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a.esAbstra
t. We establish an algorithm 
omputing the homology of 
ommutative di�erentialgraded algebras (brie
y, CDGAs). The main tool in this approa
h is given by the Homologi
alPerturbation Theory parti
ularized for the algebra 
ategory (see [21℄). Taking into a

ountthese results, we develop and re�ne some methods already known about the 
omputation of theHo
hs
hild and 
y
li
 homologies of CDGAs. In the last se
tion of the paper, we analyze thep-lo
al homology of the iterated bar 
onstru
tion of a CDGA (p prime).1. Introdu
tion.The des
ription of eÆ
ient algorithms of homologi
al 
omputation might be 
onsidered asa very important question in Homologi
al Algebra, in order to use those pro
esses mainlyin the resolution of problems on algebrai
 topology; but this subje
t also in
uen
e dire
tlyon the development of non so 
losedareas as Cohomologi
al Physi
s (in this sense, we �nduseful referen
es in [12℄, [24℄, [25℄) and Se
ondary Cal
ulus ([14℄, [27℄, [28℄).Working in the 
ontext of CDGAs, Homologi
al Perturbation Theory ([9℄, [11℄), suppliesat on
e a general algorithm 
omputing the homology of these obje
ts (see [16℄), whi
h oftenbears high 
omputational 
harges and a
tually restri
ts its appli
ation to the low dimensionalhomologi
al 
al
ulus.Our �rst goal 
onsists in re�ning this algorithm, by means of preservation issues over the
ategory of CDGAs when applying perturbation te
hniques (see [21℄). Indeed, the pro
essreveal a polynomial behavior when we deal with some 
on
rete families of CDGAs; forinstan
e, we 
ompute in this paper the homology of the CDGAs As;(r1;���;rn�1)e1;���;en (with ri 2 N,8i = 1; � � � ; n � 1). These and similar positive results make us be sin
erely expe
tant in thea
hievement of an e�e
tive general algorithm 
omputing the homology of CDGAs.On
e the previous algorithm is outlined, our interest turns to the 
al
ulation of Ho
hs
hildand 
y
li
 homologies.Key words and phrases: Homology, CDGA, bar 
onstru
tion, (minimal) homologi
al model, 
ontra
tion,perturbation, twisted tensor produ
t of CDGA.



2 �alvarez a., armario j.a., real p. and silva b.The 
omputation of Ho
hs
hild homology has already been studied by Gu

ione andGu

ione in [8℄, where they set re
ursive formulae in order to determine the di�erential ofa small homologi
al model for a CDGA given. We 
onstru
t here an alternative approa
husing the proper ma
hinery of Homologi
al Perturbation Theory; not only from that pointof view of Lambe's (see [16℄), but also attending to the preservation of algebra stru
tures (asdeveloped in [21℄). The main di�eren
e between this method and Gu

ione's one is that weget here more expli
it homologi
al information, available in terms of homotopy equivalen
es.This fa
t allows an immediate translation of the attained results as the departure point forobtaining the 
y
li
 homology, via perturbation.Unlike the Ho
hs
hild homology one, the method 
omputing 
y
li
 homology is quitemore 
ompli
ated, sin
e no algebrai
 preservation results 
an be applied. We study here aninteresting parti
ular instan
e, in whi
h the diÆ
ulties de
rease substantially. It seems tobe a good idea to use the �-operations des
ribed by Loday ([18℄, [19℄) in order to solve thegeneral problem of the 
omputation of 
y
li
 homology: a suggestive way appears in thissense.The present paper is organized into the following se
tions. The �rst one is devoted toexplain the basi
 algebrai
 
on
epts from whi
h the pro
ess of homologi
al 
omputationis 
onstru
ted; these ideas help to the �ne understanding of the underlying algorithmi

on
epts. We shall use without further explanation the proper 
on
epts of our framework,Algebrai
 Topology and Homologi
al Algebra: we refer to some notions like DGA-algebra,DGA-
oalgebra, derivation, 
oderivation, Hopf DGA-algebra and similar ones.Along the se
ond se
tion, a positive answer is given about the 
omputability problemof the homology of CDGAs; the algorithm developed here produ
es not only an expli
ithomotopy equivalen
e for the redu
ed bar 
onstru
tion of a CDGA, but also a 
ompari-son map with the bar resolution: i.e., an expli
it homotopy equivalen
e with the \standardresolution".Nevertheless, this is not a 
ompletely satisfa
tory solution as this result does not allowone to implement the algorithm into pra
tise (without any memory or time limits): thes
heme often displays a high 
omplexity.The subsequent subse
tion introdu
es a 
on
rete example, treated with spe
i�
 te
hniquesin order to improve the general pro
edure. Arguments whi
h might improve the algorithmof the homologi
al 
omputation are explained at the end of this paragraph.Finally, the obtention of general algorithms 
omputing Ho
hs
hild and 
y
li
 homologiesand the sear
h of minimal homologi
al models of iterated Bar 
onstru
tions of CDGAs willbe the subje
ts of the remaining se
tions.2. Preliminaries.Although relevant notions of Homologi
al Algebra are explained through the exposition ofthe paper, most of 
ommon 
on
epts are not expli
itly given (whi
h might be 
onsulted forinstan
e in [4℄ or [15℄).Let � be a 
ommutative ring with non zero unit and let us assume that � is the groundring. The notation (A; dA; �A) means that A is a di�erential graded algebra (brie
y, DGA-algebra) endowed with a di�erential operator dA and an asso
iative produ
t �A. If there is



