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ABSTRACT. We establish an algorithm computing the homology of commutative differential
graded algebras (briefly, CDGAs). The main tool in this approach is given by the Homological
Perturbation Theory particularized for the algebra category (see [21]). Taking into account
these results, we develop and refine some methods already known about the computation of the
Hochschild and cyclic homologies of CDGAs. In the last section of the paper, we analyze the
p-local homology of the iterated bar construction of a CDGA (p prime).

1. INTRODUCTION.

The description of efficient algorithms of homological computation might be considered as
a very important question in Homological Algebra, in order to use those processes mainly
in the resolution of problems on algebraic topology; but this subject also influence directly
on the development of non so closedareas as Cohomological Physics (in this sense, we find
useful references in [12], [24], [25]) and Secondary Calculus ([14], [27], [28]).

Working in the context of CDGAs, Homological Perturbation Theory (][9], [11]), supplies
at once a general algorithm computing the homology of these objects (see [16]), which often
bears high computational charges and actually restricts its application to the low dimensional
homological calculus.

Our first goal consists in refining this algorithm, by means of preservation issues over the
category of CDGAs when applying perturbation techniques (see [21]). Indeed, the process
reveal a polynomial behavior when we deal with some concrete families of CDGAs; for
instance, we compute in this paper the homology of the CDGAs Az’l(ff},:'e';f""—l) (with r; € N,
Vi=1,---,n —1). These and similar positive results make us be sincerely expectant in the
achievement of an effective general algorithm computing the homology of CDGAs.

Once the previous algorithm is outlined, our interest turns to the calculation of Hochschild
and cyclic homologies.

Key words and phrases: Homology, CDGA, bar construction, (minimal) homological model, contraction,
perturbation, twisted tensor product of CDGA.
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The computation of Hochschild homology has already been studied by Guccione and
Guccione in [8], where they set recursive formulae in order to determine the differential of
a small homological model for a CDGA given. We construct here an alternative approach
using the proper machinery of Homological Perturbation Theory; not only from that point
of view of Lambe’s (see [16]), but also attending to the preservation of algebra structures (as
developed in [21]). The main difference between this method and Guccione’s one is that we
get here more explicit homological information, available in terms of homotopy equivalences.
This fact allows an immediate translation of the attained results as the departure point for
obtaining the cyclic homology, via perturbation.

Unlike the Hochschild homology one, the method computing cyclic homology is quite
more complicated, since no algebraic preservation results can be applied. We study here an
interesting particular instance, in which the difficulties decrease substantially. It seems to
be a good idea to use the A-operations described by Loday ([18], [19]) in order to solve the
general problem of the computation of cyclic homology: a suggestive way appears in this
sense.

The present paper is organized into the following sections. The first one is devoted to
explain the basic algebraic concepts from which the process of homological computation
is constructed; these ideas help to the fine understanding of the underlying algorithmic
concepts. We shall use without further explanation the proper concepts of our framework,
Algebraic Topology and Homological Algebra: we refer to some notions like DG A-algebra,
DG A-coalgebra, derivation, coderivation, Hopf DG A-algebra and similar ones.

Along the second section, a positive answer is given about the computability problem
of the homology of CDGASs; the algorithm developed here produces not only an explicit
homotopy equivalence for the reduced bar construction of a CDGA, but also a compari-
son map with the bar resolution: i.e., an explicit homotopy equivalence with the “standard
resolution”.

Nevertheless, this is not a completely satisfactory solution as this result does not allow
one to implement the algorithm into practise (without any memory or time limits): the
scheme often displays a high complexity.

The subsequent subsection introduces a concrete example, treated with specific techniques
in order to improve the general procedure. Arguments which might improve the algorithm
of the homological computation are explained at the end of this paragraph.

Finally, the obtention of general algorithms computing Hochschild and cyclic homologies
and the search of minimal homological models of iterated Bar constructions of CDGAs will
be the subjects of the remaining sections.

2. PRELIMINARIES.

Although relevant notions of Homological Algebra are explained through the exposition of
the paper, most of common concepts are not explicitly given (which might be consulted for
instance in [4] or [15]).

Let A be a commutative ring with non zero unit and let us assume that A is the ground
ring. The notation (A, d,, *,) means that A is a differential graded algebra (briefly, DGA-
algebra) endowed with a differential operator d, and an associative product #,. If there is
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no further confusion, subindexes or even operators are to be omitted.

Notice that a DGA-algebra is said to be connected whenever Ay is A. The degree of an
element a € A, is denoted by |a| = n.

Three particular algebras are of especial interest in the development of the paper, which
are the exterior, polynomial and divided power algebras. Let n be a fixed integer. The exterior
algebra E(x,2n + 1) is the graded algebra with generators 1 and « of degrees 0 and 2n + 1,
respectively; and trivial product (that is, 2 = 0 and = -1 = ). The polynomial algebra
P(y,2n) consists of the graded algebra with generators 1 of degree 0 and each power ' of
degree 2ni, with ¢ € N; the product is given by the usual one of polynomials, i.e.: y*-y’ =yt
for non negative integers 7 and j. Finally, the divided power algebra I'(y,2n) is the graded
algebra with generators 1 and y@ (of course, y = y(1)) of respective degrees 0 and 2ni,
1+

y ) whichever non negative
i

i € N; and product defined by the rules y* .y =

integers ¢ and j be. Each of these three types of algebras can be considered as a CDGA with
trivial differential.

