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ABSTRACT In a highly competitive and liberalized energy market, where the retail of electricity is open
to many potential companies, it is essential to have tools that help make decisions and guide the design
of marketing strategies. In this sense, it is essential for retailers to know the behavior of their customers
to correctly define their commercial strategies. One of the most commonly used methods for this is the
characterization of their consumption profiles. Fortunately, for regulatory reasons, in some countries, the
monthly electricity demand of each customer is openly available to any competitor. This paper explores
whether this information, especially the economic sector and geographic location of a client, is useful for
determining the client’s demand profile. Specifically, data on electricity demand in Spain from more than
27 million users and for a period of 3 years are analyzed. For this purpose, the electricity consumption of
every client is grouped by month and normalized. The resulting demand profiles are later clustered according
to different criteria. The main finding of the research is that the combined information on economic activity
and location definitely enables prediction of the demand profile. Additionally, profile quality metrics are
defined and obtained for the entire dataset. The resulting profiles have a mean dispersion of 10% and a
confidence interval of ±17%. To clarify the use of these metrics, several examples are detailed, showing
how this profile information can be used to improve the marketing decision-making process for electricity
retailers.

INDEX TERMS Energy demand, customer profiling, data engineering, big data applications, statistical
learning, pattern analysis.

I. INTRODUCTION
Currently the price of energy is the result of a complexmarket
structure [1], [2]. The liberalization of the electricity sector
resulted in many different actors playing various roles in pro-
viding energy to end users. In all countries, at the beginning
of the electricity supply chain, there are generally a handful
of large producer companies that own and manage generation
plants. Then a few, or even a single state-owned company, i.e.,
the transmission system operator (TSO), is responsible for
the high-voltage long-range transmission of energy. Finally a
few distribution system operator (DSO) companies, usually

The associate editor coordinating the review of this manuscript and

approving it for publication was S. Ali Arefifar .

in an oligopolistic market, are in charge of medium- and
low-voltage distribution to the final customer locations [3].

In most countries, all of these activities are strongly reg-
ulated and there is not much room for competition at those
levels. However, at the end of this supply chain, electricity
should be sold to every client, which opens a space for new
players (electricity retailers) who carry out marketing, billing,
maintenance and customer service activities. In European
countries it is common to have several dozen nationwide
electricity retailing companies, several hundred of which
operate in regional, local or sectoral markets [4]. In this
scenario, the retailers buy energy to generators in advance
(traditionally one day-head) based on a forecast of their cus-
tomers’ demand. Therefore, any deviation in this estimation
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would translate into an increase in the energy sale price or
even into economic losses for retailers. The energy price is
usually the key factor for a customer to choose an electricity
retailer [5]. Therefore, to maintain competitiveness, these
companies have to make many decisions [6], focusing mainly
on improving their pricing strategy [7], [8], either by reducing
their costs, adjusting tariffs to time-varying rates, promoting
demand-side response [9], [10] and/or finding their most
profitable customers (niche markets).

A clear example of these niche markets can be found in the
current trend of generation deployment at the consumer level
(with the consumer taking on the prosumer role). However,
consumers find it difficult to profitably sell their surplus
energy; moreover, national regulation often does not allow
individual clients to compensate for energy demand and pro-
duction for periods of more than one month. This scenario is
especially inappropriate for consumers with a highly seasonal
demand, which opens up the opportunity for niche retailers,
who can buy this excess nonsalable energy, to fulfill the
demands of other customers, while reducing the retailer’s
purchasing needs.

However, for this economic strategy to be optimized
through long-term energy purchases, retailers should keep
their overall demand as balanced and stable as possible
throughout the year. Therefore, it is essential that retailers
fully understand the energy profile of each of their customers,
as well as the typical consumption (or generation) profile of
potential customers, to fill the gap and find the optimal energy
pool.

In this sense, this paper analyzes the influence of the
economic activity sector and the geographic location of a
customer on its monthly electricity demand profile. Addition-
ally, this relationship is used to cluster customers with the
goal of developing more informed marketing strategies in the
increasingly competitive electricity retailer arena. The billing
information for Spain is used as a case study.

After this introduction justifying the importance of the
problem to be addressed and its scientific and technical con-
text, the paper describes the state of the art regarding cus-
tomer profiling (section II) the structure of the dataset used
in the research (section III) and the methodology employed
(section IV). The results of profiling and its use to define
marketing strategies are presented with several examples in
section V. Then, in section VI there is a discussion about the
validity of the results and the usability of the economic sector
and location to predict the demand profile. Finally, the main
findings of the research are presented in the conclusions
section.