homology of 
dgas. 3no further 
onfusion, subindexes or even operators are to be omitted.Noti
e that a DGA-algebra is said to be 
onne
ted whenever A0 is �. The degree of anelement a 2 An is denoted by jaj = n.Three parti
ular algebras are of espe
ial interest in the development of the paper, whi
hare the exterior, polynomial and divided power algebras. Let n be a �xed integer. The exterioralgebra E(x; 2n+ 1) is the graded algebra with generators 1 and x of degrees 0 and 2n+ 1,respe
tively; and trivial produ
t (that is, x2 = 0 and x � 1 = x). The polynomial algebraP (y; 2n) 
onsists of the graded algebra with generators 1 of degree 0 and ea
h power yi ofdegree 2ni, with i 2 N; the produ
t is given by the usual one of polynomials, i.e.: yi �yj = yi+jfor non negative integers i and j. Finally, the divided power algebra �(y; 2n) is the gradedalgebra with generators 1 and y(i) (of 
ourse, y = y(1)) of respe
tive degrees 0 and 2ni,i 2 N; and produ
t de�ned by the rules y(i) � y(j) =  i+ ji ! y(i+j), whi
hever non negativeintegers i and j be. Ea
h of these three types of algebras 
an be 
onsidered as a CDGA withtrivial di�erential.The redu
ed bar 
onstru
tion asso
iated to a DGA-algebra given is a standard algebrai
tool whi
h allows one to save the produ
t stru
ture of the initial DGA-algebra along thepro
ess of homologi
al 
omputation.The redu
ed bar 
onstru
tion asso
iated to a DGA-algebra A is de�ned to be as theDG-module �B(A) 
onsisting of the tensor produ
ts of i 
opies of A at ea
h dimension i (un-derstanding � at the initial level, i.e., in degree 0), and di�erential operator depending on theoriginal di�erential (tensor di�erential) and produ
t (simpli
ial di�erential) morphisms on A(see [15℄). A generi
 homogeneous element of degree n is usually denoted by the expression[ar1jar2j � � � jars℄, where ari 2 Ari and s+ sXi=1 ri = n; the tensor degree of su
h an elementis Psi=1 ri = n, and the simpli
ial degree is s. Whenever the algebra A is 
ommutative, itis possible to de�ne a multipli
ative stru
ture upon �B(A) (via an operator 
alled shu�eprodu
t), so that the redu
ed bar 
onstru
tion be
omes also a CDGA.A resolution of � over a DGA-algebra A 
onsists in a di�erential A-module X, whi
h isproje
tive as an A-module, su
h that the homology of X is zero ex
ept for degree 0, whereit 
oin
ides with �. If X is a
tually a free A-module then X is 
alled a free resolution.A relevant notion to introdu
e is the twisted tensor produ
t of DGA-algebras [1℄ (brie
y,TTP ). Let fAigi2I be a set of 
ommutative DGA-algebras. A twisted tensor produ
t ~
�i2IAiis a CDGA satisfying the following 
onditions:i) ~
�i2IAi 
oin
ides with the tensor produ
t 
i2IAi as a graded algebra.ii) The di�erential operator 
onsists in the sum of the di�erential of the banal tensorprodu
t and a derivation �.A
tually, a TTP of DGA-algebras is a \perturbed" DGA-algebra in whi
h the \perturba-tion" only a�e
ts its di�erential and not its produ
t. Noti
e that this 
on
ept reveals a littlestru
tural di�eren
e with respe
t to that of multipli
ative prin
ipal 
onstru
tion of Cartan(see [3℄, [20℄).An interesting type of free resolutions of � over a 
ommutative DGA-algebra A 
onsists inTTPs of the formX = A~
� �X, where �X is a free CDGA. In this 
ir
umstan
es, �X is known to



4 �alvarez a., armario j.a., real p. and silva b.be the redu
ed 
omplex of the resolution. For instan
e, if A is a CDGA, the \bar resolution"B(A) (see [15℄) be
omes a twisted tensor produ
t of DGA-algebras. More pre
isely, B(A) isthe 
ommutative DGA-algebra A~
� �B(A), where�(a
 [a1ja2j � � � jan℄) = (a �A a1)
 [a2j � � � jan℄:The algorithmi
 te
hniques that are proposed in pursuit of solving the problem of thehomology 
omputation are �tted into the framework of 
onstru
tive Homologi
al Algebra.The main input data are the 
ontra
tions ([5℄, [13℄): a 
ontra
tion 
, N 
) M (sometimesdenoted by (f; g; �)) from a DG-module (N; dN ) to a DG-module (M;dM ) 
onsists in anhomotopy equivalen
e determined by three morphisms f , g and �; being f : N� ! M�(proje
tion) and g :M� ! N� (in
lusion) two DG-module morphisms and � : N� ! N�+1 anhomotopy operator. Moreover, these data are required to satisfy the following rules: fg = 1M ,f� = 0, �g = 0, �dN + dN�+ gf = 1N and �� = 0.Noti
e that a free resolutionK of � over the DGA-algebra A splits o� the bar 
onstru
tionif there exists a 
ontra
tion (
alled splitting) from B(A) to K. This notion is due to Lambe([17℄) and is to be applied later on.There is a relevant parti
ular type of 
ontra
tions of DGA-algebras, that we systemat-i
ally use in the remainder of this paper. We refer to semifull algebra 
ontra
tions ([21℄),whi
h 
onsist of a multipli
ative in
lusion, a quasi-algebra proje
tion and a quasi-algebrahomotopy. Given a 
ontra
tion (f; g; �) between two DGAs A and A0, we re
all that:1. The proje
tion f is said to be a quasi-algebra proje
tion whenever the following 
ondi-tions hold: f(� �A �) = 0; f(� �A g) = 0; f(g �A �) = 0: (1)2. The homotopy operator � is said to be a quasi-algebra homotopy whenever the rulesbelow are veri�ed: �(� �A �) = 0; �(� �A g) = 0; �(g �A �) = 0: (2)For instan
e, the bar resolutionB(A) of a DGA-algebra A generates the following semifullalgebra 
ontra
tion: RB(A) : fB(A);�; �B(A); �B(A); sg;where the homotopy operator s : B(A)! B(A) is given bys(a
 [a1j � � � jan℄) = [aja1j � � � jan℄:The restri
tion to this parti
ular type of 
ontra
tions is due to the fa
t that they are pre-served by most of algebra operations: for instan
e, the set of all semifull algebra 
ontra
tionsis 
losed by 
omposition and tensor produ
t of 
ontra
tions.The basi
 pro
edure we state here 
onsists in the establishment of an expli
it 
ontra
tionfrom an initial DG-module N to a free �nite type DG-module M , so that the homology ofN is a
tually 
omputable from that of M : that is, H�(N) = H�(M).There exist other important tools from whi
h one rea
hes extra homologi
al information:under 
ertain 
ir
umstan
es one may \perturb" a given 
ontra
tion in order to obtain a new
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ontra
tion between the initial underlying graded modules endowed with distin
t di�erentialoperators (to know more about Homologi
al Perturbation Theory, 
onsult [9℄, [11℄, [13℄, [16℄and [17℄).Noti
e that semifull algebra 
ontra
tions are preserved via perturbation pro
esses.We re
all the 
on
ept of a perturbation datum. Let N be a graded module and letf : N ! N be a morphism of graded modules. The morphism f is de�ned to be pointwisenilpotent whenever for all x 2 N , x 6= 0, a positive integer n exists su
h that fn(x) = 0. Noti
ethat the integer n generally depends on the element x. A perturbation of a DGA-module N
onsists in a morphism of graded modules Æ : N ! N of degree �1, su
h that (dN + Æ)2 = 0and �NÆ = 0. A perturbation datum of the 
ontra
tion 
 : fN;M; f; g; �g is a perturbationÆ of the DGA-module N verifying that the 
omposition �Æ is pointwise nilpotent. In theparti
ular 
ase that both of N and M are DGA-algebras, a new notion appears: an algebraperturbation datum Æ of a 
ontra
tion 
 from N to M 
onsists in a perturbation datum Æ of
 whi
h is also a derivation.We deal with perturbation results parti
ularized for the DGA-algebra 
ategory (see [21℄).In this sense, we give below an analogous theorem to the 
lassi
al \Algebra PerturbationLemma" ([9℄, [11℄, [13℄) appropriated for semifull algebra 
ontra
tions:Theorem 2.1 (SF-APL) ([21℄)Let 
 : fN;M; f; g; �g be a semifull algebra 
ontra
tion and Æ : N ! N be an algebraperturbation datum of 
. Then, a new semifull algebra 
ontra
tion
Æ : f(N; dN + Æ; �N; �N); (M;dM + dÆ; �M; �M); fÆ; gÆ; �Ægis de�ned by the formulas: dÆ = fÆ�Æ
g; fÆ = f(1 � Æ�Æ
�); gÆ = �Æ
g; �Æ = �Æ
�; where�Æ
 = Xi�0(�1)i (�Æ)i = 1� �Æ + �Æ�Æ� � � �+ (�1)i(�Æ)i + � � � :Let us note that �Æ
(x) is a �nite sum for ea
h x 2 N , be
ause of the pointwise nilpoten
yof the 
omposition �Æ. Moreover, it is obvious that the morphism dÆ be
omes a perturbationof the DGA-module (M;dM ; �M ; �M).In order to 
al
ulate the homology of a DGA-algebra, the notion of \homologi
al model"arises as a 
omputational alternative to the redu
ed bar 
onstru
tion.An homologi
al model for a 
ommutative DGA-algebra A is a free DGA-algebra of �nitetype HBA su
h that there exists a semifull algebra 
ontra
tion from �B(A) to HBA. Inparti
ular, it is veri�ed that H�( �B(A)) = H�(HBA).At this stage, it is ne
essary to borrow Cartan's de�nition of the suspension and p-transpoten
y additive fun
tions.Let A be a 
ommutative DGA-algebra. The following morphisms of graded modules 
anbe de�ned:� The suspension, � : A! �B(A); de�ned as �(a) = [a℄, for a 2 A.� The p-transpoten
y (being p a prime integer), 'p : A ! �B(A); de�ned as 'p(a) =[ajap�1℄, with a 2 A.



