · · ·  b4t+1 = 
det (AT + I). Then either p is a divisor of t or else p is a divisor of 4t + 1 and  p ≥ 3. 
We rule out the first case by Corollary 2.5. In the second case, p is a divisor of bi for 
i = 2t + 1, . . . , 4t + 1, so p2t+1 should divide 4t + 1, but this is contrary to p2t+1 > 4t + 1 
for all t ≥ 1. Therefore b2t = 1 and  b2t+2 > 1, for then m2 = m3 = . . .  = m2t+1 = 2 
and m2t+3 > 2. Let us point out that if t is square free then m2t+2 = 2. This concludes the
proof.

3. Conclusions

In this paper we have proved that if p divides t, then the p-rank of A + I is either 2t or 
2t + 1 where  A is the adjacency matrix of an E-W tournament of order 4t + 1. There is 
a one-to-one correspondence between this kind of tournaments and skew E-W matrices.
[11] We can always assume without loss of generality that every skew E-W matrix is of the 
form (4). Examples of skew E-W matrices for small orders have been provided in [9].

As a consequence, we have showed that the invariant factors (m1, . . . , m4t+2) of every 
skew E-W matrix satisfy that

m1 = 1, m2 =  · · ·  =  m2t+1 = 2 and  m2t+3 > 2.

Taking into account the spectrum of A and of M, we obtain the following property 
about the products of invariant factors.
Proposition 3.1: m1 · · ·mk divides 22�k/2�t�k/2�, for  1 ≤ k ≤ 4t.
Proof: First, we consider that k is odd. The proof is based on the following facts:

• In [11, p. 10] we conjectured that the existence of skew E-Wmatrices is equivalent to
the existence of tournament matrices with a certain spectrum. Concretely, −1±√

1−4t
2

are eigenvalues each with algebraic multiplicity 2t − 1. Recently, this conjecture has
been proven in [12]. Thus, 1±√

1−4t
2 are eigenvalues of AT + I each with algebraic

multiplicity 2t − 1.
• b1b2 · · · bk divides the product of any k eigenvalues of AT + I (repetitions allowed),
in the sense that the quotient is an algebraic integer, for 1 ≤ k ≤ 4t + 1 (see [13]).

• The identity
(
1+√

1−4t
2

)l · (
1−√

1−4t
2

)l = tl , for any positive integer l.
• The only algebraic integers which are found in the set of rational numbers are the
integers.

Hence, b1 · · · b2l divides tl for 1 ≤ l ≤ 2t − 1. Now, the desired result follows immediately
where k = 2l + 1.

The result for k even follows mutatis mutandis since 1± √
1 − 4t are eigenvalues ofM

each with algebraic multiplicity 2t (see [12, Lemma 3.3]). �
Finally, after looking over small orders, we conjecture that every skew E-W matrix of

order 4t + 2 has Smith normal form



diag[1, 2, . . . , 2︸ ︷︷ ︸
2t+1

, 2t, . . . , 2t︸ ︷︷ ︸
2t−1

, 2t(4t + 1)]. (6)

Obviously, this conjecture holds when t is prime number and 4t + 1 is square free. The 
first example of skew E-W matrix satisfying this hypothesis is provided for t = 3. This and 
Proposition 3.1 weigh heavily in favor of the conjecture.

Consequently, if this conjecture would be proven, we will not be able to distinguish 
among skew E-W matrices of the same order 4t + 2 using the Smith normal form. On the 
other hand, if an E-W matrix M has a Smith normal form different to (6), then M cannot 
be equivalent to a skew E-W matrix.
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