II. STATE OF THE ART
Profile studies are common in the electricity sector. In par-
ticular, retail companies can base their strategies on complex
data-driven models [11]. Specifically, to customize prices or
address specific offers in all market segments, it is crucial
to properly characterize and profile electricity demand [12].
Obviously, to describe these behaviors, it is essential to have

historical information from clients. Fortunately, power sec-
tor players currently have the enormous advantage of hav-
ing large amounts of data at almost negligible acquisition
cost, allowing the use of data analysis techniques for many
purposes [13].

Thus profiling efforts are mainly based on the hourly
demand curve, which is currently provided by meter read-
ing equipment [14]. As shown above, profiling customer
demand is a field of high interest, has a long tradition and
has been used for many other purposes such as customer
segmentation [15], detection of nontechnical losses [16] or
demand forecasting [17], [18]. The recent pandemic has
also been analyzed using changes in electricity demand pat-
terns [19], [20].

Most authors characterize energy demand based solely on
the load curves [21], although some other studies also incor-
porate the influence of climatic variables [22]–[24], sociode-
mographic factors [25], aggregated [26] or disaggregated [27]
global economic activity, and electricity usage. The influence
of the economic sector is also considered in some works [28].
The combined influence of various factors on the forecasting
of energy demand in the short, medium or long term is
analyzed in [29], [30].

The analysis of the electricity demand profiles is mainly
based on hourly data obtained through automatic meter read-
ings [31]. Monthly and seasonal analyses are also com-
mon [32], while some time-multiscale studies have also been
reported [33].

III. DATASETS
To encourage competition in the energy market, Spanish reg-
ulation requires DSO companies to share their information on
customer consumption. The CNMC (National Commission
for Markets and Competition, in Spanish) is in charge of
collecting datasets that are not fully public but are available
to any registered energy retailing company. Therefore, every
stakeholder may know the consumption of every customer
across the country. The CNMC dataset contains two files:
one to describe the features of each client, and another to
specify the energy meter readings [34]. Additionally, two
more ancillary files coding the location and the economic
activities are incorporated into the dataset. The details of
these files are as follows:

A. CUSTOMER FILE
The customer file contains 27,296,335 records, one for each
electricity client in mainland Spain (excluding the Balearic
and Canary Islands, Ceuta and Melilla). In its original CSV
(comma separated values) format, the file size is 8 GB.
Each record includes 57 fields, but for the purposes of this
paper, only three of them are relevant. The key used for
each record is the CUPS (Universal Supply Point Code,
in Spanish), an alphanumeric code containing 20 or 22 char-
acters that uniquely identifies each customer. The other two
relevant fields are NACE ((European Classification of Eco-
nomic Activities, in French, a five-character alphanumeric
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code), indicating each client’s activity sector, and the location
(a five-digit numeric code) detailed at the municipality level.

Unfortunately, the CNMC has declared the NACE field as
optional; thus, retailers are not legally required to provide
this information. As a consequence, only 14,945,768 records
(55% of the total) have the NACEfield reported. In this paper,
when the demand profile is related to the location, all records
can be used, but if the profile has to be related to the NACE or
to an NACE-location pair, only half of the records are usable.

B. READING FILE
The reading file contains 924,338,435 records, one for each
electric meter billing reading of each client in the customer
file. In its original CSV format, the file size is 106GB.
Each record includes 24 fields but for the purposes of this
paper only 15 of them are relevant. The key used for each
record is a combination of 3 fields: the client’s CUPS and the
initial and final dates (day-month-year format) of a reading
period. In each record, the active energy consumption (W-h,
watts-hour) during the specified period is disaggregated into
6 numeric fields, corresponding to the six rates (P1 to P6) in
the Spanish time-of-use (TOU) rate structure [35]. Another
6 numeric fields are available for the corresponding reactive
energy consumption (var-h, volt-ampere reactive-hour).

For the purposes of this research a unique demand profile,
with no hour-based discrimination is required. Therefore, the
consumption corresponding to each rate is summed in a single
aggregated value.

In this file each CUPS has multiple records, one for each
billing reading, containing information about the demand for
the last 3 years. Each period covers approximately 30 days
but may have a different duration. The relative frequency for
the lengths of the periods between two readings is depicted
in Fig. 1. The peak for a 30-day period shows that most
clients are billed monthly. A lower peak in the 62-day period
represents the much less frequent occurrence of bimonthly
billing.