The reduced bar construction associated to a DGA-algebra given is a standard algebraic
tool which allows one to save the product structure of the initial DGA-algebra along the
process of homological computation.

The reduced bar construction associated to a DGA-algebra A is defined to be as the
DG-module B(A) consisting of the tensor products of 7 copies of A at each dimension 7 (un-
derstanding A at the initial level, i.e., in degree 0), and differential operator depending on the
original differential (tensor differential) and product (simplicial differential) morphisms on A

(see [15]). A generic homogeneous element of degree n is usually denoted by the expression

[ar,|ar, | |a,.], where a,, € A, and s+ > r; =n; the lensor degree of such an element
is 3.7 1 = n, and the simplicial degree i; ; Whenever the algebra A is commutative, it
is possible to define a multiplicative structure upon B(A) (via an operator called shuffle
product), so that the reduced bar construction becomes also a CDGA.

A resolution of A over a DGA-algebra A consists in a differential A-module X, which is
projective as an A-module, such that the homology of X is zero except for degree 0, where
it coincides with A. If X is actually a free A-module then X is called a free resolution.

A relevant notion to introduce is the twisted tensor product of DGA-algebras [1] (briefly,
TTP). Let {A;}ier be a set of commutative DGA-algebras. A twisted tensor product ®f€1Ai
is a CDGA satisfying the following conditions:

1) ®f€1AZ» coincides with the tensor product @;c7A; as a graded algebra.

ii) The differential operator consists in the sum of the differential of the banal tensor
product and a derivation p.

Actually, a TTP of DGA-algebras is a “perturbed” DGA-algebra in which the “perturba-
tion” only affects its differential and not its product. Notice that this concept reveals a little
structural difference with respect to that of multiplicative principal construction of Cartan
(see [3], [20]).

An interesting type of free resolutions of A over a commutative DGA-algebra A consists in

TTPs of the form X = A®”X, where X is a free CDGA. In this circumstances, X is known to
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be the reduced complex of the resolution. For instance, if A is a CDGA, the “bar resolution”
B(A) (see [15]) becomes a twisted tensor product of DGA-algebras. More precisely, B(A) is
the commutative DGA-algebra A@pB(A), where

pla @ larlas|---lan]) = (a %4 a1) @ [as] - - - |ay].

The algorithmic techniques that are proposed in pursuit of solving the problem of the
homology computation are fitted into the framework of constructive Homological Algebra.
The main input data are the contractions ([5], [13]): a contraction ¢, N = M (sometimes
denoted by (f,g,¢)) from a DG-module (N,dy) to a DG-module (M, d,,) consists in an
homotopy equivalence determined by three morphisms f, ¢ and ¢; being f : N, — M,
(projection) and ¢ : M, — N, (inclusion) two DG-module morphisms and ¢ : N, — N.41 an
homotopy operator. Moreover, these data are required to satisfy the following rules: fg = 1,,,
Jo=0,09=0,¢dy+dyo+gf =1y and ¢ = 0.

Notice that a free resolution K of A over the DGA-algebra A splits off the bar construction
if there exists a contraction (called splitting) from B(A) to K. This notion is due to Lambe
([17]) and is to be applied later on.

There is a relevant particular type of contractions of DGA-algebras, that we systemat-
ically use in the remainder of this paper. We refer to semifull algebra contractions ([21]),
which consist of a multiplicative inclusion, a quasi-algebra projection and a quasi-algebra
homotopy. Given a contraction (f, g, ¢) between two DGAs A and A’, we recall that:

1. The projection f is said to be a quasi-algebra projection whenever the following condi-
tions hold:

f@xa0) =0, [flo*ag) =0, [flg+i¢)=0. (1)

2. The homotopy operator ¢ is said to be a quasi-algebra homotopy whenever the rules
below are verified:

P(P*a0) =0, 6(6%a9) =0, ¢(g*.0)=0. (2)

For instance, the bar resolution B(A) of a DGA-algebra A generates the following semifull
algebra contraction:

RB(A) : {B(A), A, €B(a)s NB(A), 5},
where the homotopy operator s : B(A) — B(A) is given by

sla @ [a]---|a]) = lalay]---]ay].

The restriction to this particular type of contractions is due to the fact that they are pre-
served by most of algebra operations: for instance, the set of all semifull algebra contractions
is closed by composition and tensor product of contractions.

The basic procedure we state here consists in the establishment of an explicit contraction
from an initial DG-module N to a free finite type DG-module M, so that the homology of
N is actually computable from that of M: that is, H.(N) = H.(M).

There exist other important tools from which one reaches extra homological information:
under certain circumstances one may “perturb” a given contraction in order to obtain a new
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contraction between the initial underlying graded modules endowed with distinct differential
operators (to know more about Homological Perturbation Theory, consult [9], [11], [13], [16]
and [17]).

Notice that semifull algebra contractions are preserved via perturbation processes.

