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ABSTRACT
In addition to the extensive data demonstrating the importance of mammalian AQPs for the
movement of water and some small solutes across the cell membrane, there is now a growing body
of evidence indicating the involvement of these proteins in numerous cellular processes seemingly
unrelated, at least some of them in a direct way, to their canonical function of water permeation.
Here, we have presented a broad range of evidence demonstrating that these proteins have a role
in cell proliferation by various different mechanisms, namely, by allowing fast cell volume regulation
during cell division; by affecting progression of cell cycle and helping maintain the balance
between proliferation and apoptosis, and by crosstalk with other cell membrane proteins or
transcription factors that, in turn, modulate progression of the cell cycle or regulate biosynthesis
pathways of cell structural components. In the end, however, after discussing all these data that
strongly support a role for AQPs in the cell proliferation process, it remains impossible to conclude
that all these other functions attributed to AQPs occur completely independently of their water
permeability, and there is a need for new experiments designed specifically to address this
interesting issue.
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Introduction

In many human tumors, changes have been reported
in the expression of aquaporins (AQPs),1 and by play-
ing a role in different cellular mechanisms, such as
migration, angiogenesis, adhesion and cell prolifera-
tion, these proteins may be involved in tumor progres-
sion.2-5 Since the beginning, the idea behind a role for
AQPs in tumor process was basically associated with
their contribution to changes in cell volume necessary
for cells to proliferate and differentiate. Initial studies
demonstrated high AQP1 expression in proliferating
microvessels of many tumors.6,7 Later, a role for
AQP1 in angiogenesis was confirmed when, following
the subcutaneous implantation of melanoma-B16F10
cells, considerably reduced tumor growth was
observed in AQP1-null than in wild-type mice, due to
impaired microvessel formation and faster tumor
necrosis.8 Similarly, a lower migratory capacity was
detected in melanoma cells that naturally do not
express AQP1 than in AQP1-expressing cells9; and a
mechanism that would lead to net cell displacement
confirmed the contribution of ion pumps and AQPs

for allowing net propulsive flows of water.10 Together
these findings strengthen the idea that AQPs play an
important role in angiogenesis and cell migration.

However, here we will focus our attention on the
different ways and mechanisms that have been pro-
posed so far to explain the participation of AQPs in
the cell proliferation process itself. Reviewing the liter-
ature, we find that this association has been suggested
mainly in relation to a role for these proteins in cell
volume changes,3,5,8 or in the case of a subgroup of
AQPs, called aquaglyceroporins,11,12 to their perme-
ability to solutes such as glycerol and hydrogen perox-
ide.13-18 Additionally, various studies have
demonstrated that AQP expression is modified over
the course of the cell cycle19-23 and, more recently, we
have shown that overexpression of AQP1 and AQP3
alters the levels of essential checkpoint proteins
(cyclins) relevant for cell cycle progression, in addition
to modifying the levels of transcription factors, and
cytokines.13,24

In this review, we have sought to gather the most
relevant evidence associating AQPs with cell
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proliferation and we will discuss whether the canoni-
cal function of water permeation of these proteins
would be always essential for this process or the role
in proliferation might be independent of this function.

AQPs and cell volume

Proliferation and cell growth are closely associated
with changes in cell volume.25-27 In fact, factors that
affect cell volume also have an effect on mechanisms
that control cell proliferation.28,29

Recently, we have shown13,24 that cells with
AQP1 and AQP3 overexpression have a constitu-
tively larger cell volume and complexity. These
results are in agreement with the well-accepted
hypothesis that, during progression through the cell
cycle, cell volume increases as a result of the accu-
mulation of diverse substrates, protein synthesis,
and DNA duplication. In addition, we proved that
cells overexpressing AQP1 or AQP3 have enhanced
hydrogen peroxide permeability and altered expres-
sion of proteins necessary for cell cycle progression.
All this indicates that the relationship of both
AQP1 and AQP3 with a more proliferative pheno-
type goes beyond their water permeability.

Cell volume regulation (CVR) mechanisms com-
prise: a) regulatory volume decrease (RVD), mediated
by potassium chloride and taurine efflux and usually
in response to hypotonicity-induced cell swelling, and
b) regulatory volume increase (RVI), mediated by
sodium influx and usually in response to hypertonic-
ity-induced cell shrinkage.30 AQPs are crucial for the
regulation of cell volume, playing a role in mediating
osmotic water flow,31 and recent research has pro-
vided further evidence for a general mechanism for
cell volume regulation by which AQPs may function
as a component of a sensing complex required to acti-
vate RVD/RVI.

