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Abstract
We study relationships between the asymptotic behaviour of a non-elliptic semigroup
of holomorphic self-maps of the unit disk and the geometry of its planar domain (the
image of the Koenigs function). We establish a sufficient condition for the trajectories
of the semigroup to converge to its Denjoy–Wolff point with a definite slope. We
obtain as a corollary two previously known sufficient conditions.
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1 Introduction

A (one-parameter) semigroup (ϕt )t≥0 of holomorphic self-maps of D—for short, a
semigroup inD—is a continuous homomorphism t �→ ϕt from the additive semigroup
(R≥0,+) of non-negative real numbers to the semigroup

(
Hol(D, D), ◦) of holomor-
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phic self-maps ofDwith respect to composition, endowedwith the topologyof uniform
convergence on compacta. If ϕt0 is an automorphism ofD for some t0 > 0, then ϕt is an
automorphism for all t ≥ 0 and in such a case we will say that (ϕt ) is a group, because
indeed it can be extended to a group homomorphism R � t �→ ϕt ∈ Hol(D, D).

The theory of semigroups in D has a long history dating back to the early nineteen
century. Moreover, nowadays, it is a flourishing branch of Analysis with strong con-
nections with Dynamical Systems and with many applications in other areas (see [8]
and the bibliography therein). Indeed, this paper is about a basic dynamical problem
for semigroups in D. We refer the reader to [1,8], or [17] for the results cited below
without proof.

It is known that ϕt0 has a fixed point in D for some t0 > 0 if and only if there
exists τ ∈ D such that ϕt (τ ) = τ for all t ≥ 0. In such a case, the semigroup is called
elliptic and there exists λ ∈ C with Re λ ≥ 0 such that ϕ′

t (τ ) = e−λt for all t ≥ 0.
The elliptic semigroup (ϕt ) is a group if and only if Re λ = 0. Moreover, the above
point τ is unique unless ϕt = idD for all t ≥ 0, and it is called the Denjoy–Wolff point
(DW-point in what follows) of the semigroup.

If the semigroup (ϕt ) is not elliptic, then there exists τ ∈ ∂D which is the Denjoy–
Wolff point of ϕt for all t > 0, i.e. ϕt (τ ) = τ and ϕ′

t (τ ) ≤ 1 in the sense of angular
limits. As before, τ is also called the Denjoy–Wolff point (DW-point in what follows)
of the semigroup. In this case, there exists λ ≥ 0 such that ϕ′

t (τ ) = e−λt for all t ≥ 0,
where ϕ′

t (τ ) stands for the angular derivative of ϕt at τ . A non-elliptic semigroup is
said to be hyperbolic or parabolic depending on whether λ > 0 or λ = 0, respectively.
Parabolic semigroups can be divided in two sub-types: a parabolic semigroup is of
positive hyperbolic step if limt→+∞ kD(ϕt+1(0), ϕt (0)) > 0, where kD(·, ·) denotes
the hyperbolic distance in D. Otherwise, (ϕt ) is said to be of zero hyperbolic step.

A fundamental result for semigroups in D is the so-called Continuous Denjoy–
Wolff theorem, which says that if (ϕt ) is non-elliptic or elliptic but different from a
group, then for any z ∈ D, ϕt (z) → τ as t → +∞, where τ is the Denjoy–Wolff of the
semigroup. Those functions t �→ ϕt (z) can be properly named orbits (or trajectories)
in the usual dynamical sense thanks to Berkson and Porta’s celebrated theorem [4,
Theorem (1.1)] which asserts that t �→ ϕt (z) is real-analytic and there exists a unique
holomorphic vector field G : D → C such that

∂ϕt (z)

∂t
= G(ϕt (z)), for all z ∈ D and all t ≥ 0.

This vector field G is called the vector field or infinitesimal generator of (ϕt ).
In this paper we are interested in considering the so-called “slope problem” of the

orbits of a non-elliptic semigroup in D when arriving to its Denjoy–Wolff point.

Definition 1.1 Let (ϕt ) be a non-elliptic semigroup in D with Denjoy–Wolff point
τ ∈ ∂D. The (arrival) slope set Slope[t �→ ϕt (z), τ ] of the semigroup (ϕt ) at τ with
the initial point z ∈ D is the cluster set of the function

[0,+∞) � t �→ Arg
(
1 − τϕt (z)

) ∈ (−π/2, π/2)
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as t → +∞. In other words, θ ∈ [−π
2 , π

2

]
belongs to the set Slope[t �→ ϕt (z), τ ] if

there exists a sequence (tn) ⊂ [0,+∞) tending to+∞ such that Arg
(
1−τϕtn (z)

)→
θ as n → +∞.

Remark 1.2 Slope[t �→ ϕt (z), τ ] is either a point or a closed subinterval of [−π
2 , π

2

]
.

For hyperbolic semigroups and parabolic semigroups of positive hyperbolic step,
the arrival slope set is always a singleton (see [8, Sect. 17.4 and 17.5] for further
information).

In contrast, for parabolic semigroups of zero hyperbolic step, the arrival slope set
does not have to reduce to a unique point (see [3,6,10,14]). However, according to the
following result by the first two authors, it does not depend on the initial point.

Theorem 1.3 [9, Theorem2.9 (1)]Let (ϕt ) be a parabolic semigroup of zero hyperbolic
step with DW-point τ ∈ ∂D. Then, for any z1, z2 ∈ D,

Slope[t �→ ϕt (z1), τ ] = Slope[t �→ ϕt (z2), τ ].

An important open problem in the theory of semigroups in D has been (indeed,
still is) how to detect whether the arrival slope set of a parabolic semigroup of zero
hyperbolic step is a singleton or a specific kind of closed subinterval of

[−π
2 , π

2

]
. Here

the word “detect” almost always means finding sufficient and/or necessary conditions
of geometric nature. This is directly related to the second key notion (with the first one
being the vector field) associated with each semigroup, namely, to its holomorphic
model and its Koenigs function (see [4], [11], [18], [2], [8, Sect. 9]).

Definition 1.4 Let (ϕt ) be a semigroup in D. A holomorphic model for (ϕt ) is a triple
(U , h, Φt ), where U is a domain in C, (Φt ) is a group of holomorphic automorphisms
of U , and h : D → h(D) ⊂ U is a univalent holomorphic map (called a Koenigs
function of the semigroup) satisfying the functional equation

h ◦ ϕt = Φt ◦ h for all t ≥ 0 (1.1)

and the following absorbing property

⋃

t≥0

Φ−1
t (h(D)) = U . (1.2)

The set h(D) is called an associated planar domain of the semigroup.

Every semigroup in D admits a holomorphic model unique up to “holomorphic
equivalence” (i.e. isomorphism of models). In particular, see e.g. [8, Theorem 9.3.5
on p.245], a semigroup inD is non-elliptic if and only if one of its (mutually equivalent)
holomorphicmodels is of the form (U , h, z �→ z + i t). For such a holomorphicmodel,
the functional equation (1.1) becomes Abel’s classical equation

h
(
ϕt (z)

) = h(z) + i t, for all z ∈ D, t ≥ 0. (1.3)
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Following the convention generally accepted in the literature, we will assume that
all the considered holomorphicmodels for the non-elliptic semigroups are of the above
canonical form. Then the Koenigs function becomes essentially unique: if h1, h2 are
two Koenigs functions of the same non-elliptic semigroup, then there exists a constant
c ∈ C such that h1 = h2 + c.

Thanks to (1.3), planar domains of non-elliptic semigroups are complex domains
of a very particular type: the so-called starlike-at-infinity domains.

Definition 1.5 A domain Ω ⊂ C is said to be starlike at infinity (in the direction of
the imaginary axis) if Ω + i t ⊂ Ω for any t ≥ 0.