We recall the concept of a perturbation datum. Let N be a graded module and let
f N — N be a morphism of graded modules. The morphism f is defined to be pointwise
nilpotent whenever for all @ € N, x # 0, a positive integer n exists such that f(a) = 0. Notice
that the integer n generally depends on the element x. A perturbation of a DGA-module N
consists in a morphism of graded modules ¢ : N — N of degree —1, such that (dy + §)* =0
and {y6 = 0. A perturbation datum of the contraction ¢ : {N, M, f,g, o} is a perturbation
6 of the DGA-module N verifying that the composition ¢é is pointwise nilpotent. In the
particular case that both of N and M are DGA-algebras, a new notion appears: an algebra
perturbation datum 6 of a contraction ¢ from N to M consists in a perturbation datum ¢ of
¢ which is also a derivation.

We deal with perturbation results particularized for the DGA-algebra category (see [21]).
In this sense, we give below an analogous theorem to the classical “Algebra Perturbation
Lemma” (][9], [11], [13]) appropriated for semifull algebra contractions:

THEOREM 2.1 (SF-APL) (/21])
Let ¢ : {N, M, f,q,0} be a semifull algebra contraction and 6 : N — N be an algebra

perturbation datum of ¢. Then, a new semifull algebra contraction

Cs - {(Nde +57 6N777N)7 (MvdM +d576M777M)7 f57 gs, ¢5}
is defined by the formulas: ds = f6¥3¢g; fs = f(1 — 6%3¢); g5 = Xg; ¢5 = X3¢, where

M= 21 (66)) = 1= 68+ 6066 — o+ (=1)(90) + -+

i>0

Let us note that ¥3(z) is a finite sum for each x € N, because of the pointwise nilpotency
of the composition ¢6. Moreover, it is obvious that the morphism ds becomes a perturbation
of the DGA-module (M, dy, €xr, 7).

In order to calculate the homology of a DGA-algebra, the notion of “homological model”
arises as a computational alternative to the reduced bar construction.

An homological model for a commutative DGA-algebra A is a free DGA-algebra of finite
type HBA such that there exists a semifull algebra contraction from B(A) to HBA. In
particular, it is verified that H.(B(A)) = H.(HBA).

At this stage, it is necessary to borrow Cartan’s definition of the suspension and p-
transpotency additive functions.

Let A be a commutative DGA-algebra. The following morphisms of graded modules can
be defined:

e The suspension, o : A — B(A); defined as o(a) = [a], for a € A.

e The p-transpotency (being p a prime integer), ¢, : A — B(A); defined as ¢,(a) =
[a|aP~!], with a € A.
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3. COMPUTABILITY OF THE HOMOLOGY OF CDGAS. GENERAL ALGORITHM.

It is commonly known that every commutative DGA-algebra A “factorizes” into a tensor
product of exterior and polynomial algebras endowed with a differential-derivation; in the
sense that there exists an homomorphism connecting both structures, which induces an
isomorphism in homology (consult [2] if necessary).

In fact, the object we start from is a generic commutative DGA-algebra A, factorized
into the model above as a TTP of exterior and polynomial algebras. The studies explained
below are reduced to the finitely generated case; that is, a twisted tensor product of algebras
@lcrA;, where I denotes a finite set of indices, p is a differential-derivation and A; is an
exterior or a polynomial algebra, for every 2 € I.

Taking into account the ideas expressed in the section before, the principal goal that
arises is to obtain a “chain” of contractions starting at the reduced bar construction B(A)
and ending up at free DGA-algebra of finite type.

Three almost-full algebra contractions (i.e., semifull algebra contractions endowed with
multiplicative projections) are used in order to find the structure of graded module of an

homological model for the DGA-algebra A:

e The contraction defined in [6] from B(A @ A’) to B(A) ® B(A’), being A and A’ two
commutative DGA-algebras; which is briefly denoted by Cjzg.

Though Eilenberg and Mac Lane only set explicit formulae for the projection and
inclusion morphisms, an explicit formula of the recursive definition of the homotopy
operator given by Eilenberg and Mac Lane in [5] is established in [21].

A relevant property concerning the homotopy operator ¢pg of the contraction above
is that

¢pe(lar @ diaz| - lan]) = —[d}]ai]as] - |an], (3)
with a; € A,V 1 <i:<m and a} € A".

Given a tensor product ®;c;A; of commutative DGA-algebras, a contraction from
B(®ie14;) to @,e1B(A;) is easily determined, by applying Cjg several times in a suit-
able way. This new contraction is also denoted by Cjgg.

e The isomorphism of DGA-algebras (hence, a contraction) Cpp from B(E(u,2n + 1))
to I'(o(u),2n + 2), also described in [6]. Note that the generator v of the previous
divided power algebra is denoted by o(u), since gzz(v) = o(u), where o is the Cartan’s
suspension operator.

Last isomorphism might be considered as a full algebra contraction (that is, an almost-
full algebra contraction endowed with an algebra homotopy operator), in an obvious
way.

e The contraction Cpp from B(P(y,2n)) to E(a(y),2n) ([6]). The generator of the ex-
terior algebra is denoted by o(y) since both elements correspond one to each other by
the projection and inclusion of the contraction.
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All the previous contractions have already been deeper described for decades, so we will
not explain them further.

Thanks to these three contractions, it is possible to establish by composition the following
semifull algebra contraction Cy = (f, g, ¢):

B(@ie1Ai) = @ierB(A;) = @i HBA;,

where H BA; represents an exterior or a divided polynomial algebra, depending on whether
A; 1s a polynomial or an exterior algebra. Obviously, the product on ®@;c;H B A; is the natural
one.