In addition, AQPs can regulate the subcellular
localization of other membrane proteins such as tran-
sient receptor potential vanilloid 4 (TRPV4), a volume
sensitive calcium channel that participates in osmo-
regulation. Jo et al.32 showed that TRPV4–AQP4
interactions constitute a molecular system that fine-
tunes astroglial volume regulation by integrating
osmosensing, calcium signaling, and water transport,
and when over-activated, they can trigger pathological
swelling. In lung epithelial cells, salivary glands, and
probably sweat glands, the presence of AQP5 is

fundamental to cell volume regulation.33 The dynamic
regulation of AQP5 abundance by changes in extracel-
lular osmolality is suggested by TRPV4 activation
mediating hypotonic reduction, and EGFR activation
mediating hypertonic induction.34 Moreover, in renal
cortical collecting ducts expressing AQP2, hypotonic
stress caused translocation of TRPV4 to the plasma
membrane, indicating a functional interaction
between the two proteins and suggesting that AQP2
forms part of a sensory and signaling pathway that
results in TRPV4 translocation, possibly via sensing of
extracellular osmolality.35 Hypotonicity-induced
translocation of AQP1 has also been described in
HEK293 cells.36

Another example that illustrates the role of AQPs
in cell volume regulation can be seen in sperm, where
AQP3 is actively involved in the signaling pathway
that activates RVD to protect sperm from excess cell
swelling, thereby optimizing postcopulatory sperm
behavior. In line with this, the RVD of sperm of
AQP3 ¡/¡ mice was inhibited compared to wild-type
mice and these knockout mice had lower fertility.37

It is becoming increasingly clear that AQPs also
have a role in cell volume regulation beyond a passive
mechanism driving water, and this role may be related
to AQP-mediated signal transduction, although the
mechanisms that may be involved in this are not yet
well understood.

AQP permeability to small solutes

Among the physiological functions of AQPs, we
should highlight osmotic volume regulation and the
transport of biochemical precursors or metabolic
waste products. All AQPs transport water, and a sub-
set, the aquaglyceroporins, also transport glycerol and
urea.12,38-40 In addition, several metabolically impor-
tant small neutral solutes and ions have been identi-
fied as AQP substrates, namely hydrogen peroxide
(H2O2).

13,17,41,42 carbon dioxide,43,44 nitric oxide,45,46

ammonia,47,48 metalloids such as arsenite and anti-
monite,49-51 selenite,52 boric acid,53 and silicic acid.51

AQP6 with low intrinsic water permeability may func-
tion primarily as an anion transporter.54,55 and AQP9
has been shown to be permeable to a wide range of
non-charged solutes, like mannitol, sorbitol, purines
and pyrimidines.56

At present, the most plausible cellular and/or
molecular mechanisms associating AQPs with

186 A. GAL�AN-COBO ET AL.



proliferation are related to their ability to permeate
water, glycerol and/or hydrogen peroxide. Next, we
will consider individually each of these solutes.

Glycerol

Glycerol is an important intermediate of metabolism57

that is largely metabolized to glycerol-3-phosphate, a
key intermediate for the production of ATP. As men-
tioned above, a subset of AQPs, the aquaglyceroporins,
AQP3 AQP7, AQP9 and AQP10, as well as AQP11,
transport glycerol. Biochemical studies showed
impaired cellular glycerol metabolism and biosynthesis
in AQP3-deficient epidermal cells, with reduced ATP
content, decreased biosynthetic incorporation of glyc-
erol into lipids and impaired MAP kinase signaling.15

These studies suggest that AQP3-facilitated glycerol
transport is a key determinant of cell proliferation in
some cell types.