Remark 1.6 Any domain Ω �= C starlike at infinity is conformally equivalent to D

and if h is a conformal mapping of D onto such a domain Ω , then the formula
ϕt := h−1 ◦ (h + i t) for t ≥ 0 defines a non-elliptic semigroup in D, whose Koenigs
function is h.

In this context, our problem mentioned above can be rewritten as follows: to find
geometrical properties of the planar domain of a parabolic semigroup of zero hyper-
bolic step which imply (or characterize) whether the corresponding arrival slope set
is a singleton.

As far as we know, apart from examples and some folklore results concerning
strong symmetry of the planar domain, the unique three papers dealing with the above
question are [3], [5] and [7]. In [3], it is shown that whenever the boundary of the
planar domain is included in a vertical half-strip, the arrival slope set is equal to {0}.
Likewise, in [5], it is shown that if the boundary of the planar domain is included in a
horizontal strip, the arrival slope set is also equal to {0}. In [7], the authors introduce
some “boundary distance” functions, which measure the distance of a vertical straight
line to the boundary of the planar domain, and use them to characterize geometrically
when the arrival slope set coincides with the singleton {π/2} or {−π/2}. Moreover,
they also show how these functions detect whether the convergence of the trajectories
is non-tangential, i.e. whether the arrival slope set is a compact subset of

(−π
2 , π

2

)
.

We would like to mention that there are also results treating the above problem in a
non-geometrical way, i.e. without using planar domains. For instance, in [12] (see also
[8, Proposition 7.5.5]), it is proved that the arrival slope sets of a parabolic semigroup
of zero hyperbolic step is a singleton whenever its vector field has enough analytic
regularity (in the angular sense) at its Denjoy–Wolff point.

In this paper, we introduce some new “angular extent” functions of a strongly
geometrical meaning, which measure the angular displacement of the boundary of the
planar domain with respect to a fixed vertical straight line (see Definition 3.5). Using
these functions, we establish sufficient conditions for the arrival slope set of a non-
elliptic semigroup to be a singleton (see Theorem 5.4 and Proposition 5.3). We also
analyse the relationship between these functions and the non-tangential convergence
of the orbits of the semigroup (see Proposition 5.1). Moreover, as a corollary, we
recover results from [3] and [5].

The plan of the paper is as follows. In Sect. 2, we develop some new results about
Carathéodory kernel convergence which can be of interest on their own and will be
fundamental for the results of Sect. 5. In Sect. 3, we introduce and study those angular
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extent functions mentioned above. Section 4 is a brief review of the boundary distance
functions introduced in [7]. We also study here their relationships with the angular
extent functions from Sect. 3. In Sect. 5, we present our main results. Finally, in
Sect. 6, we show a few examples dealing with some particularities of the angular
extent functions, which, in particular, underline important differences between them
and the (apparently quite similar) boundary distance functions.

2 Kernel Convergence

Recall the classical notion of kernel convergence of domains; for more details see e.g.
[13, §II.5] or [15, §1.4]. Let (Ωn) be a sequence of domains in C. Fix a point ω ∈ C.
Suppose thatω ∈ Ωn for all n ∈ N large enough. Denote by G the (possibly empty) set
of all points z ∈ C possessing the following property: there exists an open connected
set Δ ⊂ C containing the points z and ω and contained in Ωn for all sufficiently
large n ∈ N.

The kernel K
(
(Ωn), ω

)
of the sequence (Ωn) with respect to the point ω is the

union G ∪ {ω}. The following dichotomy holds: either G = ∅ and hence, trivially,
K
(
(Ωn), ω

) = {ω}, or K (
(Ωn), ω

) = G �= ∅. In the latter case, K
(
(Ωn), ω

)

coincides with the connected component of
⋃

n∈N int
(⋂

m≥n Ωm
)
that contains ω.

Here int(·) stands for the topological interior of a set.
As a matter of convenience, we also define the kernel of (Ωn) w.r.t. points ω ∈ C

that fail to belong to all but a finite number of Ωn’s. In such a case, we define
K
(
(Ωn), ω

) := {ω} if there exists a sequence (ωn) converging to ω with ωn ∈ Ωn

for all n ∈ N; otherwise, we put K
(
(Ωn), ω

) := ∅.
The kernel of (Ωn) w.r.t. ω is said to be non-trivial if it is different from ∅

and {ω}. In such a case, K
(
(Ωn), ω

)
is a domain in C containing ω. Otherwise,

i.e. ifK
(
(Ωn), ω

) ∈ {∅, {ω}}, we say that the kernel of (Ωn) w.r.t. ω is trivial.
Note that for any subsequence (Ωnk ), K

(
(Ωnk ), ω

) ⊃ K
(
(Ωn), ω

)
and, in gen-

eral, the inclusion can be strict. A sequence (Ωn) is said to converge to its kernel
Ω∗ := K

(
(Ωn), ω

)
w.r.t. a point ω ∈ C, if Ω∗ �= ∅ and K

(
(Ωnk ), ω

) = Ω∗ for
every subsequence (Ωnk ).

The above “sequential” concepts can be extended to continuous indexes in a natural
way. Consider a family (Ωr )r>0 of domains in C and let ω ∈ C. If for some r0 > 0,
a fixed neighbourhood of ω is contained in Ωr whenever r ≥ r0, then K

(
(Ωr ), ω

)
,

the kernel of the family (Ωr ) w.r.t. ω, is defined as the connected component of

⋃

r>0

int
( ⋂

r ′≥r

Ωr ′
)

= int
(⋃

r>0

⋂

r ′≥r

Ωr ′
)

that containsω. Otherwise, we putK
(
(Ωr ), ω

) := {ω} orK (
(Ωr ), ω

) := ∅ depend-
ing on whether there exists a map (0,+∞) � r �→ ωr ∈ C such that ωr ∈ Ωr for
all r > 0 and ωr → ω as r → +∞.

The family (Ωr ) is said to converge to its kernel Ω∗ := K
(
(Ωr ), ω

)
w.r.t. ω if

∅ �= Ω∗ = K
(
(Ωrn ), ω

)
for every sequence (rn) ⊂ (0,+∞) tending to +∞.
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Remark 2.1 It follows easily from the definition that if K ⊂ K
(
(Ωr ), ω

)
is a compact

set, then K ⊂ Ωr for all r > 0 large enough. Conversely, if a domain U is contained
in Ωr for all r > 0 large enough, then U ⊂ K

(
(Ωr ), ω

)
for any ω ∈ U . Analogous

statements hold for kernels of sequences of domains.

In the proof of our main result, Theorem 5.4, we make use of the following state-
ment, which is an easily corollary of Carathéodory’s classical Kernel Convergence
Theorem; see e.g. [13, Theorem 1 in §II.5].

Proposition 2.2 Let (gn) be a sequence of conformal mappings of D into C. If (gn)

converges locally uniformly in D to some function g, then (gn(D)) converges to its
kernel w.r.t. ω := g(0). Moreover, g(D) = K

(
(gn(D)), ω

)
.

If the kernel K
(
(gn(D)), ω

)
is non-trivial, then g is conformal and on every com-

pact set K ⊂ g(D), the sequence (g−1
n ) converges uniformly to g−1.

As a consequence of Remark 1.6, in this paper, we will be especially interested in
domains starlike at infinity. Simple “model examples” of such domains, relevant to
the slope problem, are represented by angular sectors of the form

Sp(β1, β2) := {p + i teiθ : t > 0, −β2 < θ < β1
}
,

where p ∈ C and 0 ≤ β1, β2 ≤ π with β1 + β2 > 0.

