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Abstract Skew Hadamard matrices of order n give the solution to the question
of finding the largest possible n by n determinant with entries ˙1 of skew type
when n � 0 .mod 4/. Characterizations of skew Hadamard matrices in terms
of tournaments are well-known. For n � 2 .mod 4/, we give a characterization
of .�1; 1/-matrices of skew type of order n where their determinants reach
Ehlich–Wojtas’ bound in terms of tournaments.
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1 Introduction

Let g.n/ denote the maximum determinant of all n � n matrices with elements ˙1.
Here and throughout this paper, for convenience, when we say determinant we mean
the absolute value of the determinant. The question of finding g.n/ for any integer n
is an old one which remains unanswered in general. We ignore here the trivial cases
n D 1; 2. In 1893 Hadamard gave the upper bound nn=2 for g.n/. This bound can be
attained only if n is a multiple of 4. A matrix that attains it is called a Hadamard
matrix, and it is an outstanding conjecture that one exists for any multiple of 4. At
the time of writing, the smallest order for which the existence of a Hadamard matrix
is in question is 668. If n is not a multiple of 4, g.n/ is not known in general, but
tighter bounds exist. For n � 2 .mod 4/, Ehlich [3] and independently Wojtas [8]
proved that
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g.n/ � .2n � 2/.n � 2/ 12 n�1 (Ehlich–Wojtas’ bound): (1)

This bound can be attained only if 2n � 2 is the sum of two squares. When an n � n
determinant is found that attains the upper bound, it is immediate that the maximal
determinant for that order is just the bound itself. From now on, we will call the
matrices attaining Ehlich–Wojtas’ bound, E–W matrices. It has been conjectured
that E–W matrices of order n exist when 2n � 2 D ˛2 C ˇ2 for some positive
integers ˛ and ˇ. The interested reader is addressed to [4] and the website [6] for
further information on what is known about maximal determinants.

A .�1; 1/-matrix M of order n is said to be of skew type if M C MT D 2I, where
I denotes the identity matrix and MT the transpose of M. A Hadamard matrix H of
skew type is called a skew Hadamard matrix. Whenever a skew .�1; 1/-matrix is
mentioned in this paper, we mean a .�1; 1/-matrix of skew type.

It was conjectured that skew Hadamard matrices exist for any order multiple
of 4. However, it was proved [1] that skew E–W matrices may only exist when
2n � 3 D ˛2 for some integer ˛ (i.e., ˇ D 1), a condition which is believed to
be sufficient. In [1] examples of skew E–W matrices for small orders have been
provided.

A tournament T D .V;E/ of order n is a directed graph where the vertex set V
consists of n elements and the edge set E � V � V such that each pair of vertices x
and y is joined by exactly one of the edges .x; y/ or .y; x/. The adjacency matrix A
of a directed graph, G D .V;E/, is indexed by the vertex set V , and its entries are
defined as follows:

ŒA�x;y D
�
1 if .x; y/ 2 E,
0 otherwise.

Thus, a directed graph T is a tournament if and only if its adjacency matrix satisfies

A C AT D J � I; (2)

where J is the all-ones matrix of order n. Throughout this paper we use A for the
adjacency matrix of the tournament T. The vector s D A1 is called the score vector
of the tournament, where 1 is the all-ones column vector. Clearly,

1Ts D
�

n
2

�
; (3)

and the i-th entry of s, denote by si, is the outdegree of vertex i-th in the
tournament T. A tournament T of order n is regular if all entries of the score vector

are equal to
.n � 1/

2
, which implies that n must be odd. A tournament T of even

order n is almost regular if the entries of the column vector A1 are n
2

and .n�2/
2

, each
appearing n

2
times. The tournament T is doubly regular of degree t provided any two
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vertices of T jointly dominate precisely t vertices. It is easy to see that if T is doubly
regular, then T is regular with degree 2t C 1. Thus, T is doubly regular of degree t
if and only if A satisfies AAT D tJn C .t C 1/In where n D 4t C 3. Consequently, T
is doubly regular with parameters .4t C 3; 2t C 1; t/.

Let ex;y denote the edge of T defined by the vertices x and y. dC.ex;y/ denotes the
number of vertices dominated by both x and y and d�.ex;y/ denotes the number of
vertices dominating both vertices x and y. That is, dC.ex;y/ [respectively d�.ex;y/] is
the number of C1’s (respectively, 0’s) that the rows of A indexed by x and y contain
in the same column.