A widely-accepted idea to explain the role of AQP3
in tumor cell proliferation relates to the fact that
expression of this protein provides the cell with higher
glycerol permeability and ATP content, which are
required for a greater demand for biosynthesis58 and
AQP3 inhibition is predicted to reduce both tumor-
cell migration and proliferation. We demonstrated
previously that the inhibition of cell proliferation was
proportional to the reduction in glycerol permeability
produced by Auphen.18 Since the transport of glycerol
by AQP3 is bidirectional,59 proliferation could be
related to the entry or exit of glycerol in cells; and
unlike other authors,60-62 we did not rule out the effect
of Auphen on cell proliferation being caused by glyc-
erol accumulation inside the cell due to blocking of
the exit of glycerol.18

AQP7 is the major pathway for glycerol efflux from
adipocytes after lipolysis,63,64 its absence resulting in
increases in adipocyte cell volume and adipose tissue
mass.65,66 In the renal proximal tubule, AQP7 is a
reabsorption pathway that may be important for pre-
venting glycerol from being excreted into urine.67 In
pancreatic b cells, AQP7 acts as an outward glycerol
transport channel and its absence is associated with a
significant reduction in cell proliferation. Accordingly,
the reduction in b-cell mass observed in Aqp7¡/¡

mice can be explained at least in part by a reduction in
cell proliferation through protein kinase C and the c-
myc cascade, with a reduction in the transcript levels
of the esponding two genes.68

AQP9 is the primary route of hepatocyte glycerol
uptake for gluconeogenesis.69 In mouse memory T
cells, it can act as a metabolic switch, enabling long-
term survival of the cells by enabling triglyceride syn-
thesis to build up an energetic reserve, allowing sur-
vival under nutrient-poor conditions.70 In skin,
studies on AQP9-deficient mice suggest that this AQP
also plays a central role in glycerol metabolism,71 but
its function in this organ has yet to be studied exten-
sively. Conversely, other research showed that higher
intracellular glycerol content was associated with a
lower proliferation rate.72

It was recently proposed that AQP10 may be an
alternative pathway for glycerol efflux in human
adipocytes73 and AQP11, located intracellularly
mainly in the endoplasmic reticulum and periphery
of lipid storage droplets, an intracellular gateway
for glycerol from the lipid stores in human adipo-
cytes.74 To date, the role of glycerol transport by
AQP10 and AQP11 in cell proliferation has not
been investigated.

H2O2

An increase in levels of reactive oxygen species (ROS),
particularly hydrogen peroxide (H2O2), can activate
signaling pathways to stimulate cell proliferation,75,76

differentiation.77,78 migration,79 apoptosis,80,81 adap-
tion to hypoxia, immune function, and other pro-
cesses.82 Therefore, hydrogen peroxide is an
important signaling compound and it has recently
been identified as a substrate for several members of
the aquaporin superfamily in various organisms, sug-
gesting additional physiological roles in redox signal-
ing and in cellular mechanisms for minimizing
oxidative stress. Recently, Almasalmeh et al.83 sug-
gested that all water-permeable AQPs are H2O2 chan-
nels, yet H2O2 permeability varies with the isoform.
The fact is that while some AQPs, AQP8, AQP3,
AQP1 and AQP11, have been shown to be permeable
to H2O2, this needs to be confirmed in other isoforms.

We13 and others17,83-85 have shown that both AQP1
and AQP3 mediate uptake of H2O2 in cells, postulat-
ing that transport of H2O2 into mammalian systems
by AQPs might interfere with intracellular signaling,
amplifying cascades that depend on ROS, or increase
the phosphorylation status of a cell (AKT/protein
kinase B) and thus favor proliferation cascades.
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The release of H2O2 from mitochondria via AQP8
could be important during reoxygenation after hyp-
oxia, when oxygen supply leads to excess generation
of H2O2 in the local environment (e.g., in heart and
muscle). Furthermore, cell glucose uptake and prolif-
eration were found to be elated with intracellular
H2O2 levels and AQP8 expression,86 indicating that
AQP8 is able to modulate H2O2 transport through the
plasma membrane affecting redox signaling linked to
cell proliferation in leukemia. It is plausible that
AQP11 was controlling intracellular ROS accumula-
tion by acting as an endoplasmic reticulum H2O2

channel.

Cell cycle and AQPs

Elucidation of the molecular mechanisms that control
the progression of the cell cycle have been crucial to
improving our understanding of cell division. To com-
prehend the cellular mechanisms underlying the asso-
ciation of AQPs with proliferation and tumor
progression, we now need to consider the role these
proteins have over the course of cell cycle progression.
We summarize here findings in the most important
studies that have reported a direct connection between
AQPs and the cell cycle.