Remark 2.3 Clearly, when the above notions are applied to describing the limit
behaviour of domains, much depends on the choice of the point ω involved in the def-
inition of the kernel. Given a family (Ωr ) of domains and a sequence (rn) ⊂ (0,+∞)

tending to +∞, the limit behaviour of the sequence (Ωrn ) w.r.t. to some points ω ∈ C

can be similar to that of the whole family (Ωr ), while for other choices of ω, (Ωrn )

and (Ωr ) can behave differently. Consider the following example. Let β ∈ (0, π ],

Ω := S0(π/4, β)
∖ ∞⋃

n=0

{
u + iv : u = −2n, v ∈ [2n, 2n(1 + 2n)]

}
,

and define Ωr := 1
r Ω for all r > 0. It can be checked that if ω ∈ S0(0, β), then

K
(
(Ωr ), ω

) = S0(0, β), but for all ω ∈ C \ S0(0, β) the kernel K
(
(Ωr ), ω

)
is

trivial. In particular, S0(0, β) is the unique non-trivial kernel of the family (Ωr ).
Moreover, (Ωr ) converges to its kernel S0(0, β) w.r.t. any ω ∈ S0(0, β).

It follows that the sequence (Ω2n ) converges to its kernel S0(0, β) w.r.t. any
ω ∈ S0(0, β). However, (Ω2n ) has infinitely many other non-trivial kernels with
respect to points in the left half-plane, namely,

Dk := K
({(Ω2n ), ωk

) = {u + iv : u ∈ (−2k,−2k−1), v > −u},

where ωk := (− 3
4 + i)2k, k ∈ Z. In fact, for any k ∈ Z, the sequence (Ω2n ) converges

to its kernel Dk w.r.t. ωk . Note also that in this example, Ω and hence all Ωr ’s are
starlike at infinity.
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For families (Ωr ) generated, as in the above remark, by scaling a given domain Ω ,
the fact that the parameter r takes all positive real values imposes strong restrictions
on possible non-trivial kernels.

Proposition 2.4 Let Ω ⊂ C be a domain different from C. Suppose that (Ωr :=
1
r Ω)r>0 has a non-trivial kernel Ω∗ := K

(
(Ωr ), ω

)
w.r.t. some point ω ∈ C. Then

the following assertions hold.

(A) Either Ω∗ coincides with C
∗ := C \ {0} or Ω∗ is an angle with the vertex at the

origin, i.e.

Ω∗ = λS0(β1, β2),

for some λ ∈ ∂D and some 0 ≤ β1, β2 ≤ π with β1 + β2 > 0.
(B) If, in addition, Ω is starlike at infinity, then

Ω∗ = S0(β1, β2),

for some 0 ≤ β1, β2 ≤ π with β1 +β2 > 0. Moreover, Ω∗ is the only non-trivial
kernel of (Ωr ), i.e. K

(
(Ωr ), ω

′) ∈ {∅, {ω′},Ω∗
}

for any ω′ ∈ C.
(C) Under hypothesis of (B), suppose that β1β2 �= 0. Then for any ω′ ∈ C and any

sequence (rn) ⊂ (0,+∞) converging to +∞ such that the kernel K
(
(Ωrn ), ω

′)

is non-trivial, we have

K
(
(Ωrn ), ω

′) = K
(
(Ωrn ), ω

) ⊃ S0(β1, β2).

Proof To prove (A), we notice that 0 /∈ Ω∗, because otherwise {z : |z| ≤ ε} ⊂ Ωr for
some ε > 0 and all r > 0 large enough and hence we would have Ω = C. Therefore,
to prove (A), it is enough to show that together with any w ∈ Ω∗, the domain Ω∗
contains also the ray {aw : a > 0}. Suppose on the contrary thatw ∈ Ω∗ and that there
exists a > 0 such that aw ∈ ∂Ω∗. Choose ε > 0 so small that {ξ : |ξ −w| ≤ ε} ⊂ Ω∗.
Then there exists r > 0 such that for all r ′ ≥ r , {ξ : |ξ − w| ≤ ε} ⊂ Ωr ′ = 1

r ′ Ω or
equivalently, {aξ : |aξ − aw| ≤ aε} ⊂ a

r ′ Ω . Hence U := {ξ : |ξ − aw| < aε} ⊂ Ωt

for all t ≥ r/a. Since by construction the domain U intersects Ω∗, it follows that
U ⊂ Ω∗. We obtain a contradiction, which shows that the whole ray {aw : a > 0} is
contained in Ω∗.
Proof of (B). Let us now assume thatΩ + i t ⊂ Ω for all t ≥ 0. Then the same property
is possessed by Ωr for any r > 0 and hence by Ω∗. Since 0 /∈ Ω∗, it follows that
the ray {−i t : t ≥ 0} is contained in C \ Ω∗. Hence Ω∗ = S0(β1, β2) for some
β1, β2 ∈ [0, π ]. Clearly, (β1, β2) �= (0, 0) because Ω∗ �= ∅.

Take ω′ ∈ C different from ω and assume K
(
(Ωr ), ω

′) is non-trivial. Note that
K
(
(Ωr ), ω

)
and K

(
(Ωr ), ω

′) either coincide or do not intersect. Therefore, if both
β1 �= 0 and β2 �= 0, then clearly, K

(
(Ωr ), ω

′) = K
(
(Ωr ), ω

) = S0(β1, β2).

123



M. D. Contreras et al.

Let us show that the same conclusion holds also if β1β2 = 0. Otherwise, without
loss of generality, we may assume thatK

(
(Ωr ), ω

) = S0(α1, 0) andK
(
(Ωr ), ω

′) =
S0(0, α2) for some α1, α2 ∈ (0, π ]. Note these two sets are the only non-trivial kernels
of (Ωr ). Hence

S0(α1, 0) ∪ S0(0, α2) = int
(⋃

r>0

⋂

r ′≥r

Ωr ′
)
. (2.1)

In particular,Ω is neither contained in {w : Rew > 0}nor in {w : Rew < 0}. Together
with the property thatΩ+i t ⊂ Ω for all t ≥ 0, thismeans that {i(t+a0) : t ≥ 0} ⊂ Ω

for some a0 ∈ R. If a0 ≤ 0, then we immediately get a contradiction because in such
a case {i t : t ≥ 0} ⊂ Ωr for any r > 0. If a0 > 0, then for any r > 0 we have
{i(t + a0

r ) : t ≥ 0} ⊂ Ωr . It follows that {i t : t ≥ 0} is contained in⋃r>0
⋂

r ′≥r Ωr ′ ,
which again contradicts (2.1). This completes the proof of (B).
Proof of (C). Fix now ω′ ∈ C and a sequence (rn) ⊂ (0,+∞) converging to +∞
with the property that the kernel K

(
(Ωrn ), ω

′) is non-trivial. Clearly

D := K
(
(Ωrn ), ω

) ⊃ K
(
(Ωr ), ω

) = S0(β1, β2).

As above, the domains D and D′ := K
(
(Ωrn ), ω

′) either coincide or do not intersect;
moreover, D′ + i t ⊂ D′ for all t ≥ 0. Since by hypothesis β1 > 0 and β2 > 0, it
follows that D′ = D. The proof is now complete. ��
Remark 2.5 The condition β1β2 �= 0 in part (C) of the above proposition is essential.
Just consider the example in Remark 2.3.