C. NACE FILE
To relate energy consumption to the economic sector,
the NACE codes are used [36]. They can be specified at
4 different levels of detail: activity (21 codes, identified by
a letter); division (88 two-digit codes); group (272 three-digit
codes); and class (629 four-digit codes). If different levels of
detail are combined, then up to 1011 different NACE codes
are possible.

A downloadable electronic version of the NACE codes can
be found in [37].

D. LOCATION FILES
To verify the hypothesis that electricity demand profiles also
depend on the geographic location, this information has to be
incorporated into the research. Three different levels of geo-
graphic entities are used: regions (17 two-digit codes) [38];
provinces (52 two-digit codes) [39]; and municipalities (8131
five-digit codes, with the first 2 digits identifying the province

FIGURE 1. Relative frequency (% in log scale) for the length of the period
between two readings.

and the subsequent 3 indicating the municipality in that
province) [40]. If different levels of detail are combined, then
up to 8203 different location codes are possible.

IV. METHODOLOGY
Before analyzing the electricity demand profiles, the dataset
described in the previous paragraph must be cleaned and pre-
processed. For this purpose, and for the remaining algorithms
described in this paper, several Python 3 scripts have been
developed.

Although 100 GB databases cannot be properly defined
as ‘‘big data’’, they certainly pose additional difficulties to
profile analysis that must be considered carefully. For this
reason, optimized binary files and speed-focused program-
ming techniques have been extensively used. The overall
methodology is depicted in Fig. 2; the number of processes is
introduced and explained in the remaining section.

A. PROCESSING THE CUSTOMER FILE
Every record of the customer file has been preserved although
only 3 relevant fields are kept: CUPS, NACE and municipal-
ity codes. This information has been converted (process #1 in
the algorithm diagram) to binary format resulting in a final
0.9 GB file, an approximately 90% reduction in size. Every
record is accessed using CUPS (record key) and by employ-
ing hashing techniques to identify its position (implemented
using Python dictionaries).

B. PROCESSING THE READING FILE
To leverage electricity billing information four different chal-
lenges must be faced:

1) The readings for a particular customer are not in a
single record, but spread over many records. To address
this problem the reading file is transformed (process
#2) into a temporary binary file with a very different
structure. It has one record for each client containing
the number of valid billing periods and up to 50 of
them, a number large enough to accommodate 3-year

86256 VOLUME 9, 2021



J. Luque et al.: Monthly Electricity Demand Patterns and Their Relationship

FIGURE 2. Diagram of the energy demand profiling process.

FIGURE 3. Example of active energy demand (kW-h) meter readings for a particular CUPS. The reading dates and time periods between readings
(presented in each circle) are also shown.

monthly readings and some spare fields for abnormal
reading periods.

2) The energy readings correspond to different time peri-
ods. Fig. 3 depicts an example of the active energy
meter readings corresponding to a given CUPS (omit-
ted for confidentiality reasons). In addition to periods
of approximately 30 days, which are the majority, there
are some others as low as 14 days or as high as 64 days.
Therefore, instead of the energy consumption E (W-h),
it is better to consider the mean power P (W) demanded

during a certain reading period of T days, obtained as
P = E/(24 ·T ). The result for the same CUPS is shown
in Fig. 4.

3) Reading periods do not exactly fit months, as they
rarely start on the first of each month and finish on
the last day. Therefore, if the mean power over a given
period spans two months, it should be split propor-
tionally into two parts, and each should be assigned to
the corresponding month. Subsequently, contributions
from two or more periods to the same month must
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FIGURE 4. Mean active power demand during each reading period.
Example of a particular CUPS.

be added. The resulting mean monthly power demand
for the CUPS used as an example is depicted in Fig. 5.

4) Eventually, to correctly compare the demand profiles of
different CUPSs with the same NACE and/or location,
the monthly power demand must be normalized. For
this purpose each monthly demand value is divided
by an average value. Because some CUPSs present
abnormal demand values, instead of calculating the
average as the mean value, it is better to use the median
(11.16 kW for the CUPS in Fig. 5) since it avoids the
extreme influence of outliers.

The final result of this four-stage process is dumped (process
#3) into a binary file with a record for every electricity client
that contains the client’s normalized monthly power demand
over a 5-year range. This binary file is 13 GB in size, 12%
of the original value, and its information is used to produce
different reports and graphics regarding a single customer
demand (process #4).

C. RELATING PROFILES TO NACE AND LOCATION
Once a normalized demand profile has been obtained for
every CUPS, it is time to analyze its dependence on theNACE
and location information.