6 �alvarez a., armario j.a., real p. and silva b.3. Computability of the homology of CDGAs. General algorithm.It is 
ommonly known that every 
ommutative DGA-algebra A \fa
torizes" into a tensorprodu
t of exterior and polynomial algebras endowed with a di�erential-derivation; in thesense that there exists an homomorphism 
onne
ting both stru
tures, whi
h indu
es anisomorphism in homology (
onsult [2℄ if ne
essary).In fa
t, the obje
t we start from is a generi
 
ommutative DGA-algebra A, fa
torizedinto the model above as a TTP of exterior and polynomial algebras. The studies explainedbelow are redu
ed to the �nitely generated 
ase; that is, a twisted tensor produ
t of algebras~
�i2IAi, where I denotes a �nite set of indi
es, � is a di�erential-derivation and Ai is anexterior or a polynomial algebra, for every i 2 I.Taking into a

ount the ideas expressed in the se
tion before, the prin
ipal goal thatarises is to obtain a \
hain" of 
ontra
tions starting at the redu
ed bar 
onstru
tion �B(A)and ending up at free DGA-algebra of �nite type.Three almost-full algebra 
ontra
tions (i.e., semifull algebra 
ontra
tions endowed withmultipli
ative proje
tions) are used in order to �nd the stru
ture of graded module of anhomologi
al model for the DGA-algebra A:� The 
ontra
tion de�ned in [6℄ from �B(A
 A0) to �B(A)
 �B(A0), being A and A0 two
ommutative DGA-algebras; whi
h is brie
y denoted by C �B
.Though Eilenberg and Ma
 Lane only set expli
it formulae for the proje
tion andin
lusion morphisms, an expli
it formula of the re
ursive de�nition of the homotopyoperator given by Eilenberg and Ma
 Lane in [5℄ is established in [21℄.A relevant property 
on
erning the homotopy operator �B
 of the 
ontra
tion aboveis that �B
([a1 
 a01ja2j � � � jam℄) = �[a01ja1ja2j � � � jam℄; (3)with ai 2 A, 8 1 � i � m and a01 2 A0.Given a tensor produ
t 
i2IAi of 
ommutative DGA-algebras, a 
ontra
tion from�B(
i2IAi) to 
i2I �B(Ai) is easily determined, by applying C �B
 several times in a suit-able way. This new 
ontra
tion is also denoted by C �B
.� The isomorphism of DGA-algebras (hen
e, a 
ontra
tion) C �BE from �B(E(u; 2n + 1))to �(�(u); 2n + 2), also des
ribed in [6℄. Note that the generator v of the previousdivided power algebra is denoted by �(u), sin
e g �BE(v) = �(u), where � is the Cartan'ssuspension operator.Last isomorphism might be 
onsidered as a full algebra 
ontra
tion (that is, an almost-full algebra 
ontra
tion endowed with an algebra homotopy operator), in an obviousway.� The 
ontra
tion C �BP from �B(P (y; 2n)) to E(�(y); 2n) ([6℄). The generator of the ex-terior algebra is denoted by �(y) sin
e both elements 
orrespond one to ea
h other bythe proje
tion and in
lusion of the 
ontra
tion.