For a .�1; 1/-matrix of skew type M of order n, we normalize M so that the first
row of M consists of the all-ones vector with keeping to be of skew type. We can
construct a .0; 1/-matrix A of order n � 1 as the submatrix of 1

2
.J � M/ obtained by

deleting the first row and column. It is easy to see that A satisfies (2), thus A is the
adjacency matrix of a tournament of order n � 1.

Assuming that M is a skew Hadamard matrix in the above construction, it has
been shown that the existence of the following are equivalent:

1. Skew Hadamard matrices of order n.
2. Doubly regular tournaments of order n � 1 [7].
3. Tournaments of order n � 1 with eigenvalues n�2

2
(with algebraic multiplicity

one) and
�1˙ p

1 � n

2

!
(each with algebraic multiplicity n�2

2
) [2].

Recently, another characterization of a skew Hadamard matrix of order n in terms
of the spectrum of the Seidel matrix of a tournament of order n �2 was given in [5].

In this paper, a characterization of skew E–W matrices in terms of tournament
is given. This characterization can be considered as the analogous one to the
characterization of skew Hadamard matrices given in [7].

Notation. Throughout this paper we use sx for the entry of the score vector (sum
row) corresponding to the row of A indexed by vertex x and Vh D fy 2 V W sy D hg.
The notation e 2 W � Z means an edge of T D .V;E/ defined by one vertex in
W and the other one in Z where W and Z are subsets of V . We use t for a positive
integer.

2 The Main Result

As introduced in Sect. 1, Ehlich–Wojtas’ bound provides an upper bound of the
maximum determinant of all n�n matrices with elements ˙1when n � 2 .mod 4/.
Moreover, equality in (1) holds if and only if there exists a .1;�1/-matrix B of order
n, such that

BBT D BTB D
�

L 0
0 L

�
; (4)
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with L D .n�2/I C2J a square matrix of order n
2
. In addition, any .�1; 1/-matrix M

attaining Ehlich–Wojtas’ bound is equivalent to a matrix B satisfying (4) (see [3]).
Two matrices M and N are said to be Hadamard equivalent or equivalent if one

can be obtained from the other by a sequence of the operations:

• interchange any pairs of rows and/or columns;
• multiply any rows and/or columns through by �1.

In other words, we say that M and N are equivalent if there exist monomial matrices
P and Q such that PMQ D N.

Let us point out that if M is equivalent to B then B D PMQ where P and Q are
monomial matrices. Thus,

BBT D PMQQTMT PT D PMMTPT D .PMPT/.PMPT/T :

Hence, if B satisfies (4), PMPT as well.

Remark 2.1. Without loss of generality, we can always assume that if M reaches
Ehlich–Wojtas’s bound then there exists a monomial matrix P such that PMPT

satisfies (4).

Condition (4) implies some combinatorial properties, regarding the number of
positive entries of the rows (resp. columns) of B. The rows of any .�1; 1/-matrix
of size n can be classified as of even or odd type, depending on the parity of the
number of C1’s that they contain. It is apparent that the inner product of two rows
of the same type is congruent to 2 modulo 4, while the inner product of two rows
of opposite type is congruent to 0 modulo 4. In these circumstances, the block
structure of the matrix in (4) implies that the rows from 1 to 2t C 1 of B share a
common type, whereas the rows from 2t C 2 to 4t C 2 share the opposite type. The
same argument translates to the columns of B. This is a main difference with usual
Hadamard matrices of order a multiple of 4, in which rows of different type cannot
occur. Notice that this balanced structure of even and odd type rows does not need
to be attained anymore when 2n � 2 is not the sum of two squares.

If B is skew, then 2n � 2 is the sum of two squares where the first integer is 1
(see [1]). Moreover, assuming that B is normalized, the rows of odd type can be
classified into two kinds depending on their row sum and there are exactly the same
number of every kind.

Lemma 2.1. Let M be a skew .�1; 1/-matrix of order n D 4t C 2 and A be its
corresponding adjacency matrix of the tournament of order n � 1. If M is a skew
E–W matrix, then the entries of the score vector A1 are 2t, 2t C 1 and 2t � 1, each
appearing 2t C 1, t and t times, respectively.