For this purpose, each NACE-location pair is identified by
a code made up of the NACE code followed by a semicolon
(‘‘;’’) and the location code. Thus, for instance, the economic
sector ‘‘hotels’’ (NACE code ‘‘I5510’’) in the city of Alicante
(location code ‘‘03014’’) is coded by ‘‘I5510;03014’’. Specif-
ically, this unique pair identifies up to 67 individual CUPSs,
that is, for each month 67 power demand values are available.
Then the profile for this pair is defined by the median values
at each month.

More formally, let us consider a certain NACE-location
pair containing n CUPS. Let us call P = [P1,P2, · · · ,P12]
the power demand profile of a pair, where Pj is the nor-
malized power corresponding to the j-th month. Let us call
C(i) the normalized power consumption corresponding to the

FIGURE 5. Mean monthly active power demand. Example for a particular
CUPS.

i-th CUPS in the pair, where i ∈ [1, n]. This consumption is
defined by a matrix

C(i) =


C(i)[1]1 C(i)[1]2 · · · C(i)[1]12
C(i)[2]1 C(i)[2]2 · · · C(i)[2]12
...

...
. . .

...

C(i)[m]1 C(i)[m]2 · · · C(i)[m]12

 , (1)

where C(i)[k]j represents the normalized power consumption
corresponding to the i-th CUPS during the j-th month of the
k-th year, in which m is the total number of years with
available readings and k ∈ [1,m]. The value of Pj is obtained
as

Pj ≡ Ĉj = median
i,k

C(i)[k]j . (2)

The result is depicted in Fig. 6 where the shadows indicate
the 25th to 75th percentiles. The RMSD (root median square
distance) and CI (confidence interval) values in the figure title
are two metrics of the profile quality which are explained in
the next section.

For fast access to the profiles associated with an
NACE-location pair, a specific binary file is generated (pro-
cess #5), along with some other ancillary information. The
profile file has 8,293,233 records (1011×8203), one for each
pair code. Each record contains the percentiles of the profile
for each month, with a resolution of 1%. This binary file is
79 GB in size, and its information is used to produce different
reports and graphics about the demand of clients identified by
the NACE and/or location (process #6).

The processes that generate new files (those numbered 1,
2, 3 and 5 in Fig. 2) have to deal with very large datasets
(more than 100 GB). The computing time required by these
processes is approximately 100 hours using a modern laptop
computer equipped with a solid-state disk. This is a signif-
icant but affordable computing effort, as these generation
processes are executed only when a new dataset is avail-
able (usually once every few months). On the other hand,
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FIGURE 6. Active power demand profile of hotels in the city of Alicante.
The blue line indicates the median value in each month. The gray
shadows depict the 25th to 75th percentiles.

FIGURE 7. Statistical distribution of the absolute distances to the active
power demand profile of the hotels in the city of Alicante.

the processes that analyze the energy demand or profiles
(those numbered 4 and 6 in Fig. 2) run in real time and usually
finish in less than a few seconds.

D. ASSESSING THE DEMAND PROFILES
To evaluate the previously obtained profiles two metrics are
used. First, the dispersion of values is considered. In simple
terms, the dispersion measures the width of the shaded areas
in Fig. 6. More formally, the distance between a given con-
sumption C(i)[k]j and its profile Pj is defined as

D(i)[k]j ≡ C(i)[k]j − Pj. (3)

The set of distances for the j-th month is defined as

Dj ≡
{
D(i)[k]j

}
, ∀i ∈ [1, n] , k ∈ [1,m] . (4)

The statistical distribution of the absolute value for the
example pair is depicted in Fig. 7. It can be seen that the
distances in summer have higher values, corresponding to
wider shadows in Fig. 6.

FIGURE 8. Q-Q plot comparing percentiles for a Gaussian distribution
and the experimental power demand. Central percentiles between 20 and
80 are shown.

To obtain a single metric for the profile dispersion,
the RMSD of a pair is defined as

RMSD ≡

√
median
i,j,k

[(
D(i)[k]j

)2]
. (5)

The second metric used to evaluate profiling is the confi-
dence interval (CI ). More formally, let us consider the set of
consumptions during the j-th month, defined as

Cj ≡
{
C(i)[k]j

}
, ∀i ∈ [1, n] , k ∈ [1,m] . (6)

These consumptions can be regarded as if they were gener-
ated by a statistical distribution with a population median µ̂j.
Their sample median is the profilePj = Ĉj. For a 1−α certain
confidence level (usually chosen as 95%), the confidence
interval (CI j) of its population median is defined as

Prob
[
Pj − CI j ≤ µ̂j ≤ Pj + CI j

]
= 1− α. (7)

Two approaches have been used to determine the values
of CI j, one assuming a certain statistical distribution and
another based on numerical simulation. First, suppose that the
consumption values Cj are normally distributed which is not
very different from the experimental results, and that at least
once, the outliers are discarded. Fig. 8 shows a Q-Q (quantile-
quantile) plot comparing experimental and theoretical Gaus-
sian data for the central quantiles (between 20 and 80).