The next step is perturbing Cjy, in order to obtain an homological model of the initial TTP
®f€1Ai. The morphism p produces a perturbation-derivation ¢ onto the tensor differential of

B(®;e1A;). It seems necessary to emphasize that the pointwise nilpotency of ¢6 is guaranteed
by the following facts:

e The homotopy operator ¢ increases the simplicial degree of B(@;c7A;) by one.

e The perturbation é does not change the simplicial degree. Indeed, 6 lowers the tensor
degree by one.

Therefore, by applying SF-APL it is constructed a new semifull algebra contraction
(f57 gs, ¢5):

B(®%e 1 As) (G (@ierHBA;, ds),
where the differential ds is determined by the perturbation process. That means that H BA =
®@,e1(HBA;,ds) is an homological model of A = ®@,¢;A;. Notice that the homotopy op-
erator ¢s increases the simplicial degree at least by one. This fact is to be applied in the
sequel.

THEOREM 3.1 Given a finite type TTP A of exterior and polynomial algebras, there exists
a semifull algebra contraction from the reduced bar construction B(A) to a free DG A-algebra
H of finite type. That is, we have a homological model for A. Moreover, H consists in a TTP
of exterior and divided power algebras such that, at graded algebra level, it is verified that:

o cach E(u,2n — 1) factor in A contributes with a I'(o(u),2n) factor in H.

o cach P(u,2n) factor in A contributes with an E(o(u),2n + 1) factor in H.

In this way, it is described a general algorithm computing the homology of CDGAs. Obvi-
ously, the homology of the homological model obtained can be computed using an algorithm
based upon the establishment of the Smith’s normal form of the matrices representing the
differentials at each degree ([26]).

The computational cost to construct the contraction (Cy)s is high: notice that both the
inclusion and homotopy operators of the contraction C'z4 give an answer in exponential time,
when evaluated on each element. In fact, the formula of the differential operator ds produced
by the homological perturbation machinery is given by:

ds = fobo(l—¢godb+¢obogod—---)og. (4)
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Attending to the previous remarks about the efficiency on the evaluation of morphisms, a
first impression is that the evaluation of ds upon any generator becomes in general a process
of exponential nature.

In spite of this, it is possible to take advantage of ds being a derivation (that is, a
morphism compatible with the product of the homological model), in order to improve the
complexity problem: indeed, the fact that ds is a derivation implies that it is only necessary
to know the value of this morphism applied upon the generators of the model (notice that
there are so many generators as the cardinal of the set of indices I indicates). This is an
enormous improvement in the computation of the differential on the small model.

Finally, Theorem 3.1 can be used to derive small free resolutions of A over A, as it is
shown in the following theorem (which is a graded-commutative version of Th. 8.1.3 of [16]):

THEOREM 3.2 [1]

Let A be a connected commutative DGA-algebra. Given a semifull algebra contraction
from the reduced bar construction B(A) to a free commutative DGA-algebra H (in which the
homotopy operator increases the simplicial degree at least by one); there exists a free resolu-
tion K which splits off of the bar construction. Moreover, this resolution K is a twisted tensor
product of the DG A-algebras A and H and the splitting is a semifull algebra contraction.

In the light of the theorem above, it is possible to state the following one:

THEOREM 3.3 Given a finite type TTP A of exterior and polynomial algebras, there exists

a free resolution A@p/H that split off of the bar construction. More precisely, the splitting is
a semifull algebra contraction and the reduced complex H is determined by Theorem 3.1.

Now, a particular case is examined in detail, in order to clarify the general method.

3.1. AN EXAMPLE: HOMOLOGY OF THE ALGEBRAS A®(717207n-1)

€1,62;.-,€n

This section is devoted to the description of the homological models of a particular family
of CDGAs. We make use of properties of algebra structure preservation. The ground ring is
supposed to be Z in this subsection.

Let Az’l(““"';”—l) denote the CDGA-algebra which consists of the DG-module

4€24.04,€

Efa,2s 4 DE"P(y1, 25 + 2)0" Plya, (25 +2)(rs +1))0"
®P3 . ®Pnp(yn7 (28 4 2)(7“1 + 1) - (rn—l + 1))7

and the differential operator
pilyi) =€ x @y @y @ @y, VI<i<n,

where ¢; € N with ¢; > e¢3 > -+ > ¢, and r; € NU {0}.
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Let us consider the following contraction Cy = (f, g, ¢) as starting point:

B(E(x,2s4+ 1)@ P(y1,2s+ 1)@ -+ @ P(yn, 2s +2)(r1 + 1) -+ (rn_1 + 1))

R£>®
B(E(x,25 +1)) @ B(P(y1,25 +2)) @+ @ B(P(yn, (25 +2)(r1 + 1) -+« (ra1 + 1))
BE®£>BP®"'

['(o(x),2s4+2)@ E(o(y1),254+3) @ - @ E(o(yn), 2s +2)(r1 + 1) -+ (ro—1 + 1) + 1)).

The question is to apply the general method described before to this initial contraction.
From now on, the degrees of the algebra generators are omitted in orden to simplify the
notation.

The differentials py, po, ..., p, produce a perturbation-derivation ¢ in

B(E(z) @ P(y1) @@ -+ @ P(ya).