Almost two decades ago, Delporte et al.19 demon-
strated that the expression of AQP1 may fluctuate
during the cell cycle, the levels of AQP1 mRNA and
protein being higher when cells are in the G0/G1
phase and lower when the cells enter the S and G2/M
phases. Later, it was shown that AQP2 expression
itself speeds up the proliferation and cell cycle pro-
gression of renal collecting duct cells by decreasing the
transit time through S and G2/M phases of the cell
cycle,21 probably by favoring an increase in cell
volume.20

A range of experimental approaches using drugs or
specific culture conditions that allow manipulation of
cell cycle progression have also contributed to our
understanding of the role of AQPs in this process. For
instance, we reported that cells with endogenous or
exogenous, stable or transient, expression of AQP3
treated with Auphen, a potent inhibitor of the glycerol
permeability of AQP3,59 were arrested in the S-G2/M
phases of the cell cycle, suggesting the possibility that
the inhibition of AQP3 permeability somehow detains
the progression of the cell cycle, thereby slowing cell
proliferation.18 In agreement with our results others

have found that cell cycle of neurospheres derived
from adult neuron stem cells of the subventricular
zone (SVZ) in AQP4 knockout mice get arrested at
the G2-M stage,87 functionally implicating AQP4 in
the activation and differentiation of the mice SVZ
neurogenic niche.

However, Yoneda et al. (2001) described alterations
in AQP4 expression during astrocyte differentiation of
a pluripotent embryonic carcinoma cell (P19) and
during the cell cycle of astrocytoma cells. Their study
revealed that in glioma cell lines, the levels of AQP4
mRNA were elevated in the G0/G1 phase when cells
were arrested by transient expression of p21. Notably,
quiescent astrocytes arrested in the G0/G1 phase, by
serum starvation, showed a high expression of AQP4
and this expression was reverted when the cells moved
to the S phase after serum supplementation, thus sug-
gesting that AQP4 is specifically expressed in the G0/
G1 phase but not in other phases of the cell cycle.23 A
role for AQP5 expression was indicated in the prolif-
eration and G1-S phase transition of esophageal squa-
mous cell carcinoma, where AQP5 might affect the
expression of genes involved in cell cycle progression,
such as cyclin D1.22 Similarly, in osteosarcoma cells,
U2OS or MG63 cells, knockdown of AQP1 inhibited
cell proliferation and significantly increased cells pop-
ulation retained in G1 phase.88

Looking for a direct connection between the
expression levels of AQPs and the cell cycle pattern,
that might explain the higher proliferation rates
observed when using a cell line with stable overexpres-
sion of either AQP1 or AQP3, we performed a long
series of experiments that led us to propose an impor-
tant role of AQPs in proliferation.13,24 Analysis of the
asynchronous cell cycle pattern in cells overexpressing
AQP1 and AQP3 (Fig. 1) revealed a higher percentage
of cells in the most proliferative phases, S and G2/M,
with a consequent reduction in the percentage of cells
in the G0/G1 phases, compared to the distribution in
control cells that did not express AQPs. Closely ana-
lyzing cell cycle patterns of cells with AQP overexpres-
sion, one can see that they appear normal and
certainly clearly different from those obtained with
cells arrested in a given phase of their cell cycle, for
instance, in the S or G2/M phases. Considering these
modifications of the cell cycle together with the cell
count and BrdU incorporation data, both showing
higher numbers of cells, we concluded that overex-
pression of AQPs promotes the progression of cells
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through the cell cycle increasing their cell proliferation
rate. According to these, cells that overexpressed
AQP1 and AQP3 also had higher levels of cyclins D1
and E113,24 (Fig. 2), two cell cycle regulatory proteins
crucial for phase transition during cell cycle progres-
sion,89-91 while levels of cyclin B were unchanged,
indicating that cells were not arrested in S and G2/M
phases; on the contrary, they potentially progress
faster through the cycle.