Therefore, for normally distributed data, it is a well-known
result [41] that the confidence interval of the median (and the
mean) is

CI j = t∗
sj
√
N
, (8)

where N = n×m is the sample size, s is its sample standard
deviation, and t∗ is the value of the t-Student distribution with
ν = N − 1 degrees of freedom, with Tν such that

Prob [|Tν | > α] = t∗. (9)

The second approach uses numerical bootstrapping tech-
niques [42]. Briefly, the N -size Cj set is transformed into
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FIGURE 9. Confidence interval of the active power demand profile
(median value) of the hotels in the city of Alicante. The computations
were carried out using Student’s t and bootstrapping.

B different sets where the u-th set R{u}j is obtained by ran-
domly sampling-with-replacement N elements in Cj. Later,
the median for each resampled set R̂{u}j is computed. Then the
confidence interval (CI j) is obtained as the value such that

Prob
[
Pj − CI j ≤ R̂

{u}
j ≤ Pj + CI j

]
= 1− α. (10)

Applying both methods to the example profile, with B =
10000, the results shown in Fig. 9 can be obtained.

The confidence interval has a different value for each
month. To obtain a single metric CI for the entire profile,
the median ofCI j is used, generally expressed as a percentage
of the profile, that is,

CI ≡ 100median
j

(
CI j
Pj

)
. (11)

The overall CI values are also displayed in the title
graphic. It can be seen that both methods offer similar results.
It has been proved that bootstrapping tends to oversize the
confidence intervals [43], which explains the wider boot-
strap region in the example. For that reason, and consider-
ing that bootstrapping is more computationally demanding,
the method used in the rest of the article to calculate the
confidence intervals is based on Student’s t.

E. LABELING PROFILES
As shown, a power demand profile is defined by a sequence
of 12 values, P = [P1,P2, · · · ,P12]. However, for easy iden-
tification of the different profile types, it is useful to assign a
single value to every profile. This goal can be achieved by
using clustering techniques in which profiles are assigned to
a finite (and generally reduced) set of clusters. By numbering
clusters, a single value describing each profile is obtained
(commonly an integer).

A different approach has been followed in this work, based
on dimensionality reduction techniques. Applying principal
component analysis (PCA) [44], the original 12 components

FIGURE 10. Ratio of the explained variance after applying PCA to the
active power demand profiles.

profile have been transformed into another 12 new compo-
nents that: a) are orthogonal; and b) minimize the variance
in the first components. The results of applying PCA to the
active power demand profile are shown in Fig. 10.

In the original profile P, every element Pj explains 1/12
(8%) the total variance. After PCA transformation the vari-
ance explained by the first component is 50% of the total.

Therefore, by keeping this component and discarding the
others, the original profile can now be approximately repre-
sented by a single value P′ (a real number). Later, this value is
rescaled in the range [−100, 100], resulting in a normalized
profile identifier (PID) that can be used to label profiles. The
PCA transformation can be written as

P
PCA
−→ P′

Scaling
−→ PID. (12)

F. SEPARATING PROFILES
Once the profiles have been obtained, assessed and labeled,
it is time to explore whether they have been properly sep-
arated using the NACE and/or location. That is, we should
explore some type of correlation between PID labels on
one side, and the NACE and/or location on the other. For
two numeric variables, several correlation metrics have been
widely used, for instance, Pearson’s correlation coefficient.
Unfortunately, in our research, both the NACE and location
codes are not numerical but rather categorical variables.

For this case the analysis of variance (ANOVA) test can be
employed [45]. Considering for instance the NACE, profile
labels are categorized into as many groups as the number of
different NACE codes. The null hypothesis H0 that ANOVA
verifies is the following: each group has been generated by
the same statistical distribution. The ANOVA test computes
the probability of H0, rejecting it below a certain level of
confidence α (usually 5%). The lower Prob [H0] is, the more
useful the NACE code will be in separating all profiles.