homology of 
dgas. 7All the previous 
ontra
tions have already been deeper des
ribed for de
ades, so we willnot explain them further.Thanks to these three 
ontra
tions, it is possible to establish by 
omposition the followingsemifull algebra 
ontra
tion C0 = (f; g; �):�B(
i2IAi) ) 
i2I �B(Ai) ) 
i2IHBAi;where HBAi represents an exterior or a divided polynomial algebra, depending on whetherAi is a polynomial or an exterior algebra. Obviously, the produ
t on 
i2IHBAi is the naturalone.The next step is perturbing C0, in order to obtain an homologi
al model of the initial TTP~
�i2IAi. The morphism � produ
es a perturbation-derivation Æ onto the tensor di�erential of�B(
i2IAi). It seems ne
essary to emphasize that the pointwise nilpoten
y of �Æ is guaranteedby the following fa
ts:� The homotopy operator � in
reases the simpli
ial degree of �B(
i2IAi) by one.� The perturbation Æ does not 
hange the simpli
ial degree. Indeed, Æ lowers the tensordegree by one.Therefore, by applying SF-APL it is 
onstru
ted a new semifull algebra 
ontra
tion(fÆ; gÆ; �Æ): �B( ~
�i2IAi) (C0)Æ) (
i2IHBAi; dÆ);where the di�erential dÆ is determined by the perturbation pro
ess. That means that HBA =
i2I(HBAi; dÆ) is an homologi
al model of A = ~
i2IAi. Noti
e that the homotopy op-erator �Æ in
reases the simpli
ial degree at least by one. This fa
t is to be applied in thesequel.Theorem 3.1 Given a �nite type TTP A of exterior and polynomial algebras, there existsa semifull algebra 
ontra
tion from the redu
ed bar 
onstru
tion �B(A) to a free DGA-algebraH of �nite type. That is, we have a homologi
al model for A. Moreover, H 
onsists in a TTPof exterior and divided power algebras su
h that, at graded algebra level, it is veri�ed that:� ea
h E(u; 2n� 1) fa
tor in A 
ontributes with a �(�(u); 2n) fa
tor in H.� ea
h P (u; 2n) fa
tor in A 
ontributes with an E(�(u); 2n+ 1) fa
tor in H.In this way, it is des
ribed a general algorithm 
omputing the homology of CDGAs. Obvi-ously, the homology of the homologi
al model obtained 
an be 
omputed using an algorithmbased upon the establishment of the Smith's normal form of the matri
es representing thedi�erentials at ea
h degree ([26℄).The 
omputational 
ost to 
onstru
t the 
ontra
tion (C0)Æ is high: noti
e that both thein
lusion and homotopy operators of the 
ontra
tion C �B
 give an answer in exponential time,when evaluated on ea
h element. In fa
t, the formula of the di�erential operator dÆ produ
edby the homologi
al perturbation ma
hinery is given by:dÆ = f Æ Æ Æ (1� � Æ Æ + � Æ Æ Æ � Æ Æ � � � �) Æ g: (4)



8 �alvarez a., armario j.a., real p. and silva b.Attending to the previous remarks about the eÆ
ien
y on the evaluation of morphisms, a�rst impression is that the evaluation of dÆ upon any generator be
omes in general a pro
essof exponential nature.In spite of this, it is possible to take advantage of dÆ being a derivation (that is, amorphism 
ompatible with the produ
t of the homologi
al model), in order to improve the
omplexity problem: indeed, the fa
t that dÆ is a derivation implies that it is only ne
essaryto know the value of this morphism applied upon the generators of the model (noti
e thatthere are so many generators as the 
ardinal of the set of indi
es I indi
ates). This is anenormous improvement in the 
omputation of the di�erential on the small model.Finally, Theorem 3.1 
an be used to derive small free resolutions of � over A, as it isshown in the following theorem (whi
h is a graded-
ommutative version of Th. 8.1.3 of [16℄):Theorem 3.2 [1℄Let A be a 
onne
ted 
ommutative DGA-algebra. Given a semifull algebra 
ontra
tionfrom the redu
ed bar 
onstru
tion �B(A) to a free 
ommutative DGA-algebra H (in whi
h thehomotopy operator in
reases the simpli
ial degree at least by one); there exists a free resolu-tion K whi
h splits o� of the bar 
onstru
tion. Moreover, this resolution K is a twisted tensorprodu
t of the DGA-algebras A and H and the splitting is a semifull algebra 
ontra
tion.In the light of the theorem above, it is possible to state the following one:Theorem 3.3 Given a �nite type TTP A of exterior and polynomial algebras, there existsa free resolution A~
�0H that split o� of the bar 
onstru
tion. More pre
isely, the splitting isa semifull algebra 
ontra
tion and the redu
ed 
omplex H is determined by Theorem 3.1.Now, a parti
ular 
ase is examined in detail, in order to 
larify the general method.3.1. An example: Homology of the algebras As;(r1;r2;:::;rn�1)e1;e2;:::;en .This se
tion is devoted to the des
ription of the homologi
al models of a parti
ular familyof CDGAs. We make use of properties of algebra stru
ture preservation. The ground ring issupposed to be Z in this subse
tion.Let As;(r1;r2;:::;rn�1)e1;e2;:::;en denote the CDGA-algebra whi
h 
onsists of the DG-moduleE(x; 2s+ 1)~
�1P (y1; 2s+ 2)~
�2P (y2; (2s + 2)(r1 + 1)) ~
�3~
�3 � � � ~
�nP (yn; (2s+ 2)(r1 + 1) � � � (rn�1 + 1));and the di�erential operator�i(yi) = ei x
 yr11 
 yr22 
 � � � 
 yri�1i�1 ; 81 � i � n;where ei 2 N with e1 > e2 > � � � > en and ri 2 N[ f0g.



homology of 
dgas. 9Let us 
onsider the following 
ontra
tion C0 = (f; g; �) as starting point:�B(E(x; 2s+ 1)
 P (y1; 2s+ 1)
 � � � 
 P (yn; (2s+ 2)(r1 + 1) � � � (rn�1 + 1)))R �B
)�B(E(x; 2s+ 1)) 
 �B(P (y1; 2s+ 2))
 � � � 
 �B(P (yn; (2s+ 2)(r1 + 1) � � � (rn�1 + 1)))R �BE
R �BP
���)�(�(x); 2s+ 2)
 E(�(y1); 2s+ 3)
 � � � 
 E(�(yn); (2s+ 2)(r1 + 1) � � � (rn�1 + 1) + 1)):The question is to apply the general method des
ribed before to this initial 
ontra
tion.From now on, the degrees of the algebra generators are omitted in orden to simplify thenotation.The di�erentials �1, �2, : : :, �n produ
e a perturbation-derivation Æ in�B(E(x)
 P (y1) 