A higher expression of cyclins might well explain
changes in the cell cycle, and this helps to understand

the greater proliferative capacity of cells that overex-
press AQPs. We also performed cell cycle analysis in
the AQP1-overexpressing cells after incubation with
the synchronization drug, sodium butyrate, which
synchronizes cells in G1 by inhibiting cyclin E activ-
ity.92 The cell cycle profile in the presence of butyrate
showed that cells that overexpressed AQP1 are more
resistant to being synchronized by this drug. The
higher expression in these cells of cyclin E1, which
regulates the checkpoint for G1-S transition,89-91 could
support this response to butyrate treatment.24 More

Figure 1. Analysis of cell cycle profiles by flow cytometry. Cell cycle profiles showing the distribution of cells in the different phases of
the cell cycle of PC12-Wt, PC12-AQP1 and PC12-AQP3 cell lines. The analysis of propidium iodide-derived cell cycle profiles show a larger
percentage of cells in the S and G2/M phases of PC12-AQP1 and PC12-AQP3 cells compare to wild type cells, indicative of a larger prolif-
erative capacity when cells express AQPs. (Modified data from References 13 and 24).

Figure 2. Representative Western blots of protein levels (left panel) and summary of the quantification analysis (right panel) for compar-
ison of wild type-PC12 cells vs AQP1-overexpressing PC12 cells. Significant differences are indicated as follows: �p � 0.05, ��p � 0.01
and ���p � 0.001. Bars are mean § SEM from N experiments where N D 4.
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recently, we studied the cell cycle after nocodazole
treatment to synchronize cells in the mitotic prophase.
The analysis again showed clearly less synchronization
in the G2/M phase for cells overexpressing AQP1 and
AQP3,13,24 indicating that AQP overexpression made
cells resistant to cell cycle arrest, probably by a mecha-
nism that accelerates cell cycle progression and ulti-
mately increases cell proliferation.

All these findings, together with data concerning
the influence that AQPs have on cell volume and com-
plexity, suggest that AQPs might have a relevant role
during the G1 phase and the control of the G1-S tran-
sition, and thus provide an explanation for the pres-
ence of AQPs in many different tumors.

Cross-talk between transcription factors,
cytokines and AQPs

Thanks to efforts dedicated to understand the prolifer-
ation of cancer cells, we know today that AQP1, AQP3
and AQP5 are the AQPs most commonly associated
with human cancer.93-96 Several studies have indicated
connections between AQPs and intracellular path-
ways,3,97 but a complete cascade of phosphorylation
and activation of transcription factors and/or cyto-
kines leading to promote cell proliferation has not yet
been elucidated.

Expression of AQPs has been preferentially corre-
lated, among signaling pathways, with activation of
MAPK cascades which in turn, will lead to the tran-
scription of genes associated with cell proliferation
and thus, with various human carcinomas.16,97-100 For
instance, expression of AQP5 is positively correlated
with drug resistance factors, and silencing of AQP5
inhibits the cell proliferation at the same time that
diminishes the phosphorylation of MAPK p38.99 In
skin, AQP3 is important for the phosphorylation of
p38, ERK and JNK in keratinocyte, and less phosphor-
ylation of p38 and JNK was observed in epidermis
from AQP3-null mice which exhibit clearly impaired
wound healing capacity compared to wild-type ani-
mals.14 Further, the activation of GSK-3b, ERK, JNK,
and p38 MAPK pathways has been associated with
levels of AQP2 and proliferation in kidney collecting
duct cells treated with lithium;101,102 while the anti-
proliferative and anti-metastasis activity of anti-pros-
tate cancer compounds such as Rg3 was associated
with p38 MAPK-mediated downregulation of
AQP1.103

On the other hand, NF-kb seems to be the key
transcription factor to which the actions of AQPs con-
verge to produce a more proliferative phenotype.
Moreover, this transcription factor seems to regulate
the expression of some AQPs and, in turn, control cell
proliferation.104-107 In addition, hypoxia-inducible
trans-cription factors, HIF-1a or 2a, may take part in
the proliferation mediated by AQPs. We have shown
that stable overexpression of AQP1, 3 and 5 increases
the stability of HIF-2a during chronic exposure to
hypoxia108,109 thereby increasing the expression of
many genes implicated in activities relevant for tumor
growth, such as glucose uptake and metabolism,
angiogenesis, cell proliferation and apoptosis.110 We
also reported that AQP1 can be induced in hypoxia by
HIF-1a,111 thus sustaining an auto-cycle effect that
would contribute to cell proliferation.