ANOVA can also be applied to check whether the NACE
code can separate two groups of given profiles. For n NACE
codes, up to n (n− 1) ANOVA tests must be calculated. The
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FIGURE 11. Active power demand profiles for five combinations of NACE
and location.

higher the ratio of the combinations that reject H0, the more
useful the NACE code will be in separating two profiles.

The ANOVA test makes certain assumptions about the
probability distribution of the variables: independence, nor-
mality and homoscedasticity (equal variance in each group).
If these conditions are not fulfilled, the equivalent less
demanding Kruskal-Wallis test can be used [46].

V. RESULTS
A. OBTAINING PROFILES FOR A GIVEN NACE AND
LOCATION
Using the datasets and the methodology described in the pre-
vious sections, power demand profiles can be obtained for any
combination of NACE and location. Up to five examples of
these active power profiles are depicted in Fig. 11, indicating
the economic sector, the location and their corresponding
profile identifier (PID). As shown in this figure, positive PIDs
correspond to higher demand in summer, while negative PIDs
indicate higher demand in winter.

B. EXPLORING PROFILES AT A GIVEN LOCATION
Many electricity retailers have customers concentrated in a
certain geographic area. However, even nationwide retailers
usually define their marketing strategies in geographically
segmented territories. For these reasons, it is useful to explore
how the demand profiles relate to the economic sectors at a
given location. Let us imagine an example case of a retailer
defining its strategy for the city of Madrid, and let us con-
sider that they are looking for customers with stable demand
throughout the year. Then, they should look for economic
sectors in Madrid with an almost flat demand profile, that is,
with an almost zero PID.

To search for these customers a donut chart, as depicted
in Fig. 12, can be drawn. From the inner to the outer circle
the four details of economic sectors (NACE) are described:
activity, division, group and class. The letters and numbers
in black correspond to the activity and division NACE codes
(the rest of the codes are omitted due to lack of space

FIGURE 12. Donut chart with the PID values of each economic sector in
the city of Madrid.

FIGURE 13. Detailed donut chart with the PID values of each industrial
economic sector in the city of Madrid.

in the graph). The blue number and the color of each sector
indicate the value of the metric represented in the figure,
in this case the PID in the range [−100, 100]. Gray-colored
sectors correspond to NACE codes with no CUPS at that loca-
tion. A side color bar shows the nonlinear correspondence
among colors and PID values.

Continuing with the same example, the retailer may decide
to focus on activity ‘‘C’’ (industrial sector) and its dependent
subsectors, showing a moderate PID. A detailed donut chart
for this industry sector is shown in Fig. 13 (again, some
numbers are omitted due to lack of space in the graph),
where it can be seen that the pharmaceutical industry (NACE
‘‘C2120’’) has a PID = 2 (close to 0). Then, the retailer
may decide to focus its marketing strategy on this sector and
location.
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FIGURE 14. Choropleth map with the PID values of the active demand
profiles corresponding to textile industries in each Spanish province.

C. EXPLORING PROFILES FOR A GIVEN NACE
A similar situation occurs for retailers that focus on certain
economic niches. As another example, let us now consider
a company trying to sell electricity to nationwide textile
industries (approximately 3000 CUPSs with that definition,
although approximately 5000 clients can be estimated in
that category if unreported NACE codes are considered). Let
us imagine that the most convenient customers are those
demanding more energy in winter than in summer, that is,
customers with a negative PID. To look for these customers,
a choropleth map is drawn in Fig. 14, where the darkest
blue province (more negative PID) corresponds to Pontevedra
(northwestern Spain), with a PID = −62. The areas in gray
on the map are provinces with no textile industry (or with an
unknown NACE).

D. GLOBAL EXPLORATION OF PROFILES
If the retail company has no restrictions on the NACE or
location, then a global search can be performed by looking at
each NACE-location pair. Let us now consider the example
of a nationwide global-sector retailer who wants to address
customers demanding more energy in summer than in winter,
that is, customers with a positive PID. For this purpose an
NACE-location PID matrix is depicted in Fig. 15, using eco-
nomic details at the division level and geographical details at
the province level. Most of the darker red cells (more posi-
tive PIDs) correspond to economic sectors A01 (agriculture),
E36 (water treatment), I (hotels), and R93 (sports activities),
while the most demanding area in summer corresponds to the
Valencian Community. Those should be the main marketing
targets for the retail company in the example. Again, the gray
area means that the NACE information is absent.

VI. DISCUSSION
A. SPARSITY OF THE NACE-LOCATION PROFILE MATRICES
In the previous section, the PID metric was used to build
a matrix using locations as rows and NACE codes as
columns. Analogous matrices with the same structure can be
defined using different profile metrics: number of CUPSs,

dispersion (RMSD), and confidence interval. These profile
matrices can be designed using different levels of detail.