Applying the perturbation machinery, the following semifull algebra contraction arises:

B(A e )y (W0 (Do (2)) @ E(o (1) @ - © E(o(yn)), ds),

where ds is the differential determined in the perturbation process.
Hence,

HBAZ 2t = (D(o(2)) © Blo(3n)) © - @ E(o(ya)). ds)

.....

constitutes an homological model for this CDGA.

Therefore, it is only necessary to evaluate the differential on each generator o(y1), o(y2),
ey 0(Yn).

Concretely, computing the homology of Az’l(), the formula (4) reduces to f o éo g, since
podog=0.If we go on calculating the image of the differential, we get:

First at all, ds(o(y1)) = —e1 - o(x).

Considering o(y2),

ds(a(y2)) = [s060g(a(y2))
= —e- fi([z@m"]).

Note that it is verified that fs([z @ y1™]) is 0 if 4 > 1 and o(x) otherwise (r; = 0).
Attending to (3), we deduce that ¢([z @y1™]) = —[y1" |]. And applying 6 upon this element
generates 11 - e1[x @ y;"' 7! |x]. By applying alternatively the morphisms ¢ and é§ on the last

r1 + 1 times

element, it is obtained rq!- e;" [z z] after r — 1 iterations. There is only one non
zero possible action of a morphism over this element, which is f. This fact leads directly to

the formula
fs(lr@yi™]) = rl-e™ - U(:l;)(T1+1).

To sum up, the differential ds applied over o(y2) is

ds(o(y2)) = —ril-e™ ez O'(J})(Tl-l—l).
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There is another outstanding fact we have to take into account: the perturbed projection
preserves certain divided powers. Indeed, f5 is a quasi-algebra projection (see (1)) and it is
verified that

m times

fs([z @y x5 wplz @) = fllz @y )kus e x5z @ ™]),  (5)

where %5 denotes the shuffle product of the Bar construction and *,5 denotes the natural
product on the homological model.
In an analogous way, it is easy to prove that fs preserves divided powers of the type:
1 rs) T times 1 Ts
@y @ @ye|l e e @y @ @yl
In particular,

m times

fslle @ y1 " J#s sple @y 2M)) = m! f([e @ yi 21| moimes |2 @ gy 21)),
since |[z @ yi']| is even.
Therefore, the following formula is obtained:
m times (mrl ‘I‘ m)’ _ +
. . mri . mry T)’L‘ 6
ml(ry + 1)™ “ * (6)

fs(lz @] @) =

This fact is essential for achieving good homological results in this case. Fvaluating the
differential operator ds over the generator o(ys),

g(o(ys)) = [yl
oys]) = —es [z @™ @y,
fllx@n™ @ y? 0,

—[y2"? | @y,
= ryey- @y @y e @M,

ro times " "
T @y @,

= rl-e” [z@y "

e e e e e e

Taking into account (6) and the results before:

r —I_l r —I_l ! r— ri(7r T T
(o) = =l DI e ) g (2400040,
2 A1

Working in this way, it is easy to explicit the action of ds upon each generator o(y;):

i—1
ds(o(y:)) = —rizal [Hk:1(Tk+1)]:_1 cepe_q T
(T]‘I'l)

o 1TT072 ¢, H]: 1
( ’_1+1)'Hk=1( k+1) k+ (7)

=2 o IS 00D -y (TL2 )

Alp=1 €k )

where ¢ = 1,2,...,n.
This completes the study of the homology calculation of Az’l(f}.z'e';f"—l).

Note that though coefficients are big enough, working with Z,) as ground ring simplifies
enormously the difficulties on the real computations of the formulae above.
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4. HOCHSCHILD HOMOLOGY OF CDGAS. GENERAL METHOD.

Given a commutative DGA-algebra A, it is possible to construct a semifull algebra contrac-
tion O from B(A) to a twisted tensor product H B A consisting of exterior and divided power
algebras, as it is shown in the previous section. Of course, H BA is endowed with its natural
product. Now, the idea of how to determine the Hochschild homology of A is straightfor-
ward: using the contraction above as a starting point, a new semifull algebra contraction
(5 can be constructed from the Hochschild complex HC.(A) to a free finitely generated
DGA-algebra (via algebra perturbation machinery). In this way, a real algorithm computing
Hochschild homology of commutative DGA-algebras appears. We may say that the work of
Lambe in [16] has provided inspiration for this scheme. Here, we enrich this method, making
use of algebra preservation results in the perturbation machinery (essencially, the SF-APL
Theorem).

Recall that whenever there is no further confusion, subindexes or even operators are to
be omitted.

The Hochschild complex of a CDGA (see [29]) is defined as the graded algebra

HCL.(A) = A@ B(A),

endowed with the differential operator b = by 4 b;. The by morphism verifies the following
rule:

bo(ao @ [ar| -+~ lan]) = dao @ [ay]---|ay]
— i (1) a0 @ [ay| - - - ai—q|dai|ai | - - - |an],

where ¢; =1 + YL _, |ax|. The formula for the by operator is given by:

bl(a0®[a1|"'|an]) = a0a1®[a2|---|an]
+ 25 (=) a0 @ [ar] - - |aica|aiaipa|aiyal - - - Jan]
_(_1)(|an|+1)5n—1ana0[a1| . |ak_1j|‘

It is easy to check that the following identities are hold:
boby = 0, biby = 0, boby + biby = 0.
Notice that the product to be considered in HC.(A) is the natural one, that is
*rea = (x4 @ xma)(1 @ T ® 1)),

where T'(a @ b) = (—1)|“|'|b|b R a.