 � � � 
 P (yn):Applying the perturbation ma
hinery, the following semifull algebra 
ontra
tion arises:�B(As;( 2r1;:::; nrn�1)e1;:::;en ) (C0)Æ) (�(�(x))
 E(�(y1)) 
 � � � 
E(�(yn)); dÆ);where dÆ is the di�erential determined in the perturbation pro
ess.Hen
e, H �BAs;( 2r1;:::; nrn�1)e1;:::;en = (�(�(x))
 E(�(y1))
 � � � 
 E(�(yn)); dÆ)
onstitutes an homologi
al model for this CDGA.Therefore, it is only ne
essary to evaluate the di�erential on ea
h generator �(y1), �(y2),: : :, �(yn).Con
retely, 
omputing the homology of As;()e1 , the formula (4) redu
es to f Æ Æ Æ g, sin
e� Æ Æ Æ g = 0. If we go on 
al
ulating the image of the di�erential, we get:First at all, dÆ(�(y1)) = �e1 � �(x).Considering �(y2), dÆ(�(y2)) = fÆ Æ Æ Æ g(�(y2))= �e2 � fÆ([x
 y1r1℄):Note that it is veri�ed that fÆ([x 
 y1r1 ℄) is 0 if r1 � 1 and �(x) otherwise (r1 = 0).Attending to (3), we dedu
e that �([x
y1r1℄) = �[y1r1 jx℄. And applying Æ upon this elementgenerates r1 � e1[x
 y1r1�1jx℄. By applying alternatively the morphisms � and Æ on the lastelement, it is obtained r1! � e1r1[xj r1 + 1 times� � � jx℄ after r � 1 iterations. There is only one nonzero possible a
tion of a morphism over this element, whi
h is f . This fa
t leads dire
tly tothe formula fÆ([x
 y1r1℄) = r1! � e1r1 � �(x)(r1+1):To sum up, the di�erential dÆ applied over �(y2) isdÆ(�(y2)) = �r1! � e1r1 � e2 � �(x)(r1+1):



10 �alvarez a., armario j.a., real p. and silva b.There is another outstanding fa
t we have to take into a

ount: the perturbed proje
tionpreserves 
ertain divided powers. Indeed, fÆ is a quasi-algebra proje
tion (see (1)) and it isveri�ed thatfÆ([x
 y1r1℄� �B m times� � � � �B[x
 y1r1℄) = fÆ([x
 y1r1℄)�HB m times: : : �HBfÆ([x
 y1r1℄); (5)where � �B denotes the shu�e produ
t of the Bar 
onstru
tion and �HB denotes the naturalprodu
t on the homologi
al model.In an analogous way, it is easy to prove that fÆ preserves divided powers of the type:[x
 yr11 
 � � � 
 yrss j m times� � � jx
 yr11 
 � � � 
 yrss ℄:In parti
ular,fÆ([x
 y1 2r1℄� �B m times� � � � �B[x
 y1 2r1℄) = m! fÆ([x
 y1 2r1j m times: : : jx
 y1 2r1℄);sin
e j[x
 yr11 ℄j is even.Therefore, the following formula is obtained:fÆ([x
 y1r1 j m times� � � jx
 y1r1 ℄) = (mr1 +m)!m!(r1 + 1)m � e1mr1 � �xmr1+m: (6)This fa
t is essential for a
hieving good homologi
al results in this 
ase. Evaluating thedi�erential operator dÆ over the generator �(y3),g(�(y3)) = [y3℄;Æ([y3℄) = �e3 � [x
 y1r1 
 y2r2℄;f([x
 y1r1 
 y2r2 ℄) = 0;�([x
 y1r1 
 y2r2 ℄) = �[y2r2jx
 y1r1℄;�Æ([y2r2jx
 y1r1 ℄) = r2 � e2 � [x
 y1r1 
 y2r2�1jx
 y1r1℄;(Æ Æ �)r2([x
 y1r1 
 y2r2 ℄) = r2! � e2r2 � [x
 y1r1j r2 times� � � jx
 y1r1jx
 y1r1℄:Taking into a

ount (6) and the results before:dÆ(�(y3)) = �r2! � [(r2 + 1)(r1 + 1)℄!(r2 + 1)!(r1 + 1)r2+1 � e3 � e2r�2 � e1r1(r2+1) � �(x)(r2+1)(r1+1)):Working in this way, it is easy to expli
it the a
tion of dÆ upon ea
h generator �(yi):dÆ(�(yi)) = �ri�1! � [Qi�1k=1(rk+1)℄!(ri�1+1)!Qi�2k=1(rk+1)Qi�1j=k+1(rj+1) � ei � ei�1ri�1��Qi�2k=1 ekrkQi�1j=k+1(rj+1) � �(x)(Qi�1k=1(rk+1)); (7)where i = 1; 2; : : : ; n.This 
ompletes the study of the homology 
al
ulation of As;(r1;:::;rn�1)e1;:::;en .Note that though 
oeÆ
ients are big enough, working with Z(p) as ground ring simpli�esenormously the diÆ
ulties on the real 
omputations of the formulae above.



homology of 
dgas. 114. Ho
hs
hild homology of CDGAs. General Method.Given a 
ommutative DGA-algebra A, it is possible to 
onstru
t a semifull algebra 
ontra
-tion C1 from �B(A) to a twisted tensor produ
t HBA 
onsisting of exterior and divided poweralgebras, as it is shown in the previous se
tion. Of 
ourse, HBA is endowed with its naturalprodu
t. Now, the idea of how to determine the Ho
hs
hild homology of A is straightfor-ward: using the 
ontra
tion above as a starting point, a new semifull algebra 
ontra
tionC2 
an be 
onstru
ted from the Ho
hs
hild 
omplex HC�(A) to a free �nitely generatedDGA-algebra (via algebra perturbation ma
hinery). In this way, a real algorithm 
omputingHo
hs
hild homology of 
ommutative DGA-algebras appears. We may say that the work ofLambe in [16℄ has provided inspiration for this s
heme. Here, we enri
h this method, makinguse of algebra preservation results in the perturbation ma
hinery (essen
ially, the SF-APLTheorem).Re
all that whenever there is no further 
onfusion, subindexes or even operators are tobe omitted.The Ho
hs
hild 
omplex of a CDGA (see [29℄) is de�ned as the graded algebraHC�(A) = A
 �B(A);endowed with the di�erential operator b = b0 + b1. The b0 morphism veri�es the followingrule: b0(a0 
 [a1j � � � jan℄) = da0 
 [a1j � � � jan℄�Pni=1(�1)�i�1a0 
 [a1j � � � jai�1jdaijai+1j � � � jan℄;where �i = i+Pik=0 jakj. The formula for the b1 operator is given by:b1(a0 
 [a1j � � � jan℄) = a0a1 
 [a2j � � � jan℄+Pn�1i=0 (�1)�ia0 
 [a1j � � � jai�1jaiai+1jai+2j � � � jan℄�(�1)(janj+1)�n�1ana0[a1j � � � jak�1℄:It is easy to 
he
k that the following identities are hold:b0b0 = 0; b1b1 = 0; b0b1 + b1b0 = 0:Noti
e that the produ
t to be 
onsidered in HC�(A) is the natural one, that is�HCA = (�A 
 �HBA)(1 
 T 
 1));where T (a
 b) = (�1)jaj�jbjb
 a.The only di�eren
e between the Ho
hs
hild 
omplex and the banal tensor produ
t A
�B(A) lies on the operator b1, and it is given by the �rst and last summands whi
h does notappear in the di�erential of the simple tensor produ
t. Indeed, it is not hard to dedu
e thatthe Ho
hs
hild 
omplex of a CDGA be
omes a twisted tensor produ
t of the CDGAs A and�B(A). More pre
isely, HC�(A) = A~
Æh �B(A), whereÆh(a0 
 [a1j � � � an℄) = (�1)ja0ja0a1 
 [a2j � � � jan℄� (�1)(janj+1)�n�1ana0[a1j � � � jan�1℄: (8)