Indeed, as previously explained, NACE codes can be
defined using 5 different levels of disaggregation: unspeci-
fied (1), activity (21), division (88), group (272), and class
(629). Analogously, each location code may be defined using
4 levels of disaggregation: unspecified (1), regions (17),
provinces (52), and municipalities (8131). Therefore, up to
20 (5×4) different levels of detail can be used to build profile
matrices. Ametric of the detailing or disaggregation level can
be the number of cells in the matrix, that is, the number of
NACE-location pairs.

For the most disaggregated matrices, many pairs (cells) are
empty; that is, no CUPS fulfills the NACE-location defini-
tion of the corresponding pair: in small villages or even in
medium-size cities, there are no CUPSs for many sectors of
activity. It is clear that the more details regarding the NACE
and/or location, the greater the number of empty cells. For the
20 combinations of disaggregation levels, the sparsity of the
profile matrices (ratio of empty cells) is depicted in Fig. 16.

High levels of detail affect not only the sparsity of the
matrices but also the average number of CUPSs in each
matrix cell: the more details there are regarding the NACE
and/or location, the lower the average number of CUPSs in
each nonempty cell. The results obtained for the 20 combina-
tions of disaggregation levels are depicted in Fig. 17.

B. QUALITY OF PROFILING
The number of CUPSs that define a profile has two opposite
effects on its quality parameters. First, dispersion statistics
such as the RMSD are biased and, even for a given variance
of the population, depend on the number of samples. For
instance, let us consider a normally distributed variable x with
mean µ and standard deviation σ .

For an n-size sample of x, the sample standard deviation
can be defined as

s =

√√√√ 1
n− 1

n∑
i=1

(xi − x̄)2, (13)

where x̄ is the sample mean. It can be proven [47] that s is a
biased estimation of σ . The relative bias can be computed as

b ≡
E [s]− σ

σ
=

√
2

n− 1

0
( n
2

)
0
(
n−1
2

) − 1. (14)

In that expression, the bias has a negative value, which
means that s underestimates σ, and tends to 0 as n grows. Due
to this effect, we should expect the RMSD values to be lower
in the profiles obtained with a reduced number of CUPSs.
This occurs when the average RMSD is computed for the
20 levels of disaggregation of the profile matrices. The result
is shown in Fig. 18.

These experimental results are compared with those
derived by (14), showing a good fit, as depicted in Fig. 19.

The second metric for the quality of profiling is its confi-
dence interval (CI). According to (8), the confidence interval
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FIGURE 15. NACE-location matrix with the values of active demand profile identification (PID).

FIGURE 16. Sparsity of profile matrices. For each level of disaggregation,
the ratio of empty cells (NACE-location pairs with no CUPS) is given.

of a profile depends not only directly on the number of CUPSs
used to compute it but also indirectly on the standard devia-
tion, the bias of which is related to the number of CUPSs,
following (14).

The overall effect on the average CI is computed for the 20
disaggregation levels of profile matrices. The result is shown
in Fig. 20.

These experimental results are compared to those derived
from the theoretical analysis of a Gaussian distribution, show-
ing a good fitting, as depicted in Fig. 21.

FIGURE 17. For each level of disaggregation, the average number of
CUPSs in nonempty cells (NACE-location pairs) is given.

Furthermore, the accuracy of the data on the economic
sector and the geographic location of the client is crucial
in relation to the reliability of the proposed algorithm and
the quality of the resulting profile. This accuracy could be
improved using robust state estimation methods such as those
described in [48]–[50].

C. SEPARABILITY OF PROFILES BY THE NACE AND
LOCATION
To analyze whether the power demand profiles can be sep-
arated using the NACE and/or location, it should first be
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FIGURE 18. For each level of disaggregation, the average profile
dispersion (RMSD) is given.

FIGURE 19. Relative bias of two dispersion statistics: experimental
average profile dispersion (RMSD) for each level of disaggregation and
standard deviation for a theoretical Gaussian distribution.

FIGURE 20. For each level of disaggregation, the average profile
confidence interval (CI) is given.

determined if the ANOVA test conditions are fulfilled. Let us
begin grouping profiles according to the NACE codes. Then,

FIGURE 21. Confidence interval in two cases: experimental average
profile CI for each disaggregation level and its theoretical values for a
Gaussian distribution.