Remark 2.6 Fix w0 ∈ C and let Ω ⊂ C be a domain. If the family of domains
Ω̃r := 1

r (Ω −w0) has a non-trivial kernel with respect to a point ω ∈ C, then also the
family

(
Ωr := 1

r Ω
)
has the same kernel with respect to ω. A similar assertion holds

for any sequence (Ωrn ) with rn → +∞ as n → +∞. Indeed, every point

w ∈
⋃

r>0

int
( ⋂

r ′≥r

Ω̃r ′
)

is contained in Ω̃r ′ along with some fixed neighbourhood for all r ′ > 0 large enough.
Hence {ξ : |ξ − w| < ε} ⊂ Ωr ′ for some ε > 0 and all r ′ > 0 large enough. Taking
into account that the same holds also with Ω̃r ′ and Ωr ′ interchanged, we conclude
that

⋃

r>0

int
( ⋂

r ′≥r

Ωr ′
)

=
⋃

r>0

int
( ⋂

r ′≥r

Ω̃r ′
)
.

3 Angular Extent Functions for Domains Starlike at Infinity

Recall that a domain starlike at infinity is a domain Ω of the complex plane such that
Ω + i t ⊂ Ω for all t ≥ 0.
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Definition 3.1 Let Ω be a domain starlike at infinity. A point p ∈ C is said to be a
natural point associated with Ω if there exists t0 ≥ 0 such that p + i t ∈ Ω , for all
t > t0. The set of all natural points associated with Ω will be denoted by NP(Ω).

Remark 3.2 The set NP(Ω) is always non-empty. Indeed, Ω ⊂ NP(Ω). Moreover,
NP(Ω) = C if and only if {Re z : z ∈ Ω} is unbounded both from above and from
below, i.e. if and only if Ω is not contained in a half-plane bounded by a line parallel
to the imaginary axis.

Remark 3.3 Consider a non-elliptic one-parameter semigroup (ϕt ) in D with planar
domain Ω . It is known, see e.g. [8, Theorem 9.3.5], that the semigroup (ϕt ) is hyper-
bolic if and only ifNP(Ω) is an open strip and that it is parabolic of positive hyperbolic
step if and only ifNP(Ω) is an open half-plane; finally, (ϕt ) is parabolic of zero hyper-
bolic step if and only if NP(Ω) = C.

Remark 3.4 A useful subset of NP(Ω), which will be denoted by NP0(Ω), is formed
by those points p ∈ ∂Ω such that p + i t ∈ Ω , for all t > 0.

Note thatNP0(Ω) can be empty, but this happens only for a narrow class of domains
of the form Ω = V (I ) := {x + iy : x ∈ I , y ∈ R}, where I ⊂ R is an open interval
(bounded or unbounded or the whole R).

Moreover,NP0(Ω) can be reduced to a unique point: consider, e.g.Ω := C\{−i t :
t ≥ 0}.
Definition 3.5 Let Ω be a domain starlike at infinity. Fix p ∈ NP(Ω). For any t > 0
such that p + i t ∈ Ω , we define the (normalized) left angular extent of Ω w.r.t. p by

α−
Ω,p(t) := min

{
π, sup{α > 0 : p + i teiθ ∈ Ω for all θ ∈ [0, α]}} ∈ (0, π ].

Likewise, the (normalized) right angular extent of Ω w.r.t. p is defined as

α+
Ω,p(t) := min

{
π, sup{α > 0 : p + i te−iθ ∈ Ω for all θ ∈ [0, α]}} ∈ (0, π ].

The natural domain of definition for both functions α−
Ω,p and α+

Ω,p is the interval
(
t0(p),+∞), where

t0(p) := inf
{
t ≥ 0 : p + i t ∈ Ω

}
. (3.1)

Remark 3.6 Note that p ∈ NP0
(
Sp(β1, β2)

)
and that for all t > 0,

α−
Sp(β1,β2),p(t) = β1, α+

Sp(β1,β2),p(t) = β2.

Remark 3.7 It is easy to see that for any domain Ω starlike at infinity and any p ∈
NP(Ω), both functions α−

Ω,p and α+
Ω,p are continuous from the right on their natural

domain of definition. However, in general, neither α−
Ω,p nor α

+
Ω,p are continuous from
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the left. For instance, for Ω := {z : Im z > 0} \ {−1 + iy : y ∈ [0, 1]}, we have

α−
Ω,0(t) =

⎧
⎪⎨

⎪⎩

π/2, if t ∈ (0, 1],
arcsin(1/t), if t ∈ (1,

√
2],

π/2, if t ∈ (
√
2,+∞),

which is discontinuous from the left at t = √
2.

Remark 3.8 In general, for different points p, q ∈ NP(Ω), we have different functions
α+

Ω,p and α+
Ω,q . The same holds for the left angular extends. However, quite often the

angular extends w.r.t. different points behave the same way in the limit as t → +∞.

Theorem 3.9 Let Ω be a domain starlike at infinity and p ∈ NP(Ω). Let t0(p) be
defined by (3.1). Then the three conditions below are equivalent to each other.

(i) The following limits exist,

α−(p) := lim
t→+∞ α−

Ω,p(t) ∈ [0, π ], α+(p) := lim
t→+∞ α+

Ω,p(t) ∈ [0, π ],

and at least one of them is different from zero.
(ii) There are two increasing unbounded sequences (t ′n), (t ′′n ) ⊂ (t0(p),+∞) with

t ′n+1/t ′n → 1 and t ′′n+1/t ′′n → 1 as n → ∞ such that the following limits exist,

lim
n→∞ α−

Ω,p(t
′
n) ∈ [0, π ], lim

n→∞ α+
Ω,p(t

′′
n ) ∈ [0, π ],

and at least one of them is different from zero.
(iii) There exists ω ∈ C with respect to which the family

(
Ωr := 1

r Ω
)

converges to a
non-trivial kernel.

Moreover, if one and hence all of the above conditions are satisfied, then:

(a) K
(
(Ωr ), ω

′) = Sp
(
α−(p), α+(p)

)
for any ω′ ∈ C such that K

(
(Ωr ), ω

′) is
non-trivial, and

(b) for any q ∈ NP(Ω), α−
Ω,q(t) → α−(p) and α+

Ω,q(t) → α+(p) as t → +∞.

For the proof of this theorem we need one technical lemma.

Lemma 3.10 Under conditions of Theorem 3.9, fix some t > 0 and β ∈ (0, π ] such
that L := {p + i te−iθ : 0 ≤ θ < β} ⊂ Ω . Then the following statements are true.

(A) If 0 < β ≤ π/2, then for any ε ∈ (0, β) there exists δ = δ(β, ε) > 0 such that
α+

Ω,p(x) ≥ β − ε for all x ∈ [t, t(1 + δ)].
(B) If π/2 < β ≤ π , then for any ε ∈ (0, β) there exists δ = δ(β, ε) ∈ (0, 1) such

that for each x ∈ [t(1 − δ), t] at least one of the inequalities

α+
Ω,p(x) ≤ π − (β − ε) or α+

Ω,p(x) ≥ β − ε

holds.
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Proof Note that the hypothesis implies that t belongs to the natural domain of definition
of α−

Ω,p and α+
Ω,p. For simplicity, we will assume, without loss of generality, that

p = 0.
Suppose first that 0 < β ≤ π/2. Since Ω + i t ⊂ Ω for all t ≥ 0, together with the

arc L , the domain Ω contains the set

L+ := {z : 0 ≤ Re z < t sin(β), Im z ≥
√

t2 − (Re z)2}.

Note that for any x ≥ t ,

{i xe−iθ : 0 ≤ θ < θ(x)} ⊂ L+, θ(x) := arcsin
t sin β

x
.

The statement (A) follows now easily.
Similarly, if π/2 < β ≤ π , then together with the arc {i te−iθ : π/2 ≤ θ < β}, the

domain Ω contains the set

S := {z : |z| ≤ t}⋂ {z : Re z > t sin β}.