In an attempt to explore how overexpression of
AQP1 affects cell proliferation, we used a bioinformat-
ics approach to analyze the genome-wide consequen-
ces of AQP1 overexpression in a cell model.24 The
microarray analysis showed that more than half the
genes with altered expression in cells overexpressing
AQP1 had cell proliferation-related functions (Fig. 3),
and from the list of the 24 cellular processes or dis-
eases with larger numbers of associated genes with
altered expression, the 9 top-ranked and some others
listed, are clearly associated with cell morphology,
movement, growth, death, development, proliferation
and survival (Fig. 3).

Further validation of microarray analysis results
was performed using qPCR, and the expression pro-
files of 16 selected genes in cells with overexpression
of AQP1 or AQP313,24 was verified. In AQP1-overex-
pressing cells, the analysis revealed upregulation of
many transcription factors important in cell prolifera-
tion, such as ZEB2, JUN, JUNB and NF-kb2 (Fig. 4).
Moreover, it confirmed high expression of the chemo-
kine TNFSF18 and the TNF receptor, able to activate
the stabilization and translocation of NF-kb from the
cytoplasm to the nucleus. Higher levels of the prolifer-
ative NF-kb target-genes such as ZEB2, cyclin D and
the cytokines CXCL9 and CXCL10,112,113 were also
found to be overexpressed in our analysis (Fig. 4).13,24

CXCL9 and CXCL10, the two most upregulated
genes in our analysis, both have important pro-tumor
roles114-117 and can both be activated by the transcrip-
tion factor NF-kb, as suggested in our model (Fig. 4).
Additionally, downregulation of ubiquitin peptidases
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such as USP 11 (Fig. 4), or USP13 and 51, whose
repression leads to higher stabilization of NF-
kb,118,119 would contribute to higher cell proliferation
in AQP1-overexpressing cells.

In the microarray analysis, we also observed
changes in the expression of many other important
genes (ADAM 22 and 23, BCL2L1, and prolactin,
among others) associated with proliferation, migra-
tion, metastasis or apoptosis,24 but the role and rela-
tive importance of each needs further investigation.

Apoptosis and AQPs

Many physiological processes including proper tissue
development and homeostasis require a balance
between apoptosis and cell proliferation. The mecha-
nism of apoptosis is complex and involves many path-
ways.120 Defects can occur at any point along these
pathways, leading to malignant transformation of the

affected cells, tumor metastasis and resistance to anti-
cancer drugs. Despite being the cause of problems,
apoptosis also plays an important role in the treatment
of cancer, as a target of many treatment strategies,
raising the intriguing possibility that defects in apo-
ptotic programs contribute to treatment failure.

An important process that cells undergo after
entering the apoptotic pathway is loss of cell vol-
ume,121 or apoptotic cell shrinkage, and AQPs, with
their high capacity to increase the speed of movement
of water across cell membranes, have been associated
with this process. Jablonski et al.122 were the first to
show the importance of AQPs for apoptotic volume
decrease (AVD) and subsequent apoptosis. They
observed that inhibition of AQPs by HgCl2 blocked
AVD and apoptotic events such as cell shrinkage,
changes in the mitochondrial membrane potential,
DNA degradation, and caspase-3 activation in ovarian
granulosa, thymocytes and CHO-AQP1 cells, after

Figure 3. Top-ranked processes and pathologies related to AQP1 overexpression according to Ingenuity Pathway Analysis (IPA) obtained
after Affymetrix analysis performed in PC12-AQP1 vs PC12-wt cells. Data was listed according its p-value, in a decreasing order, and in
red were highlighted those functions and pathologies related with cell proliferation.

CHANNELS 191



apoptotic stimulus. Moreover, they observed that
CHO cells overexpressing AQP1 showed higher apo-
ptotic induction than CHO wild-type cells, and
described how apoptotic cells lose their water perme-
ability despite the presence of AQP1 in the membrane
remaining unaltered. In hepatic tumor cells, the same
research group observed decreased expression of
AQP8 and 9 and lack of water movement across the
cellular membrane when compared to normal hepatic
cells. These cancerous cells also exhibited inherent
resistance to apoptotic stimuli after serum starvation
or TGF-b treatment, again suggesting the need for a
functional AQP channel during AVD.123

Additionally, in a collecting duct cell line, downre-
gulation of AQP2 protein levels by chronic alkalosis
together with a G2/M arrest was paralleled by changes
consistent with apoptosis. It has been proposed that
AQP2 expression facilitates changes in cell volume
and the activation of channels or transporters neces-
sary for the control of cell growth and cell death,

resulting in a more rapid AVD and more rapid
achievement of adequate levels of ions necessary to
activate the enzymatic apoptotic cascade.21,124