12 �alvarez a., armario j.a., real p. and silva b.First of all, let us 
onsider a semifull algebra 
ontra
tion(f1; g1; �1) : ( �B(A); d �B(A); � �B) C1) (HBA; dHBA; �HBA);where HBA is a free �nitely generated CDGA (a
tually, a TTP of exterior and dividedpower algebras).It is immediate to 
onstru
t the tensor produ
t 
ontra
tion (1A 
 f1; 1A 
 g1; 1A 
 �1):(A
 �B(A); dA 
 1 �B(A) + 1A 
 d �B(A); �HCA) 1A
C1)(A
HBA; 1A 
 dHBA + dA 
 1HBA; (�A 
 �HBA)(1A 
 T 
 1HBA)):From now on, the produ
t and di�erential operators of the small DGA-algebra of the above
ontra
tion are denoted as �hHA and dhHA, respe
tively.It is an easy exer
ise verifying that 1A 
 C1 is a semifull algebra 
ontra
tion.The Æh morphism (see (8)) be
omes a perturbation datum for the 
ontra
tion 1A 
 C1;moreover, Æh is a derivation.Now, the question boils down to apply SF-APL to this 
ontra
tion, taking as algebraperturbation datum the morphism Æh. It remains to prove the pointwise nilpoten
y of the
omposition (1A
�1)Æ. The DGA-algebra A
 �B(A) inherits a �ltration given by the tensordegree of the redu
ed bar 
onstru
tion �B(A). It is easy to see that Æ lowers �ltration, at least,by one (noti
e that A is 
onne
ted). On the other hand, sin
e 1A
�1 in
reases the simpli
ialdegree by one, this homotopy operator is �ltration preserving. Then, (1A 
 �1)Æ lowers the�ltration, at least, by one; and this means that this 
omposition is pointwise nilpotent. This
ompletes the sket
h of the proof.Therefore, using SF-APL it follows that the pertubed 
ontra
tion C2 = (1A 
 C1)Æh
onstitutes a semifull algebra 
ontra
tion:(f2; g2; �2) : (HC(A); b; �HC) C2) (A
HBA; dhHA + dÆh; �hHA):Hen
e, a \homologi
al model" for the Ho
hs
hild 
omplex of any CDGA is establishedin this way.Sin
e the perturbed di�erential dÆh is a derivation, this morphism is only needed to beevaluated a
ting on the generators of A
HBA (as an algebra). It is immediate to 
on
ludethat dÆh = 0. In fa
t, this is a natural 
onse
uen
e from the following identities:Æh(1A 
 g1)(a
 1) = Æh(a
 [ ℄) = 0;Æh(1A 
 g1)(1
 z) = Æh(1
 [z℄) = z 
 [ ℄� z 
 [ ℄ = 0;where a
 1 and 1
 z are the only two types of generi
 generators of A
HBA, being a andz generators of A and HBA, respe
tively.In the same way, sin
e g2 = (g1)Æh is a morphism of DGA-algebras, this in
lusion is
ompletely set knowing its images on the generators of A 
 HBA. Now, applying g2 on agenerator t of A 
HBA, it is obtained that g2(t) = (1A 
 g1)Æh(t) = (1A 
 g1)(t). That is,the perturbation ma
hinery does produ
e no 
hanges on the in
lusion of the 
ontra
tion.However, the proje
tion f2 and the homotopy operator �2 are, in general, di�erent from themorphisms 1A 
 f1 and 1A 
 �1, respe
tively.In this sense, we state the following theorem:



homology of 
dgas. 13Theorem 4.1 Given a �nite type TTP A of exterior and polynomial algebras, there exists asemifull algebra 
ontra
tion from the Ho
hs
hild 
omplex of A, HC�(A), to a tensor produ
tA
H, where H is the homologi
al model of the redu
ed bar 
onstru
tion of A des
ribed inTheorem 3.1.Though theorem above shows that the Ho
hs
hild homology of a CDGA does not providenew homologi
al information distin
t from that generated by the redu
ed bar 
onstru
tion,the 
ontra
tion explained before is to be essential in the sequel, in order to 
ompute the
y
li
 homology (via perturbation).5. Cy
li
 homology. General Algorithm.The perturbation ma
hinery provides us, in an easy way, an algorithm 
al
ulating the 
y
li
homology of 
ommutative DGA-algebras. The main referen
es asso
iated to this se
tion are[7℄, [22℄ and [29℄.The 
y
li
 
omplex of A ([7℄) 
onsists of the graded moduleCC�(A) = P (u; 2)
HC�(A);endowed with the following di�erential operator:d
(ui 
 w) = ( ui 
 b(w) + ui�1 
B(w) if i > 0,1
 b(w) if i = 0.The morphism B is given by the formula:B(a0 
 [a1j � � � jan℄) = Pni=0(�1)(�i�1+1)(�n��i�1)1
 [aij � � � janja0ja1j � � � jai�1℄:The following produ
t operation may be de�ned on the 
y
li
 
omplex asso
iated to every
ommutative DG-algebra A (noti
e that it is not the natural one):(ui 
 w1) �CC (uj 
 w2) = ( ui 
 (w1 �HC B(w2)) if j = 0;0 otherwise.Note that the natural produ
t of the 
y
li
 
omplex is not 
ompatible with its di�erentialstru
ture. Due to this fa
t, the 
y
li
 
omplex of a CDGA is not a twisted tensor produ
t,in the sense des
ribed on se
tion 2.Now then, starting from the semifull algebra 
ontra
tion(f2; g2; �2) : (HC(A); b; �HC) C2) (A
HBA; dhHA; �hHA);whi
h determines the Ho
hs
hild homology of a CDGA A, it is possible to establish thefollowing 
ontra
tion (1P 
 f2; 1P 
 g2; 1 
 �2) at a DG-module level:(CC(A); 1
 b) 1P (u;2)
C2) (P (u; 2)
 (A
HBA); 1P 
 dhHA): (9)