In case β = π , it immediately follows that α+
p,Ω(x) = π for all x ∈ (0, t]. Suppose

now that β ∈ (π/2, π). Then for any x ∈ (t sin β, t], the arc {i xe−iθ : θ(x) < θ <

π − θ(x)} is contained in S, where θ(x) is defined as above. Therefore, for all such
points x , either α+

Ω,p(x) ≤ θ(x) or α+
Ω,p(x) ≥ π − θ(x). This implies statement (B).

��
Proof of Theorem 3.9 To show the equivalence of the three conditions, it is sufficient to
prove that (ii) �⇒ (iii) and (iii) �⇒ (i). Thanks to Remark 2.6, replacing the domain
Ω with Ω − p, we may assume that p = 0.
Proof of (ii) �⇒ (iii). Denote

α− := lim
n→∞ α−

Ω,0(t
′
n), α+ := lim

n→∞ α+
Ω,0(t

′′
n ).

We are going to show that under condition (ii) the following two claims hold.
Claim 1: lim inf t→+∞ α−

Ω,0(t) ≥ α− and lim inf t→+∞ α+
Ω,0(t) ≥ α+.

Claim 2: for any sequence {rn} ⊂ (0,+∞) tending to+∞ and anyw ∈ ∂S0(α−, α+)

there is a sequence {wn} converging to w and satisfying wn ∈ C \ Ωrn for all n ∈ N.
Claim 1 implies that for ω := iei(α−−α+)/2 and for any sequence (rn) ⊂ (0,+∞)

with rn → +∞ as n → +∞, the kernel K
(
(Ωrn )), ω

)
contains S0(α−, α+). Like-

wise, from Claim 2, it follows that K
(
(Ωrn )), ω

)
is contained in S0(α−, α+).

Proof of Claim 1. The proofs of the two inequalities in Claim 1 are similar. By this
reason we prove only one of them, namely, the inequality for α+

Ω,0. Suppose on the

contrary that there exist α∗ < α+ and a sequence xn → +∞ such that α+
Ω,0(xn) ≤ α∗

for all n ∈ N. Consider two cases: α∗ < π/2 and α∗ ∈ [π/2, π). Suppose first that
α∗ < π/2. Then for all n ∈ N large enough,α+

Ω,0(t
′′
n ) ≥ β := min{(α∗+α+)/2, π/2}.

Note that β > α∗. Hence applying Lemma 3.10 (A) for t := t ′′n , we conclude that there
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exist n0 ∈ N and δ > 0 such that for all x ∈ J := ⋃
n≥n0 [t ′′n , t ′′n (1 + δ)] we have

α+
Ω,0(x) > α∗. Since t ′′n+1/t ′′n → 1 as n → +∞, [a0,+∞) ⊂ J for some a0 > 0, and

in particular, xn ∈ J for all sufficiently large n ∈ N. This contradicts the assumption
that α+

Ω,0(xn) ≤ α∗ for all n ∈ N.
Let us now obtain a contradiction in the case α∗ ∈ [π/2, π). Since α∗ < α+, in this

case α+ > π/2. It follows that for all n ∈ N large enough, α+
Ω,0(t

′′
n ) ≥ π/2. Therefore,

similarly to the first case, applying Lemma 3.10 (A) for t := t ′′n and β := π/2, one can
show that there exists a1 > 0 such that for all x ≥ a1, we have α+

Ω,0(x) > π −β ′ with
β ′ := (α∗ + α+)/2. Moreover, taking into account that α+

Ω,0(t
′′
n ) ≥ β ′ for all n ∈ N

large enough and applying Lemma 3.10 (B) for t := t ′′n and β := β ′, we see that there
exist n0 ∈ N and δ ∈ (0, 1) such that for all x ∈ J ′ :=⋃n≥n0 [t ′′n (1 − δ), t ′′n ] we have
α+

Ω,0(x) > α∗. This is again in contradiction with the assumption that α+
Ω,0(xn) ≤ α∗

for all n ∈ N. Claim 1 is now proved.
Proof of Claim 2.Clearly, it is sufficient to prove the claim forw �= 0.Thenw = iρe−iθ

for some ρ > 0 and θ ∈ {−α−, α+}. We provide the proof only for the case θ = α+,
because the case θ = −α− is similar. Suppose first that α+ < π . Then omitting if

necessary a finite number of terms in (t ′′n ), we may suppose that i t ′′n e−iα+
Ω,0(t

′′
n ) ∈ C\Ω

for all n ∈ N. For x > 0, denote by t(x) the element of the sequence (t ′′n ) for which
| log(t ′′n /x)| attains its minimal value q(x). If the minimal value is attained for two
different elements, we choose one of them, for example the smaller one. Clearly ζn :=
i t(ρrn)e−iα+

Ω,0(t(ρrn)) ∈ C \Ω for each n ∈ N. It follows that wn := ζn/rn ∈ C \Ωrn .
Moreover, |Re log(wn/w)| = q(ρrn) → 0 because t ′′n+1/t ′′n → 1 as n → +∞, and
| Im log(wn/w)| = |α+

Ω,0(t(ρrn))−α+| → 0 because α+
Ω,0(t

′′
n ) → α+ as n → +∞.

Thus wn → w as n → +∞.
Suppose now that α+ = π . The above argument works also in this case if 0 /∈ Ω ,

but if 0 ∈ Ω , then it might happen that α+
Ω,0(t) = π and i te−iα+

Ω,0(t) = −i t ∈ Ω

for all t > 0. Hence we have to modify the above argument. To this end, fix some
w∗ ∈ C \ Ω . Then Γ := {w∗ − i t : t ≥ 0} ⊂ C \ Ω . Removing a finite number of
terms in (rn), we may suppose that ρrn > |w∗| for all n ∈ N. Define wn to be the
unique point of intersection Γ

⋂ {z : |z| = ρrn} lying in the lower half-plane. Then
clearly ζn := wn/rn → −iρ = w as n → +∞. By construction, ζn ∈ C \ Ωrn for all
n ∈ N. Now Claim 2 and hence the implication (ii) �⇒ (iii) is proved.

Proof of (iii) �⇒ (i). By Proposition 2.4, Ω∗ := K
(
(Ωr ), 0

) = S0(β1, β2) for some
β1, β2 ∈ [0, π ] with β1 +β2 > 0. Since any compact subset of Ω∗ is contained in Ωr

for all r > 0 large enough, it follows that

lim inf
t→+∞ α−

Ω,0(t) ≥ β1 and lim inf
t→+∞ α+

Ω,0(t) ≥ β2.

It remains to show that

lim sup
t→+∞

α−
Ω,0(t) ≤ β1 and lim sup

t→+∞
α+

Ω,0(t) ≤ β2.
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We are going to prove only the latter claim, since the proof of the other one is very
similar. Thus suppose that lim supt→+∞ α+

Ω,0(tn) > β2. Then there exist β∗ > β2 and

an unbounded strictly increasing sequence (tn) ⊂ (0,+∞) such that α+
Ω,0(tn) ≥ β∗

for all n ∈ N. If β2 < π/2, then using assertion (A) of Lemma 3.10 with β :=
min{β∗, π/2}, we see that there is μ ∈ (0, 1) and a sequence of intervals In :=
[rn(1 − μ), rn(1 + μ)] with rn → +∞ as n → +∞ such that α+

Ω,0(x) ≥ β ′ :=
(β + β2)/2 for any x ∈⋃n∈N In . The same conclusion, but with β ′ := (β∗ + β2)/2,
can be obtained in the case β2 ≥ π/2 by applying assertion (B) of Lemma 3.10 with
β replaced by β∗, if we recall that lim inf t→+∞ α+

Ω,0(t) ≥ β2 ≥ π/2 and hence

α+
Ω,0(t) > π − β∗ for all t > 0 large enough.