The only difference between the Hochschild complex and the banal tensor product A ®
B(A) lies on the operator by, and it is given by the first and last summands which does not
appear in the differential of the simple tensor product. Indeed, it is not hard to deduce that
the Hochschild complex of a CDGA becomes a twisted tensor product of the CDGAs A and
B(A). More precisely, HC(A) = A@ShB(A), where

Sn(ao @ [ar] -+ an)) = (=1)®lagay @ [as] - - - |a,] = (=)= HV =10, agfar] - -ana].  (8)
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First of all, let us consider a semifull algebra contraction

(flv g1, ¢1) : (B(A), dB’(A)7 *B) % (HBA7 dHBA7 *HBA)7
where HBA is a free finitely generated CDGA (actually, a TTP of exterior and divided

power algebras).
It is immediate to construct the tensor product contraction (1, @ fi,14 ® ¢1,14 @ ¢1):

(A® B(A)v da @ 1pay+ 14 @ dpiay, *uca) lA%(jl
(A @ HBA, 1, @dyga+ds @ lypa, (*A ® *HBA)(lA QT ® 1HBA))-

From now on, the product and differential operators of the small DGA-algebra of the above
contraction are denoted as *,,, and d,y ., respectively.

It is an easy exercise verifying that 14 @ C is a semifull algebra contraction.

The 6, morphism (see (8)) becomes a perturbation datum for the contraction 14 @ Ch;
moreover, 0y 1s a derivation.

Now, the question boils down to apply SF-APL to this contraction, taking as algebra
perturbation datum the morphism 6. It remains to prove the pointwise nilpotency of the
composition (1, @ ¢1)8. The DGA-algebra A @ B(A) inherits a filtration given by the tensor
degree of the reduced bar construction B(A). It is easy to see that & lowers filtration, at least,
by one (notice that A is connected). On the other hand, since 1, ® ¢; increases the simplicial
degree by one, this homotopy operator is filtration preserving. Then, (1, ® ¢1)6 lowers the
filtration, at least, by one; and this means that this composition is pointwise nilpotent. This
completes the sketch of the proof.

Therefore, using SF-APL it follows that the pertubed contraction Cy = (14 @ C1)s,
constitutes a semifull algebra contraction:

(F2r g2, 82) : (HC(A), b, %4e) 2 (A@ HBA, dypsa + ds, , %p0)-

Hence, a “homological model” for the Hochschild complex of any CDGA is established
in this way.

Since the perturbed differential ds, is a derivation, this morphism is only needed to be
evaluated acting on the generators of A @ HBA (as an algebra). It is immediate to conclude
that ds, = 0. In fact, this is a natural consecuence from the following identities:

o(la@gi)a® 1) =d(a®[]) =0,

la@g)(lez) =40 =20[]-20[]=0,

where ¢ ® 1 and 1 ® z are the only two types of generic generators of A @ HBA, being a and
z generators of A and HBA, respectively.

In the same way, since g2 = (g¢1)s, is a morphism of DGA-algebras, this inclusion is
completely set knowing its images on the generators of A @ HBA. Now, applying g, on a
generator ¢ of A @ HBA, it is obtained that ¢2(¢) = (1, @ ¢1)s5, (1) = (14 @ ¢1)(t). That is,
the perturbation machinery does produce no changes on the inclusion of the contraction.
However, the projection f, and the homotopy operator ¢ are, in general, different from the
morphisms 1, ® f; and 1, @ ¢1, respectively.

In this sense, we state the following theorem:
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THEOREM 4.1 Given a finite type TTP A of exterior and polynomial algebras, there exists a
semifull algebra contraction from the Hochschild complex of A, HC.(A), to a tensor product
A®@ H, where H is the homological model of the reduced bar construction of A described in
Theorem 3.1.

Though theorem above shows that the Hochschild homology of a CDGA does not provide
new homological information distinct from that generated by the reduced bar construction,
the contraction explained before is to be essential in the sequel, in order to compute the
cyclic homology (via perturbation).

5. CYCLIC HOMOLOGY. GENERAL ALGORITHM.

The perturbation machinery provides us, in an easy way, an algorithm calculating the cyclic
homology of commutative DGA-algebras. The main references associated to this section are
[7], [22] and [29].

The eyclic complex of A ([7]) consists of the graded module

CC.(A) = P(u,2)® HC.(A),
endowed with the following differential operator:

) 7 =1 P
dc(w@@w)—{“@b(wH“ ® B(w) ifi>0,

| 1@ b(w) if¢=0.
The morphism B is given by the formula:
Blao @ [a] -+ lan]) = Yig(=1){e=HVn=a-01 @ [a] - - |an]aolay] - - Jai-].

The following product operation may be defined on the cyclic complex associated to every
commutative DG-algebra A (notice that it is not the natural one):

u' @ (wy *ze B(wy)) if 5 =0,

0 otherwise.

(v @ wy) *oe (0! @ wy) = {

Note that the natural product of the cyclic complex is not compatible with its differential
structure. Due to this fact, the cyclic complex of a CDGA is not a twisted tensor product,
in the sense described on section 2.