FIGURE 22. Sample standard deviation and skewness of profiles grouped
by the NACE code for each level of disaggregation.

computing the standard deviation and the skewness of each
group, the results depicted in Fig. 22 are obtained, where
several levels of NACE disaggregation are considered.

It can be seen that the skewness is approximately 10,
whereas it should be 0 for a normal distribution. Thus,
the normality condition is not fulfilled. Additionally, it can
be observed that the standard deviation spans a wide range of
values, also violating the homoscedasticity condition. A simi-
lar result is obtained if the profiles are grouped by the location
code. For these reasons, the ANOVA test was discarded, and
the more general Kruskal-Willis test was employed.

With profiles grouped by either the NACE or location
codes, the null hypothesis (H0: every group is generated with
the same statistical distribution) has been tested. The resulting
probability obtained by the Kruskal-Wallis test is depicted
in Fig. 23. It can be seen that for a confidence level α = 5%,
the null hypothesis can be rejected, except in the case of using
region codes to separate profiles.

A similar analysis can be applied to each pair of groups.
The ratio of these pairs achieving a given probability in the
Kruskal-Wallis test is depicted in Fig. 24, where the profiles
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FIGURE 23. Probability that profiles grouped by NACE or location code (at
different disaggregation levels), were generated by the same statistical
distribution (Kruskal-Wallis test).

FIGURE 24. Ratio of separable pairs of profiles according to a given
probability of the null hypothesis in the Kruskal-Wallis test. The profiles
are grouped using only NACE or location codes at different levels of
disaggregation.

FIGURE 25. Ratio of separable pairs of profiles according to a given
probability of the null hypothesis in the Kruskal-Wallis test. The profiles
are grouped using both NACE and location codes at different levels of
disaggregation.

are grouped using only the NACE or location code. The two
extreme cases are also drawn: randomly grouped profiles
(continuous gray) and profiles grouped in perfectly separable

FIGURE 26. For each level of disaggregation, the ratio of separable pairs
of profiles is shown, according to the Kruskal-Wallis test with a
confidence level of 5%.

FIGURE 27. Impact of the level of disaggregation of NACE and location on
the quality of profiling.

pairs (dashed gray). It can be seen that grouping by the
NACE is usually better than that by the location code (except
if the municipality code is used). Indeed, grouping profiles
by region or province is only slightly better than random
grouping.

If both NACE and location codes are used, the result is
as shown in Fig. 25, where the best results of using just one
code (class or municipality) are also depicted. It can be seen
that combining the two codes always offers better results than
those obtained using only a single code. Indeed, the grouping
of profiles by a combination of class andmunicipality yielded
very good results, with more than 90% of the pairs satisfying
the Kruskal-Wallis test with a confidence level of 5%.

The combination of the NACE and location codes at differ-
ent levels of disaggregation yields the ratio of separable pairs
of profiles, as depicted in Fig. 26.

While in [29], [30] the authors use the global size of the
economy to forecast total demand, this research uses the
economic sector to predict the monthly demand profile.
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D. THE ROLE OF THE PROFILE MATRIX DISAGGREGATION
LEVEL
In the previous sections, it has been shown that the level of
disaggregation of the NACE and location codes, that is, of the
profile matrix, impacts several metrics: average number of
CUPSs per profile, dispersion, confidence interval and sepa-
rability. To summarize this effect, the level of disaggregation
is measured as the number of cells in the profile matrix, that
is, the number of NACE-location pairs, the result of which is
depicted in Fig. 27.

It can be seen that higher levels of disaggregation improve
the separability of the profiles and their confidence inter-
vals. They also improve (decrease) the average dispersion
(RMSD), although this does not actually mean better perfor-
mance but rather a degradation of the metric due to high bias
when it is computed for a small number of samples (CUPSs).

VII. CONCLUSION
This paper has explored the suitability of information on the
economic sector and/or the location of an electricity client
for the prediction of his/her monthly demand profile. It has
been shown that the combined use of both data at the highest
available detail offers the best results. Using the economic
class and the municipality code to cluster clients, more than
90% of any pair of groups are separable.

The power demand profiles thus obtained have an average
confidence interval of±17% and a dispersion of 10% (which
increases to 18% if the bias of the dispersion metric is cor-
rected).

Several examples have also been detailed, showing how
this profile information can be used to improve the marketing
decision-making process for electricity retailers.

For further liberalization of electricitymarkets and to foster
competitiveness, policy makers should consider mandatorily
requiring energy retailers to provide information on the eco-
nomic sector of their customers. Additionally, they should
consider collecting and sharing not only monthly but also
hourly energy demand, which will allow for more accurate
customer profiling.
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