It follows that in both cases the setU : ={iρe−iθ : 1−μ ≤ ρ ≤ 1+μ, 0 ≤ θ < β ′}
is contained in Ωrn for any n ∈ N. HenceK

(
(Ωrn ), 0

) ⊃ Ω∗
⋃

U . However, by (iii)
and the definition of convergence to the kernel, K

(
(Ωrn ), 0

) = Ω∗. Since U �⊂ Ω∗,
we have obtained a contradiction, which means that indeed lim supt→+∞ α+

Ω,0(t)≤ β2.

Proof of (a) and (b). We have already seen that if conditions (i)–(iii) hold, then the
equality K

(
(Ωr ), ω

) = S0
(
α−(p), α+(p)

)
takes place for at least one point ω ∈ C.

By Proposition 2.4, this implies assertion (a).
Now (b) follows from (a) and the fact that condition (iii) does not depend on the

choice of the point p. ��

Remark 3.11 If Ω is a domain starlike at infinity with NP(Ω) �= C, then one of the
following three mutually exclusive possibilities holds.

1. Ω ⊂ V (I ) := {x + iy : x ∈ I , y ∈ R} for a suitable bounded interval I ⊂ R. In
this case, for any p ∈ NP(Ω), we have

lim
t→+∞ α−

Ω,p(t) = lim
t→+∞ α+

α,p(t) = 0.

2. Ω ⊂ V (I ) for a suitable interval I of the form (a,+∞), a ∈ R, but not
for any bounded interval I . In this case, clearly, limt→+∞ α−

Ω,p(t) = 0 for any
p ∈ NP(Ω).

3. Ω ⊂ V (I ) for a suitable interval I of the form (−∞, b), b ∈ R, but not for any
bounded interval I . In this case, limt→+∞ α+

Ω,p(t) = 0 for any p ∈ NP(Ω).

4 Boundary Distance Functions for Domains Starlike at Infinity

Definition 4.1 [7] Let Ω � C be a domain starlike at infinity, p ∈ C and t > 0. The
(normalized) left distance of Ω w.r.t. p is defined by

δ−
Ω,p(t) := min

{
t, inf{|z − (p + i t)| : Re z ≤ Re p, z ∈ C \ Ω}} ∈ [0, t].
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Likewise, the (normalized) right distance of Ω w.r.t. p is defined by

δ+
Ω,p(t) := min

{
t, inf{|z − (p + i t)| : Re z ≥ Re p, z ∈ C \ Ω}

}
∈ [0, t].

Remark 4.2 Note that if p ∈ NP0(Ω), then, for all t > 0,

δ−
Ω,p(t) = inf{|z − (p + i t)| : Re z ≤ Re p, z ∈ ∂Ω} and

δ+
Ω,p(t) = inf{|z − (p + i t)| : Re z ≥ Re p, z ∈ ∂Ω}.

Remark 4.3 In contrast to the angular extents α±
Ω,p, for any domain Ω starlike at

infinity and any p ∈ C, the functions δ±
Ω,p are continuous and non-decreasing on the

whole interval (0,+∞).

Theorem 4.4 [7, Lemma 3.6] Let Ω be a domain starlike at infinity. Then for any
p, q ∈ C, there exist constants c2 > c1 > 0 such that for all t > 0,

c1δ
−
Ω,p(t) ≤ δ−

Ω,q(t) ≤ c2δ
−
Ω,p(t) and

c1δ
+
Ω,p(t) ≤ δ+

Ω,q(t) ≤ c2δ
+
Ω,p(t).

The following result obtained in [7] establishes a strong relationship between the
slopes of the trajectories of a one-parameter semigroup at its DW-point and the limit
behaviour of the boundary distance functions of the corresponding planar domain.

Theorem 4.5 [7, Theorem 1.1] Let (ϕt ) be a non-elliptic semigroup in D with the
DW-point τ ∈ ∂D and Koenigs function h and let Ω := h(D). Fix any sequence
(tn) ⊂ (0,+∞) tending to +∞. Then:

(A) The sequence (ϕtn (z)) converges non-tangentially to τ for some (and hence
all) z ∈ D if and only if for some (and hence all) p ∈ Ω there exist constants
c2 > c1 > 0 such that for all n ∈ N,

c1δ
+
Ω,p(tn) ≤ δ−

Ω,p(tn) ≤ c2δ
+
Ω,p(tn).

(B) limn→+∞ Arg (1−τϕtn (z)) = π/2 (in particular, (ϕtn (z)) converges tangentially
to τ as n → +∞) for some (and hence all) z ∈ D if and only if for some (and
hence all) p ∈ Ω ,

lim
n→+∞

δ+
Ω,p(tn)

δ−
Ω,p(tn)

= 0,

(C) limn→+∞ Arg (1 − τϕtn (z)) = −π/2 (in particular, (ϕtn (z)) converges tangen-
tially to τ as n → +∞) for some (and hence all) z ∈ D if and only if for some
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(and hence all) p ∈ Ω ,

lim
n→+∞

δ+
Ω,p(tn)

δ−
Ω,p(tn)

= +∞.

As one might expect, for domains starlike at infinity, angular extent functions and
boundary distance functions are closely related, see “Proposition 4.6”. At the same
time, it is worthmentioning that these two characteristics are not asymptotically equiv-
alent, as demonstrated by Example 6.4 in the last section. Therefore, the information
on the geometry of the planar domain near ∞ provided by the angular extents is not
identical to that contained in the boundary distance functions.

Proposition 4.6 Let Ω be a domain starlike at infinity. Fix some p ∈ NP(Ω) and let
(t0,+∞) be the natural domain of definition of α−

p,Ω and α+
p,Ω . Then for all t > t0,

(a) δ+
Ω,p(t) ≤ 2t sin

( 1
2α

+
Ω,p(t)

)
< tα+

Ω,p(t);

(b) 1
π

tα+
Ω,p(t) ≤ t sin min{π

2 , α+
Ω,p(t)} ≤ δ+

Ω,p(2t);

(c) δ−
Ω,p(t) ≤ 2t sin

( 1
2α

−
Ω,p(t)

)
< tα−

Ω,p(t);

(d) 1
π

tα−
Ω,p(t) ≤ t sin min{π

2 , α−
Ω,p(t)} ≤ δ−

Ω,p(2t).

Proof Clearly, it is sufficient to prove (a) and (b). The proof of (c) and (d) is similar.
Without lose of generality, we assume that p = 0. Moreover, to simplify the notation,
for t > t0, we will write α+(t) := α+

Ω,0(t) and δ+(t) := δ+
Ω,0(t).

Proof of (a). By the very definition, δ+(t) ≤ t . Hence (a) holds trivially if α+(t) = π .
Therefore, we may suppose that α+(t) < π . In such a case, w0 := i te−iα+(t) ∈ ∂Ω

and we immediately get

δ+(t) ≤ ∣∣i t − w0
∣∣ = 2t sin

( 1
2α

+(t)
)
.

Proof of (b). Let β := min{π
2 , α+(t)}. Note that the arc {i te−iθ : 0 ≤ θ < β} is a

subset of Ω . Since Ω is starlike at infinity, it follows that

{z : 0 ≤ Re z < t sin β, Im z ≥ t} ⊂ Ω.

Therefore, δ+(2t) = min
{
2t, inf{|z − 2i t | : z ∈ C \ Ω, Re z ≥ 0}} ≥ t sin β. ��

5 Main Results

In this section we prove our main results, which establish relationships between the
trajectory slopes at the DW-point and the asymptotic behaviour of the angular extents
in the planar domain of the semigroup for t → +∞.

As we mentioned in the introduction, essentially the slope problem has been solved
for hyperbolic semigroups and for parabolic semigroups of positive hyperbolic step.
Therefore, we might strict our attention to parabolic semigroups of zero hyperbolic
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step. At the same time, our methods do not require this assumption. That is why we
will keep supposing only that the semigroup is non-elliptic.