14 �alvarez a., armario j.a., real p. and silva b.Let 
onsider now the morphismÆ
(ui 
 w) = ( ui�1 
B(w) if i > 0,0 if i = 0:It is very easy to prove that Æ
 be
omes a perturbation of the DG-module P (u; 2) 
HC�(A), as well as the pointwise nilpoten
y of (1
�2)ÆÆ
. So, Æ
 is a perturbation datum forthe 
ontra
tion (9). The following perturbed 
ontra
tion ((1P 
 f2)Æ
; (1P 
 g2)Æ
; (1P 
 �2)Æ
)is obtained by applying the Basi
 Perturbation Lemma:[1P 
 C2℄Æh : (CC�(A); d
) C3) (P (u; 2) 
 (A
HBA); 1P 
 dhHA + dÆ
):The small DG-module of the last 
ontra
tion is denoted by CBA. It is important toemphasize that the 
ontra
tion above is determined at DG-module level.Theorem 5.1 Given a �nite type TTP A of exterior and polynomial algebras, there existsa 
ontra
tion from the 
y
li
 
omplex of A, CC�(A), to a free DG-module of �nite type.Noti
e now that the algebra perturbation te
hnique SF-APL 
an not be applied to thissituation (either for the produ
t �CC or for the natural produ
t of the underlying tensorprodu
t of the 
y
li
 
omplex). There is no 
han
e to using the preservation of algebra stru
-tures in the 
ontra
tion C3. This fa
t makes the 
omputation of 
y
li
 homology extremelydiÆ
ult.This situation 
an be remedied in one parti
ular 
ase: 
onsidering banal tensor produ
tsof exterior and polynomial algebras.Let A be a non-twisted tensor produ
t E(x1; : : : ; xm)
 P (y1; : : : ; yn). The 
ontra
tion(f1; g1; �1) : ( �B(A); d �B; � �B) C1) (�(�x1; : : : ; �xm)
 E(�y1; : : : ; �yn); 0; �HBA)be
omes an almost-full algebra 
ontra
tion.Now, (1A 
 C1) + Æh provides the appearan
e of the 
ontra
tion(f2; g2; �2) = (1A 
 C1)Æh : (HC�(A); b; �HC) C2) (A
HA; dhHA; �hHA):The 
ontra
tion C3 = (f3; g3; �3) satis�es the following property. Let zi be a monomialof length 1 in fx1; : : : ; xm; y1; : : : ; yng, 8i. Noti
e that g1([zi℄) = 0 whenever zi = ykj , withk > 1. Hen
e, (1P 
 g2)(ui 
 (zj1 �A � � � �A zjr )
 (�zk1 �hHA � � � �hHA �zks) =ui 
 (g2(zj1) �A � � � �A g2(zjr))
 g2(�zk1) �HC � � � �HC g2(�zks) =ui 
 (zj1 �A � � � �A zjr )
 [zk1℄ �HC � � � �HC [zks℄ =ui 
 (zj1 �A � � � �A zjr )
B(zk1 
 [ ℄) �HC � � � �HC B(zks 
 [ ℄):Then,Æ
(1P 
 g2)(ui 
 (zj1 �A � � � �A zjr)
 (�zk1 �hHA � � � �hHA �zks)) =ui�1 
 [B((zj1 �A � � � �A zjr)
 [ ℄) �HC B(zk1 
 [ ℄) �HC � � � �HC B(zks 
 [ ℄)℄:



homology of 
dgas. 15The last equality is proved using a property due to Loday ([18℄):B(x �B(y)) = B(x) �B(y):Sin
e �2 is a quasi algebra homotopy (see (2)), it is proved in [21℄ that �2 is, indeed, amorphism of DGA-algebras (i.e., multipli
ative morphism).Then, it veri�ed that �2 �HC (Bg2 
 g2) = (�2Bg2) �HC g2:Therefore,[(1
 �2)Æ
(1
 g2)℄(ui 
 (zj1 �A � � � �A zjr)
 (�zk1 �hHA � � � �hHA �zks)) =ui�1 
 �2[B((zj1 �A � � � �A zjr)
 [ ℄)℄ �HC g2(�zk1 �HC � � � �HC �zks):Carrying on in this way, it follows thatdÆ
(ui 
 [(zj1 �A � � � �A zjr)
 (�zk1 �hHA � � � �hHA �zks)℄) =ui�1 
 [d
(zj1 �A � � � �A zjr 
 [ ℄) �hHA �zk1 �hHA � � � �hHA �zks℄:That is, the work is 
on�ned to know the image of the elements in �B(A) of simpli
ialdegree 1 upon the a
tion of f3.Noti
e that the general \twisted" 
ase is mu
h more 
ompli
ated.Loday studies in [19℄ some natural �ltrations of the Ho
hs
hild and 
y
li
 homologiesof 
ommutative algebras. The method 
onsists in establishing 
ertain �-operations \�a laGrothendie
k", and 
onsequently, a 
-�ltration for ea
h theory. These �ltrations exist withno hypothesis over the 
hara
teristi
 of the ground ring. These operations 
an be studiedin the present 
ontext: the tri
k lies on 
onsidering these operations as endomorphisms ofthe DG-module HC�( ) or CC�( ). In this way, the homology generators of CC(A) might bedetermined.6. p-Minimal homologi
al models of iterated redu
ed bar 
onstru
tions ofCDGAs.We are mainly 
on
erned in this se
tion with the 
onstru
tion of a homologi
al model for aniterated redu
ed bar 
onstru
tion of a TTP of exterior and polynomial algebras.We need to enun
iate some new de�nitions to obtain su
h a result.Definition 6.1 [1℄ A twisted tensor produ
t TTP = ~
�i2IAi is 
alled de
omposable when-ever there is a non-trivial partition I = I1[ I2 of I, su
h that TTP de
omposes into a tensorprodu
t of twisted tensor produ
ts TTP1 = ~
�1i2I1Ai and TTP2 = ~
�2i2I2Ai with �m = �jTTPmfor m = 1; 2. Otherwise, TTP is 
alled inde
omposable of length ` (or `-inde
omposable),where ` is the 
ardinal of the set of indi
es I.If you take a �nite TTP A of exterior and polynomial algebras (may be 
onstituted byn algebras) and apply the general method developed the se
tions before (Theorem 3.1), a