In cortical neurons of the central nervous system,
Jessica et al.125 analyzed the expression of different
AQPs while cells undergo apoptosis induced by treat-
ment with lactacystin, a specific proteasome inhibi-
tor.126-128 These authors found that AQP4 was highly
downregulated, suggesting that this aquaporin, con-
sidered to be the main water channel in the brain,129

does not play an important role in the loss of water
during AVD. In contrast, overexpression of AQP1,
AQP8 and AQP9 was observed after lactacystin treat-
ment.126-128 However, favoring a role for AQP4 in
apoptosis, Kong et al.87 observed increased basal apo-
ptosis in adult neural stem cells obtained from KO
AQP4 ¡/¡mice.

In general, the aforementioned studies suggest that
the presence of AQPs is needed to enable the water
movement necessary for the apoptotic loss of cell

Figure 4. Summary of metabolic routes “putatively” altered by overexpression of AQP1 according with the comparison, by Affymetrix
analysis and western blot assays, of the 2 groups of cell lines analyzed, PC12-Wt and PC12-AQP1. In the scheme it is shown that different
cytokines among which TNFSF18 (in red, overexpressed) can activates the IKK complex via phosphorylation by a membrane receptor
such as TNFR or others (IL6R, GP130, IFNgR) and by doing that will promote the dissociation of N-Fkb from Ikb. In turn, released-NF-kb
will translocate to the nucleus and acting as a transcription factor will activate many genes (ZEB2, Bcl-XL, CyclinD1, CXCL10 and CXCL9),
all of them overexpressed and shown in red, implicated in cell proliferation and tumor progression. Down regulation (in green) of
USP11, a de-ubiquitinylase of Ikb, will favor its proteasome degradation and this will also increase levels of free-activated NF-kb.
Another important effect of NF-kb activation would be the repression of E-cadherin. In the absence of E-cadherin, b-catenin will lose its
anchor to the cell membrane and will translocate to the nucleus and then co-activates the transcription factor TCF/LEF, thus promoting
expression of pro-proliferative genes as MMP19 and Cyclin D1, or anti-apoptotic genes such as COX2 and Survivin. Cytoplasmic b-cate-
nin, in the absence of signals, would remain inactivated forming a complex with Axin, APC and GSK-3b.
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volume or cell shrinkage. However, somewhat con-
trasting results have been reported recently showing
that overexpression of AQP1 and AQP3 confers PC12
cells a higher resistance to synchronized by nocoda-
zole, a reagent that arrests cells in the mitotic prophase
and induces apoptotic cell death. Analysis of Annexin
V labeling and cleaved PARP protein clearly indicated
that cells overexpressing AQPs are more resistant to
apoptosis induced by nocodazole. Consistent with
this, in AQP-overexpressing cells, we found high levels
of prolactin and of Bcl-2.13,24 genes associated with
apoptosis resistance.130

In agreement with our work, expression of lung
AQP1 and 5 were significantly decreased in mice with
acute lung injury together with increased inflamma-
tory response and apoptosis of alveolar epithelial and
vascular endothelial cells.131 Additionally, in osteosar-
coma cells (MG63 and U2OS) interference of AQP1
expression induces cell apoptosis evaluated by double
Annexin V/propidium iodide staining. These cells
exhibited higher levels of cleaved caspase-3 and Bax
protein, while the protein levels of Bcl-2, that nega-
tively regulates caspase activation and controls the G2
checkpoint132,133 decreases.88

The over-expression of AQP3 and AQP9 in human
melanoma cells revealed that both AQPs significantly
increased the chemoresistance of these cells to apopto-
sis induced by arsenite, through a mechanism that
involved downregulation of p53 and upregulation of
Bcl-2 and XIAP.134 This implicates AQPs in mela-
noma progression and resistance to apoptosis. Simi-
larly, in primary squamous cell carcinoma, which
shows high levels of AQP3, treatment with CuSO4, a
pan-AQP inhibitor, caused apoptotic cell death in a
concentration-dependent manner,16 and in ovarian
cancer cell line, epigallocatechin gallate, a potential
anti-cancer drug, showed strong anti-proliferative
effects and apoptosis induction accompanied by a
downregulation of AQP5 expression.107 Furthermore,
interference of AQP5 induces not only decreased cell
proliferation but also enhanced apoptosis in human
chronic myelogenous leukemia cells. These findings
indicate that AQP5 expression may play a role in
inhibiting apoptosis, possibly through the caspase 9
pathway.135 Similar results were found by Shimizu
et al. in esophageal squamous cell carcinoma in which
AQP5 inhibition promoted cell apoptosis.22