We start with two corollaries of the main theorem from [7].

Proposition 5.1 Let (ϕt ) be a non-elliptic semigroup in D with DW-point τ ∈ ∂D,
Koenigs function h, and planar domain Ω := h(D). Fix some p ∈ NP(Ω). Suppose
that

lim inf
t→+∞

α−
Ω,p(t/2)

α−
Ω,p(t)

> 0 and lim inf
t→+∞

α+
Ω,p(t/2)

α+
Ω,p(t)

> 0. (5.1)

Then the following are equivalent:

(i) The trajectory t �→ ϕt (z) converges non-tangentially to τ as t → +∞ for some
(and hence all) z ∈ D.

(ii) There exist T > 0 and 0 < C1 < C2 such that for all t > T ,

C1α
+
Ω,p(t) ≤ α−

Ω,p(t) ≤ C2α
+
Ω,p(t). (5.2)

Proof Let (t0,+∞) be the natural domain of definition of α−
Ω,p and α+

Ω,p. To simplify

the notation, for t > t0, we will write α+(t) := α+
Ω,p(t) and δ+(t) := δ+

Ω,p(t).
According to (5.1), there exists a constant ε > 0 such that

α−(t/2) ≥ εα−(t) and α+(t/2) ≥ εα+(t) (5.3)

for all t > t0 large enough.
Suppose that (ii) holds. Then combining (5.2), (5.3), and Proposition 4.6, for all

t > t0 large enough we obtain

δ−(t) ≥ t
2π α−(t/2) ≥ t

2π C1α
+(t/2) ≥ t

2π C1εα
+(t) ≥ 1

2π C1εδ
+(t)

and δ−(t) < tα−(t) ≤ tC2α
+(t) ≤ tC2

1
ε
α+(t/2) ≤ C2

2π
ε

δ+(t).

Therefore, (i) holds by Theorem 4.5 (A).
Suppose now that condition (i) is satisfied. Then applying again Theorem 4.5 (A),

we see that for there exist T ≥ t0 and constants c2 > c1 > 0 such that

c1δ
+(t) ≤ δ−(t) ≤ c2δ

+(t) for all t > T .

Combining these inequalities with (5.3) and Proposition 4.6, we find that

tα−(t) > δ−(t) ≥ c1δ
+(t) ≥ c1

t
2π α+(t/2) ≥ c1

t
2π εα+(t/2)

and tα−(t) ≤ t
ε
α−(t/2) ≤ 2π

ε
δ−(t) ≤ 2π

ε
c2δ

+(t) < 2π
ε

c2tα+(t)

for all t > T . It follows that (5.2) holds with C1 := c1ε/(2π) and C2 := (2π/ε)c2.��
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Remark 5.2 Example 6.5 in the next section shows that condition (5.1) in Proposi-
tion 5.1 is essential.

Proposition 5.3 Let (ϕt ) be a non-elliptic semigroup in D with DW-point τ ∈ ∂D,
Koenigs function h, and planar domain Ω := h(D). Fix some p ∈ NP(Ω) and denote

α−
p := lim inf

t→+∞ α−
Ω,p(t) ∈ [0, π ] and α+

p := lim inf
t→+∞ α+

Ω,p(t) ∈ [0, π ].

Then the following assertions hold:

(A) If α−
p > 0 and α+

p > 0, then the trajectories t �→ ϕt (z) converge to τ non-
tangentially for all z ∈ D.

(B) If α−
p > 0 but α+

Ω,p(t) → 0 as t → +∞, then Slope[t �→ ϕt (z), τ ] = {π/2} for
every z ∈ D. In particular, the trajectories t �→ ϕt (z) converge to τ tangentially
for all z ∈ D.

(C) If α+
p > 0 but α−

Ω,p(t) → 0 as t → +∞, then Slope[t �→ ϕt (z), τ ] = {−π/2}
for every z ∈ D. In particular, the trajectories t �→ ϕt (z) converge to τ tangen-
tially for all z ∈ D.

Proof Assertion (A) is a corollary of Proposition 5.1. Indeed, using a simple observa-
tion that

0 <
α−

Ω,p(t)

2π
,

α+
Ω,p(t)

2π
≤ 1

2
,

we see that under the hypothesis of (A), for all t > 0 large enough we have

α−
Ω,p(t/2) ≥ α−

Ω,p(t)

2π
α−

p , α+
Ω,p(t/2) ≥ α+

Ω,p(t)

2π
α+

p ,

which implies (5.1), and

α−
Ω,p(t) ≥ α+

Ω,p(t)

2π
α−

p , α+
Ω,p(t) ≥ α−

Ω,p(t)

2π
α+

p ,

which implies (5.2) for suitable C2 > C1 > 0.

Proof of (B). Since α−(p) > 0, by Proposition 4.6 (d), δ−
Ω,p(t) > εt for some ε > 0

and all t > 0 large enough. On the other hand, α+
Ω,p(t) → 0 as t → +∞ and hence

by Proposition 4.6 (a), δ+
Ω,p(t)/t → 0 as t → +∞. Therefore, by Theorem 4.5 (B),

Slope[t �→ ϕt (z), τ ] = {π/2} and we are done.

The proof of (C) is analogous to that of (B). Therefore, we may omit it. ��
As we have already mentioned, even asymptotically, the angular extends α±

Ω,p are

not equivalent to the distance functions δ±
Ω,p used in [7] (see Example 6.4). In fact, we

are able to establish the following result, which seems to have no analogues in terms
of the distance functions.
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Theorem 5.4 Let (ϕt ) be a non-elliptic semigroup in D with DW-point τ ∈ ∂D and
Koenigs function h. Let Ω := h(D). If for some p ∈ NP(Ω),

α−(p) := lim
t→+∞ α−

Ω,p(t) > 0 and α+(p) := lim
t→+∞ α+

Ω,p(t) > 0,

then Slope[t �→ ϕt (z), τ ] = {ηπ
2

}
for any z ∈ D, where

η := α−(p) − α+(p)

α−(p) + α+(p)
.

In particular, every trajectory t �→ ϕt (z) converges to τ non-tangentially and with a
definite slope.

Remark 5.5 The conclusion in the above theorem, except for the non-tangential char-
acter of the trajectory convergence, remains valid when one of the limits α±(p) is
positive and the other is zero. This fact is a direct consequence of Proposition 5.3,
but it can also be established independently using a technique similar to the one we
employ in the proof of Theorem 5.4.

Remark 5.6 It is worth pointing out that according to Theorem 3.9, under the hypoth-
esis of Theorem 5.4 for any other point q ∈ NP(Ω), the following limits exist

lim
t→+∞ α−

Ω,q(t), lim
t→+∞ α+

Ω,q(t)

and they coincide with α−(p) and α+(p), respectively.

For the proof of Theorem 5.4, the following easy fact will be used:

Remark 5.7 Let (ϕt ) be a semigroup inD and τ ∈ ∂D. For a sequence (tn) ⊂ [0,+∞)

converging to +∞, the following assertions are equivalent:

(i) There exists the limit θ := lim
n→+∞Arg

(
1 − τϕtn (z)

) ∈ [−π
2 , π

2

]
.

(ii) There exists the limit m := lim
n→+∞

1 − τϕtn (z)∣∣1 − τϕtn (z)
∣∣ ∈ ∂D.

(iii) There exists the limit μ := lim
n→+∞

Im(τϕtn (z))

1 − Re(τϕtn (z))
∈ [−∞,+∞] .

Moreover, if one and hence all of the above hold, then eiθ = m and μ = − tan θ.