16 �alvarez a., armario j.a., real p. and silva b.semifull algebra 
ontra
tion from �B(A) to a TTP of n exterior and divided power algebrasis obtained. It seems interesting to study the 
omputability of the homology of �Bn(A), withn 2 N.It is ne
essary to re
all a theorem proved by Gugenheim, Lambe and Stashe� in whi
h a
ontra
tion from the redu
ed bar 
onstru
tion of A to the bar tilde 
onstru
tion of M (see[10℄, [23℄) arises, taking as input datum a 
ontra
tion from a DG-algebra A to a DG-moduleM .Theorem 6.2 [11℄Let A and M be a DGA-algebra and a DGA-module respe
tively, and 
 : fA;M; f; g; �gbe a 
ontra
tion. Hen
e, the following full 
oalgebra 
ontra
tion 
an be established:�B(
) : f �B(A); ~B(M); �B(f); �B(g); �B(�)g; (10)where dAs is the simpli
ial di�erential operator of �B(A) and the DG-module ~B(M) is theStashe�'s bar tilde 
onstru
tion.WheneverM = A0 is a DGA-algebra and 
 is an algebra 
ontra
tion, then the 
ontra
tion�B(
) \
onne
ts" two bar 
onstru
tions (see [11℄). For instan
e, if g is a morphism of DGA-algebras then �B(
) is a 
ontra
tion from �B(A) to �B(A0), and its in
lusion �B(g) 
oin
ideswith T (S(�g)). Sin
e this morphism preserves shu�e produ
ts, �B(
) be
omes an algebra
ontra
tion with multipli
ative in
lusion. With no further assumptions, it 
an be provedthat �B(g) always preserves shu�e produ
ts (see [21℄). In other words, the previous theoremmight be enri
hed, by establishing the behavior of the 
ontra
tion �B(
) regarding to thealgebra stru
tures determined by the shu�e produ
t.Theorem 6.3 [21℄Let 
 : fA; M; f; g; �g be a 
ontra
tion, where A is a 
ommutative DGA-algebra and Mis a DGA-module. Then �B(
) : f �B(A); ~B(M); �B(f); �B(g); �B(�)g
onstitutes a semifull algebra 
ontra
tion.Applying the redu
ed bar 
onstru
tion to an exterior algebra generates a divided poweralgebra; due to this fa
t and in order to iterate the pro
ess above, it is ne
essary to establisha 
ontra
tion for the bar 
onstru
tion of a divided power algebra with one generator of evendegree. Working in Z(p), being p a prime number, a \p-minimal homologi
al model" of thisalgebra is obtained, 
onsisting in a tensor produ
t of an exterior algebra and an in�nitenumber of \p-minimal" 2-inde
omposable TTPs of exterior and divided power algebras.Let us suppose, therefore, that the ground ring is given by Z(p), that is, Zlo
alized on aprime integer p: Z(p) = frs; su
h that m:
:d:(p; s) = 1g:



homology of 
dgas. 17Definition 6.4 [13℄ Let M be a DGA-module over Z(p). We say that a morphism of DGA-modules h :M !M is p-minimal whenever h(M) � p �M . We say that a DGA-module Mis p-minimal whenever it is free, of �nite type as graded module over Z(p) and its di�erentialdM is p-minimal.Noti
e that a 
ontra
tion between two p-minimal DGA-modules 
onstitutes an isomor-phism of DGA-modules.Taking into a

ount the previous de�nitions, a 
ommutative DGA-algebra H is said tobe a p-minimal homologi
al model of a given CDGA A whenever H is minimal and thereexists a 
ontra
tion from �B(A) to H.Hen
e, the following result states:Theorem 6.5 [1℄Let Z(p) be the ground ring. There exists a semifull algebra 
ontra
tion from the redu
edbar 
onstru
tion of a p-minimal `-inde
omposable twisted tensor produ
t A of exterior anddivided power algebras (with ` � 2) to a tensor produ
t H of p-minimal k-inde
omposabletwisted tensor produ
ts (with k � `) of exterior and divided power algebras (equipped withthe natural produ
t). That is, H is a p-minimal homologi
al model of A.Moreover, attending only to the graded algebra level, it is veri�ed that� ea
h E(u; 2n� 1) fa
tor in A 
ontributes with a �(�(u); 2n) fa
tor in H.� ea
h �(u; 2n) fa
tor in A 
ontributes with E(�
pi(u); 2npi + 1) (taking i values uponthe non negative integers) and �('p
pi�1(u); 2npi + 2) (i � 1), fa
tors in H.What the previous theorem really means is that there exists an homologi
al preservation(or non-degeneration) result of the `-inde
omposability of TTPs of that kind.Finally, the following theorem arises:Theorem 6.6 Let Z(p) be the ground ring. Let A be a TTP of n exterior and polynomialalgebras and let m be a natural number. There is a semifull algebra 
ontra
tion from theiterated bar 
onstru
tion �Bm(A) to a tensor produ
t H of i-inde
omposable TTPs of exteriorand divided power algebras, with i � n.In fa
t, the departure point above is 
onstituted by a semifull algebra 
ontra
tion from�B(A) to a TTP of n algebras (exterior and divided power algebras), whi
h has alreadybeen established before. Combining appropriately Theorem 6.3 and Theorem 6.5, the resultfollows.Theorems above admits an immediate translation to the language of free resolutions, viaTheorem 6.3:Theorem 6.7 Let A be a TTP of n exterior and polynomial algebras and let m be a na-tural number. There exists a free resolution �Bm�1(A) ~
�H that splits o� of the bar resolutionB( �Bm�1(A)). More pre
isely, the splitting is a semifull algebra 
ontra
tion and the redu
ed
omplex H is determined by Theorem 6.6.
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