Now then, starting from the semifull algebra contraction

(f2, g2, 82) : (HC(A), b, %40) 2 (A Q@ HBA, dpsas #n11a),

which determines the Hochschild homology of a CDGA A, it is possible to establish the
following contraction (1 @ fa, 1, ® g2,1 @ ¢2) at a DG-module level:

(COA), 1@ b) T2 (P(u,2) @ (A HBA), 1, @ dys). (9)
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Let consider now the morphism

be(u' ® w) it i=0.

@ B(w) if ¢ >0,
0
It is very easy to prove that 6. becomes a perturbation of the DG-module P(u,2) @
HC.(A), as well as the pointwise nilpotency of (1® ¢2)06.. So, é. is a perturbation datum for
the contraction (9). The following perturbed contraction ((1, @ f2)s,, (1 @ ¢2)s., (1 @ ¢2)s.)
is obtained by applying the Basic Perturbation Lemma:

(1, @ Cyls, : (CCL(A),do) 2 (P(u,2) @ (A® HBA),1p @ dpyn + ds, ).

The small DG-module of the last contraction is denoted by C'BA. It is important to
emphasize that the contraction above is determined at DG-module level.

THEOREM 5.1 Given a finite type TTP A of exterior and polynomial algebras, there exists
a contraction from the cyclic complex of A, CC(A), to a free DG-module of finite type.

Notice now that the algebra perturbation technique SF-APL can not be applied to this
situation (either for the product *c¢ or for the natural product of the underlying tensor
product of the cyclic complex). There is no chance to using the preservation of algebra struc-
tures in the contraction C5. This fact makes the computation of cyclic homology extremely
difficult.

This situation can be remedied in one particular case: considering banal tensor products
of exterior and polynomial algebras.

Let A be a non-twisted tensor product F(x1,...,2,) @ P(y1,...,y,). The contraction

(f17917¢1) : (B(A)vdl?v*]?) % (F(j;lv' . '7j;m) & E(glv' .. 7gn)707*HBA)

becomes an almost-full algebra contraction.
Now, (14 ® C1) + 65, provides the appearance of the contraction

(f27g27¢2) = (1A @ Cl)éh : (HC*(A),Z), *Hc) % (A @ HA7thA7*hHA)-

The contraction Cs = (fs, g3, ¢3) satisfies the following property. Let z; be a monomial
of length 1 in {wy,..., %0, y1,...,yn}, Vi. Notice that ¢1([zi]) = 0 whenever z; = yf, with
k > 1. Hence,

(113 @ 92)(u2 (Zyl kywm Ky er) ® (gkl *pma o Xnma gks) =
u' @ (92(211) ok 92(25,) © g2(Zk ) *uo o kme 92(2k,) =
u' @ (25 *a %4 2,) @ [21y ] *me -+ *mo [20] =
u' @ (2j %4 ka2,) @ Blaw @[]) *me - *me Bz, @ []).

Then,

6(1p @ g2)(u' '® (2]1 ke ka2, ) @ (Zhy knma Fuma Zr,)) =
W@ [B((z), %a %4 25,) @ [1) *ue Blzr, @ [1) *ac - *ue Bz @ [])].
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The last equality is proved using a property due to Loday ([18]):
Bz x B(y)) = B(x) * B(y).

Since ¢y is a quasi algebra homotopy (see (2)), it is proved in [21] that ¢9 is, indeed, a
morphism of DGA-algebras (i.e., multiplicative morphism).
Then, it verified that

P2 %uc (Bg2 @ g2) = (92B62) *c 2.
Therefore,

[(1 ® ¢2)0.(1 @ 92)](1/ @ (2y % %4 2j,) @ (Zhy Fnma s *nma 2n,)) =
u' Tt @ Ga[B((2j, *a - %4 25,) @ [ D] *me 922k *me -+ *ae 2h,)-

Carrying on in this way, it follows that

déc(ui @ (20 %a k4 25,) @ (Zy Fnma - Fnma Zr.)]) =
T @ [dc(Zjl X400k, 25 @ [ ]) Knea Zky Knga " Knga 2k]

That is, the work is confined to know the image of the elements in B(A) of simplicial
degree 1 upon the action of fs.

Notice that the general “twisted” case is much more complicated.

Loday studies in [19] some natural filtrations of the Hochschild and cyclic homologies
of commutative algebras. The method consists in establishing certain A-operations “a la
Grothendieck”, and consequently, a ~-filtration for each theory. These filtrations exist with
no hypothesis over the characteristic of the ground ring. These operations can be studied
in the present context: the trick lies on considering these operations as endomorphisms of
the DG-module HC.( ) or CC.( ). In this way, the homology generators of C'C'(A) might be

determined.

6. p-MINIMAL HOMOLOGICAL MODELS OF ITERATED REDUCED BAR CONSTRUCTIONS OF
CDGAs.

We are mainly concerned in this section with the construction of a homological model for an
iterated reduced bar construction of a TTP of exterior and polynomial algebras.
We need to enunciate some new definitions to obtain such a result.