These mixed findings together indicate that the par-
ticipation of AQPs in apoptosis may be directly

associated with the cell volume decrease necessary to
enter in apoptosis, but at the same time, high overex-
pression of AQPs could favor increments in the cell
volume that could even counteract the AVD process
and make cells resistant to apoptosis, thereby allowing
cell survival and sustaining further the cell
proliferation.

AQPs and cell proliferation in physiological
processes unrelated to cancer

During the last decade, the most frequent scenario in
which AQPs have been associated with proliferation is
in human cancer, as indicated already.1,58,136 However,
it is important to note that expression levels of specific
AQPs have been demonstrated to account for higher
water transport and fluid clearance from specific com-
partments not only under the pathophysiological con-
ditions of cancer, but also under many other normal
physiological conditions that imply changes in the
hydraulic conductivity of tissues and organs (such as
those that occur in the lung, kidney, skin or brain dur-
ing fetal development and organ regeneration).58,137-
139

Upregulation of AQP expression has been observed
under stimuli such as dehydration in the kidney lead-
ing to overexpression of AQP2 and AQP3,140-142 or
hypoxia in the lung producing overexpression of
AQP1108,111,142,143 and in none of these cases have the
proposals to explain AQPs overexpression been at all
related to tumor proliferation. More recent studies
have demonstrated involvement of AQP1 in the dif-
ferentiation of stem-like cells in rat bile duct forma-
tion,144 development of human corneal keratocytes145

and renewal of limbal basal epithelium from a corneal
epithelial stem cell niche,146 all important roles associ-
ated with cell proliferation and differentiation. More-
over, impaired proliferation, migration and neuronal
differentiation has been demonstrated in adult neural
stem cells derived from AQP4 knockout mice87 indi-
cating a role for AQP4 in the activation and differenti-
ation of the mice SVZ neurogenic niche.

In a very recent study, we confirmed that the pres-
ence of AQP1 favors the proliferation process pro-
duced by hypoxia in the carotid body (CB) in wild-
type when compared to AQP1-knockout mice.24

Quantification of the total number of new BrdUC
cells showed less proliferation in the absence of AQP1
(Fig. 5), and the smaller number of new BrdUC/THC
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cells measured after hypoxia treatment evidenced spe-
cific impairment in the proliferation of CB glomus
cells. Previously, we demonstrated that AQP1 is pres-
ent not only in type I but also in type II CB cells,147

now known to be CB stem cells that form the neuro-
genic niche in this organ.148 Hence, our recent results
are compatible with the idea that the presence of
AQP1 in the CB favors differentiation of glia-like stem
cells elicited by hypoxia, to give new BrdUC/THC
cells, concomitant to the observed hypertrophic
growth of this organ.

More experiments are necessary to specifically
investigate the participation of AQP1 in cell differenti-
ation/or proliferation in this neurogenic region in
adults, and it would be interesting to explore its role
in other known neurogenic niches.149,150 Likewise, it
would not be surprising to find that other AQPs play
a role in the differentiation/proliferation process of
other stem-cell niches.

Final remarks

As its been indicated, a broad range of evidence dem-
onstrates that Aquaporins have a role in cell prolifera-
tion by acting through various different mechanisms,
specifically, by allowing fast cell volume regulation
during cell division; by affecting progression of cell
cycle and helping maintain the balance between prolif-
eration and apoptosis, and by crosstalk with other cell
membrane proteins or transcription factors that, in
turn, modulate progression of the cell cycle or by regu-
lating biosynthesis pathways of cell structural compo-
nents. In any of these functions complete
independence of its canonical water permeability

feature has not yet been demonstrated. Thus given the
versatile functions of aquaporins, additional and unex-
pected roles of these channels are sure to emerge in
the coming years. Still, further investigations are
needed to broaden our understanding of the implica-
tions of AQPs in cell proliferation.
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