Proof. Let M D Œmi;j� be a skew E–W matrix of order n D 4t C 2. We can always
assume that the first row of M consists entirely of C1 since multiplying row r and
column r of M by �1 the value of the determinant does not change and neither
does the skew character. This implies mi;1 D �1; 2 � i � n. As M is skew,
mi;i D C1; 1 � i � n. Form a new matrix A D Œai;j�, 1 � i; j � n � 1, by putting
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ai;j D
� C1; miC1;jC1 D �1

0; miC1;jC1 D C1:

As it was mentioned in Sect. 1, A is the adjacency matrix of a tournament of order
n � 1 D 4t C 1. Since M is equivalent to a matrix B satisfying (4), thus for j ¤ 1,

nX
iD1

m1;imj;i D
nX

iD1
mj;i D

� ˙2; 2 � j � 2t C 1;

0; 2t C 2 � j � 4t C 2I

so that each row of M from the 2tC2-th until the 4tC2-th contains .2tC1/C1’s and
.2tC1/�1’s. Thus, the last 2tC1 rows of A contains exactly 2t C1’s, so that the last
2t C 1 entries of the score vector are equal to 2t (i.e., si D 2t; 2t C 1 � i � 4t � 1).
For the rows of M from the 2-nd until the 2t C 1-th, we have two cases:

1. If
nX

iD1
mj;i D C2, then every type of these rows of M contains .2t C 2/ C 1’s and

.2t/ � 1’s. Thus, the corresponding rows of A contain .2t � 1/ C 1’s.

2. If
nX

iD1
mj;i D �2, then every type of these rows of M contain .2t/ C 1’s and

.2t C 2/ � 1’s. Thus, the corresponding rows of A contain .2t C 1/ C 1’s.

So that the first 2t entries of the score vector are equal to either 2t � 1 or 2t (i.e.,
si D 2t C 1 or si D 2t � 1; 1 � i � 2t).

Finally, let jV2tC1j D jfiW si D 2t C 1gj and jV2t�1j D jfiW si D 2t � 1gj. We have

( jV2tC1j C jV2t�1j D 2t;

jV2tC1j.2t C 1/C jV2t�1j.2t � 1/ D 4t2:

The second equation of the system above follows from (3). Hence, jV2tC1j D
jV2t�1j D t, and this concludes with the desired result. ut
Lemma 2.2. Assume the same hypothesis and notation as in Lemma 2.1. Thus, the
adjacency matrix A satisfies (after permutations of row and columns)

AAT D
�

X Y
Z W

�
and ATA D

� QX QY
QZ W

�
(5)

where

• X D
�

X1 X2
X3 X4

�
and QX D

�
X4 X2
X3 X1

�
with

X1 D tIt C .t � 1/Jt; X4 D tIt C .t C 1/Jt; X2 D X3 D .t � 1/Jt:
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• Y D
�
.t � 1/Jt;2tC1

t Jt;2tC1

�
and QY D

�
t Jt;2tC1

.t � 1/Jt;2tC1

�
:

• Z D YT and QZ D QYT :

• W D
�

W1 W2

W3 W4

�
with

W1 D tI� C tJ� ; W2 D WT
3 D .t � 1/J�;� ; W4 D tI� C tJ� ;

where � C � D 2t C 1 and �; � � 0. Jr;s denotes the all-ones matrix with r rows
and s columns, and Jr denotes Jr;r. We follow the same notation for the identity
matrix.

Proof. Considering the rows .k � 1/-th and .l � 1/-th of A, with k < l. Let

˛ D jfi W mk;i D ml;i D C1gj;
ˇ D jfi W mk;i D ml;i D �1gj;
� D jfi W mk;i D �ml;i D C1gj;
ı D jfi W mk;i D �ml;i D �1gj:

By construction of A, ˇ � 1 (respectively, ˛) is equal to the number of C1’s
(respectively, 0’s) that rows .k�1/ and .l�1/ of A contain in the same column. That
is, the vertices .k �1/ and .l �1/ of T jointly dominate precisely ˇ�1 vertices and,
they are jointly dominated precisely by ˛�1 vertices (since either mk;l D ml;l D C1
or mk;k D ml;k D C1). Therefore,

ŒAAT �k�1;l�1 D ˇ � 1 and ŒATA�k�1;l�1 D ˛ � 1: (6)

Now considering the set of rows of M but the first, we can classify them attending
to their row sum in three types. For 2 � r � 4t C 2

R1 D frW
4tC2X
iD1

mr;i D �2g;

R2 D frW
4tC2X
iD1

mr;i D 0g;

R3 D frW
4tC2X
iD1

mr;i D C2g:

In Lemma 2.1 it was proven

1. r 2 R2 , 2t C 2 � r � 4t C 2.
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2. jR1j D jR3j D t:

Attending to this classification, there are six possible cases of choosing pairs of
rows.