DEFINITION 6.1 [1] A twisted tensor product TTP = @/_, A; is called decomposable when-
ever there is a non-trivial partition I = Iy U I; of I, such that T'T'P decomposes into a tensor
product of twisted tensor products TT' P, = ®fé11 A; and TT P, = ®fél2 A; with p,, = plrre,
for m = 1,2. Otherwise, TTP is called indecomposable of length ( (or (-indecomposable),

where ¢ is the cardinal of the set of indices [I.

If you take a finite TTP A of exterior and polynomial algebras (may be constituted by
n algebras) and apply the general method developed the sections before (Theorem 3.1), a
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semifull algebra contraction from B(A) to a TTP of n exterior and divided power algebras
is obtained. It seems interesting to study the computability of the homology of B"(A), with
n € N.

It is necessary to recall a theorem proved by Gugenheim, Lambe and Stasheff in which a
contraction from the reduced bar construction of A to the bar tilde construction of M (see
[10], [23]) arises, taking as input datum a contraction from a DG-algebra A to a DG-module
M.

THEOREM 6.2 [11]
Let A and M be a DGA-algebra and a DGA-module respectively, and ¢ : {A, M, f,q, ¢}

be a contraction. Hence, the following full coalgebra contraction can be established:

B(e) : {B(A), B(M), B(f), B(g), B(¢)}, (10)

where d* is the simplicial differential operator of B(A) and the DG-module B(M) is the
Stasheff’s bar tilde construction.

Whenever M = A’is a DGA-algebra and ¢ is an algebra contraction, then the contraction
B(c) “connects” two bar constructions (see [11]). For instance, if ¢ is a morphism of DGA-
algebras then B(c) is a contraction from B(A) to B(A’), and its inclusion B(g) coincides
with T'(S(g)). Since this morphism preserves shuffle products, B(c) becomes an algebra
contraction with multiplicative inclusion. With no further assumptions, it can be proved
that B(g) always preserves shuffle products (see [21]). In other words, the previous theorem
might be enriched, by establishing the behavior of the contraction B(c) regarding to the
algebra structures determined by the shuffle product.

THEOREM 6.3 [21]
Let ¢: {A, M, [, g, ¢} be a contraction, where A is a commutative DGA-algebra and M
is a DGA-module. Then

B(e): {B(A), B(M), B(f). Blg). B(¢)}

constitutes a semifull algebra contraction.

Applying the reduced bar construction to an exterior algebra generates a divided power
algebra; due to this fact and in order to iterate the process above, it is necessary to establish
a contraction for the bar construction of a divided power algebra with one generator of even
degree. Working in Z,), being p a prime number, a “p-minimal homological model” of this
algebra is obtained, consisting in a tensor product of an exterior algebra and an infinite
number of “p-minimal” 2-indecomposable TTPs of exterior and divided power algebras.

Let us suppose, therefore, that the ground ring is given by Z,), that is, Z localized on a
prime integer p:

L) = {g, such that m.c.d.(p,s) = 1}.
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DEFINITION 6.4 [153] Let M be a DGA-module over Z . We say that a morphism of DGA-
modules h : M — M is p-minimal whenever A(M) C p- M. We say that a DGA-module M
is p-minimal whenever it is free, of finite type as graded module over Z,) and its differential
dy; 18 p-minimal.

Notice that a contraction between two p-minimal DGA-modules constitutes an isomor-
phism of DGA-modules.

Taking into account the previous definitions, a commutative DGA-algebra H is said to
be a p-minimal homological model of a given CDGA A whenever H is minimal and there
exists a contraction from B(A) to H.

Hence, the following result states:

THEOREM 6.5 [1]

Let Z(y) be the ground ring. There exists a semifull algebra contraction from the reduced
bar construction of a p-minimal {-indecomposable twisted tensor product A of exterior and
divided power algebras (with { > 2) to a tensor product H of p-minimal k-indecomposable
twisted tensor products (with k < () of exterior and divided power algebras (equipped with
the natural product). That is, H is a p-minimal homological model of A.

Moreover, attending only to the graded algebra level, it is verified that

o cach E(u,2n — 1) factor in A contributes with a I'(o(u),2n) factor in H.

o cach T'(u,2n) factor in A contributes with E(o~y,(u),2np' + 1) (taking i values upon
the non negative integers) and I'(@yvyyi-1(u),2np' +2) (i > 1), factors in H.

What the previous theorem really means is that there exists an homological preservation
(or non-degeneration) result of the (-indecomposability of TTPs of that kind.
Finally, the following theorem arises:

THEOREM 6.6 Let Z,) be the ground ring. Let A be a TTP of n exterior and polynomial
algebras and let m be a natural number. There is a semifull algebra contraction from the
iterated bar construction B™(A) to a tensor product H of i-indecomposable TTPs of exterior
and divided power algebras, with 1 < n.

In fact, the departure point above is constituted by a semifull algebra contraction from
B(A) to a TTP of n algebras (exterior and divided power algebras), which has already
been established before. Combining appropriately Theorem 6.3 and Theorem 6.5, the result
follows.

Theorems above admits an immediate translation to the language of free resolutions, via

Theorem 6.3:

THEOREM 6.7 Let A be a TTP of n exterior and polynomial algebras and let m be a na-
tural number. There exists a free resolution B™YA)@"H that splits off of the bar resolution
B(B™ Y A)). More precisely, the splitting is a semifull algebra contraction and the reduced
complex H is determined by Theorem 6.6.
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