1. Let k 2 R1 and l 2 R2. Counting the �1 and C1 in each row. We have

˛ C ı D 2t C 1 D ˇ C �

ˇ C ı D 2t C 2

˛ C � D 2t

so ˛ C ı D ˇ C � D ˇ C ı � 1 D ˛ C � C 1, or ı D � C 1 and ˇ D ˛ C 1.
Recall that negating certain set of rows and the same set of columns of M,

we obtain a new matrix B which satisfies (4). Hence,
P4tC2

iD1 mk;iml;i D 0, so
˛ C ˇ D � C ı. Thus, ˇ D t C 1 and ˛ D t.

2. Let k 2 R3 and l 2 R2. By a similar argument, ˇ D t and ˛ D t C 1.
3. Let k; l 2 R2. Counting the number of �1 and C1 in each row,

ˇ C ı D ˛ C � D 2t C 1 D ˇ C � D ˛ C ı;

so � D ı and ˛ D ˇ. Also,
P

i mk;iml;i D ˙2.
If
P

i mk;iml;i D C2, then

˛ C ˇ D 2t C 2

� C ı D 2t:

Thus ˇ D t C 1 D ˛.
Similarly, if

P
i mk;iml;i D �2, then ˇ D t D ˛.

4. Let k 2 R1 and l 2 R3. Counting the number of �1 and C1 in each row, we get
˛ D ˇ. Since negating certain set of rows and the same set of columns of M, we
obtain a new matrix B which satisfies (4), then

P
i mk;iml;i D �2. So, ˛Cˇ D 2t.

Hence, ˇ D t D ˛.
5. Let k; l 2 R1. Taking into account that

P
i mk;iml;i D 2 and using an analogous

argument. We get ˇ D t C 2 and ˛ D t.
6. Let k; l 2 R3. Taking into account that

P
i mk;iml;i D 2 and using an analogous

argument. We get ˇ D t and ˛ D t C 2.

Consequently, taking into account the size of the sets R1; R2, and R3, the identi-
ties (6) and the values of ˛ and ˇ, it follows the desired result. ut
Definition 2.1. Let T D .V;E/ be a tournament of order 4t C 1, it said to be an
E–W tournament if

• its adjacency matrix A satisfies (after permutations of row and columns) the
identities in (5).

Or equivalently,
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• The entries of its score vector si are 2t, 2t C 1 and 2t � 1, each appearing 2t C 1,
t and t times, respectively.

• Let e 2 E.

.dC; d�/.e/ D

8̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂:

.t; t � 1/; e 2 V2t � V2tC1;

.t � 1; t/; e 2 V2t�1 � V2t;

.t � 1; t � 1/; e 2 V2t�1 � V2tC1;

.t C 1; t � 1/; e 2 V2tC1 � V2tC1;

.t � 1; t C 1/; e 2 V2t�1 � V2t�1;
.t; t/; e 2 fxg � Vx;t;

.t � 1; t � 1/; e 2 fxg � Vx;t�1;
.t; t/; e 2 Vx;t � Vx;t;

.t; t/; e 2 Vx;t�1 � Vx;t�1;
.t � 1; t � 1/; e 2 Vx;t�1 � Vx;tI

for some x 2 V2t; let Vx;d D fy 2 V2t W dC.ex;y/ D dg such that Vx;t [ Vx;t�1 D
V2t n fxg. Moreover, either Vx;t or Vx;t�1 could be empty.

Remark 2.2. The equivalence above follows from the fact that the vertices .k � 1/

and .l�1/ of T jointly dominate precisely ŒAAT �k�1;l�1 vertices and, they are jointly
dominated precisely by ŒATA�k�1;l�1 vertices.

The following result follows immediately from Lemmas 2.1 and 2.2.

Proposition 2.1. Let M be a skew .�1; 1/-matrix of order n D 4t C 2 and A be its
corresponding adjacency matrix of the tournament of order n � 1. If M is a skew
E–W matrix, then the tournament with adjacency matrix A is an E–W tournament.

In the next result, we will show that the converse statement holds.

Proposition 2.2. Let T be a tournament of order 4t C 1 and A D Œai;j� be its
adjacency matrix. If T is an E–W tournament, then M D Œmi;j� with

mi;j D
8<
:

C1; i D 1;

�1; i > 1; and j D 1

1 � 2ai�1;j�1; 2 � i; j � 4t C 2:

is a skew E–W matrix of order 4t C 2.

Proof. We can always assume that the vertices of V are ordered in such a way so,

si D
8<
:
2t � 1; 1 � i � t;
2t C 1; t C 1 � i � 2t;
2t; 2t C 1 � i � 4t C 1:
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We have to show that M is equivalent to B such that B satisfies (4). To this end,
consider sums of the form

4tC2X
iD1

mk;iml;i; 1 � k; l � 4t C 2:

1. k D l,

4tC2X
iD1

mk;iml;i D
4tC2X
iD1

m2
k;i D

4tC2X
iD1

1 D 4t C 2:

2. For k D 1 ¤ l,

4tC2X
iD1

m1;iml;i D
4tC2X
iD1

ml;i D 4t � 2sl�1 D
8<
:

C2; 2 � l � t C 1;

�2; t C 2 � l � 2t C 1:

0; 2t C 2 � l � 4t C 2:

3. 2 � k � 2t C 1 and 2t C 2 � l � 4t C 2.
Recall that dC.exk;xl/ D jfi W ak;i D al;i D C1gj and d�.exk;xl/ C 1 D

jfi W ak;i D al;i D 0gj. Since either .dC; d�/.exk�1;xl�1 / D .t; t � 1/ or
.dC; d�/.exk�1;xl�1 / D .t � 1; t/, so jfi W mk;iml;i D 1gj D 2t C 1. Thus,

4tC2X
iD1

mk;iml;i D .2t C 1/� .2t C 1/ D 0:

4. 2 � k � t C 1 and t C 2 � l � 2t C 1. Since .dC; d�/.exk�1;xl�1 / D .t � 1; t � 1/,
so jfi W mk;iml;i D 1gj D 2t. Thus,

4tC2X
iD1

mk;iml;i D 2t � .2t C 2/ D �2:

5. 2 � k < l � t C 1 or t C 2 � k < l � 2t C 1. In similar manner, we have

4tC2X
iD1

mk;iml;i D .2t C 2/� 2t D 2:

6. 2t C 2 � k < l � 4t C 2. Let us take the sets Vx2tC1;t and Vx2tC1;t�1. Consider the
cases:

(a) For k D 2t C 2.
If xl�1 2 Vx2tC1;t. Thus,

P4tC2
iD1 mk;iml;i D 2:
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If xl�1 2 Vx2tC1;t�1. Thus,
P4tC2

iD1 mk;iml;i D �2:
(b) For 2t C 2 < k < l � 4t C 2.

(i) If exk�1;xl�1 2 �Vx2tC1;t � Vx2tC1;t
�[�

Vx2tC1;t�1 � Vx2tC1;t�1
�
. Thus,

4tC2X
iD1

mk;iml;i D 2:

(ii) If exk�1;xl�1 2 Vx2tC1;t�1 � Vx2tC1;t. Thus,

4tC2X
iD1

mk;iml;i D �2:

Consequently, multiplying by �1 the rows and columns of M from the .t C 2/-th
until the .2t C1/-th and the corresponding rows and columns of M indexed with the
elements of Vx2tC1;t�1, then this new matrix denoted by B satisfies (4).

By construction it is easy to see that MCMT D 2I. This concludes the proof. ut
Finally, we state the main result of this paper which is an immediate consequence

of Propositions 2.1 and 2.2.

Theorem 2.1. The existence of the following are equivalent:

1. Skew E–W matrices of order 4t C 2.
2. E–W tournaments of order 4t C 1.

3 Conclusions and Further Work

In this paper we have proved that the existence of a skew E–W matrix of order
4t C 2 is equivalent to the existence of an E–W tournament of order 4t C 1. This
kind of tournament has been defined attending to their vertices and edges degrees.
Examples of skew E–W matrices for small orders have been provided in [1].

A characterization of E–W matrices of order 4t C 2 in terms of spectral data
for tournaments of order 4t C 1, as analogous to the result for skew Hadamard
matrices given in [2], is a challenging problem. After looking over small orders, we
conjecture that the existence of the following are equivalent:

1. Skew E–W matrices of order n D 4t C 2.
2. Tournaments of order n � 1 with eigenvalues:

(a) The roots of the polynomial P.x/ D �t.n � 3/� n � 4
2

x2 C x3.

(b)
�1˙ p

3 � n

2
each with algebraic multiplicity

n � 4

2
.
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