Proof of Theorem 5.4 Without loss of generality we will assume that τ = 1. Since
α+(p) > 0 and α−(p) > 0, we have NP(Ω) = C, see Remark 3.11. In particular,
it follows that (ϕt ) is a parabolic semigroup of zero hyperbolic step and that for any
constant c ∈ C, h + c is also a Koenigs function for (ϕt ). Therefore, bearing in mind
Remarks 3.4 and 5.6 , we may also assume that p = 0 ∈ NP0(Ω). Then the natural
domain of definition of α−

Ω,0 and α+
Ω,0 is (0,+∞). Denote

α− := lim
t→+∞ α−

Ω,0(t), α+ := lim
t→+∞ α+

Ω,0(t), and η := α− − α+

α− + α+ .
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Take z0 ∈ D such that h(z0) = i . Thanks to Abel’s equation (1.3), Theorem 1.3,
and Remark 5.7, it is sufficient to show that

lim
t→+∞

1 − h−1(i t)

|1 − h−1(i t)| = exp
(
iηπ

2

)
. (5.4)

Since 0 ∈ ∂Ω and h is univalent, the function H(z) := −1/h(z) is holomorphic
and univalent in D. Note that {i t : t > 0} ⊂ H(D), {−i t : t ≥ 0} ⊂ C \ H(D) and
H−1(w) = h−1(−1/w) for all w ∈ H(D).

Consider the Jordan arc γ : [0, 1) → D defined by γ (r) := H−1
(
i(1− r)

)
. Using

Abel’s equation (1.3), we get

lim
r→1− γ (r) = lim

t→+∞ ϕt (z0) = 1.

Hence, byLindelöf’s Theorem (see e.g. [15, Theorem9.3 on p.268]),we have H(1) :=
∠ limz→1 H(z) = 0. Therefore, in order to prove (5.4), it is enough to check that for
any sequence (an) ⊂ (0, 1) converging to 1,

lim
n→∞

1 − H−1(i xn)

|1 − H−1(i xn)| = exp
(
iηπ

2

)
, where xn := |H(an)| for all n ∈ N.

For such a sequence (an) consider the following automorphisms of D,

Tn(z) := an + z

1 + anz
, z ∈ D,

and univalent functions

Fn(z) := H(Tn(z))

xn
, z ∈ D. (5.5)

For all n ∈ N, {i t : t > 0} ⊂ Fn(D) ⊂ C \ {−i t : t ≥ 0}. Therefore, (Fn) is a
normal family in D. Since by construction |Fn(0)| = 1 for all n ∈ N, (Fn) is indeed
relatively compact in Hol(D, C). Moreover, by Hurwitz’s Theorem, any accumulation
point of (Fn) is either a constant or a univalent function in D. Let g : D → C be one
of those accumulation points, i.e. suppose that g is the limit of a some subsequence
(Fnk ). Denote gk := Fnk , k ∈ N.

Since by the hypothesis, α− > 0 and α+ > 0, there exist β1, β2 > 0 and ε > 0
such that S0(β1, β2)

⋂ {w : |w| < ε} ⊂ H(D). Therefore, z = 0 ∈ ∂ H(D) is a well-
accessible point for H . (For the definition of well-accessibility, we refer the reader to
[16, p. 251].) According to [16, Theorem 11.3 on p.251], it follows that there exist
constants M > 0 and μ > 0 such that for every 0 ≤ s ≤ ρ < 1,

|H(ρ)| = |H(ρ) − H(1)| ≤ M dist
(
H(s), ∂ H(D)

) (1 − ρ

1 − s

)μ

, (5.6)
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where dist(·, ·)denotes theEuclidean distance inC; i.e. dist(z, W ) := infw∈W |w−z|.
Since 0 ∈ ∂gk(D) for all k ∈ N, inequality (5.6) with ρ := ank and s = s(x) :=

Tnk (x) leads to

dist
(
gk(0), ∂gk(D

)
) ≤ |gk(0)| ≤ M dist

(
gk(x), ∂gk(D)

) (1 + ank x

1 − x

)μ

≤ M |gk(x)|
(
1 + ank x

1 − x

)μ

for all x ∈ [−ank , 0]. (5.7)

On the other hand, applying again (5.6) with ρ = ρ(x) := Tnk (x) and s := ank , we
have

dist
(
gk(x), ∂gk(D)

) ≤ |gk(x)| ≤ M dist
(
gk(0), ∂gk(D)

)
(

1 − x

1 + ank x

)μ

≤ M |gk(0)|
(

1 − x

1 + ank x

)μ

for all x ∈ [0, 1). (5.8)

Recall that |gk(0)| = 1 for all k ∈ N. Hence from (5.7) with x = 0, we obtain

dist
(
gk(0), ∂gk(D)

) ≤ 1 ≤ M dist
(
gk(0), ∂gk(D)

)
.

Therefore, see e.g. [8, Theorem 3.4.9],

1

M
≤ |g′

k(0)| ≤ 4 for all k ∈ N.

It follows that g cannot be constant and thus it is univalent in D. In particular, by
Proposition 2.2, this means that the sequence of domains Dk := gk(D) converges to
a non-trivial kernel D∗ w.r.t. g(0) and that g(D) = D∗.

Denote Ωr := 1
r Ω , r > 0. On the one hand, by Theorem 3.9, there exists ω ∈ C

w.r.t. which (Ωr ) converges to its kernel K
(
(Ωr ), ω

) = S0(α−, α+).
On the other hand, convergence of (Dk) to its kernel D∗ means that the sequence

(Ωrk ), rk := 1/xnk , converges to its kernel {w : − 1/w ∈ D∗} w.r.t. ω′ := −1/g(0).
Using Proposition 2.4 (C) and the definition of convergence to the kernel, we see

that K
(
(Ωrk ), ω

′) = K
(
(Ωrk ), ω

) = K
(
(Ωr ), ω

) = S0(α−, α+). It follows that

g(D) = S0(α
+, α−).

Therefore, according to the Riemann Mapping Theorem,

g(z) = i exp
(
i α+−α−

2

) (1 − U (z)

1 + U (z)

)(α−+α+)/π

, z ∈ D, (5.9)

for a suitable U ∈ Aut(D). We can determine U using (5.7) and (5.8). Indeed, passing
in these inequalities to the limit as k → +∞ and taking into account that |gk(0)| = 1
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for all k ∈ N and that lim
n→+∞ an = 1, we get

|g(x)| ≥ 1

M

(
1 − x

1 + x

)μ

for all x ∈ (−1, 0] and

|g(x)| ≤ M

(
1 − x

1 + x

)μ

for all x ∈ [0, 1).

It follows that g(x) → ∞ as x → −1+ and g(x) → 0 as x → 1−. Taking into account
that |g(0)| = 1 and using (5.9), we therefore conclude that U = idD.

We have proved that every converging subsequence of (Fn) has the same limit.
Recalling that (Fn) is a normal family in D, we may conclude that (Fn) converges
locally uniformly in D to

F(z) := i exp
(
i α+−α−

2

) (1 − z

1 + z

)(α−+α+)/π

, z ∈ D. (5.10)

Note that i ∈ Fn(D) for all n ∈ N and that i ∈ F(D). Hence by Proposition 2.2,

zn := F−1
n (i) → z0 := F−1(i) ∈ D as n → +∞.

Furthermore, by (5.5) with z := zn , for all n ∈ N, we have

1 − H−1(i xn) = 1 − Tn(zn) = (1 − an)(1 − zn)/(1 + anzn).

Therefore,

1 − H−1(i xn)

|1 − H−1(i xn)| = 1 − zn

|1 − zn|
|1 + anzn|
1 + anzn

→ 1 − z0
1 + z0

|1 + z0|
|1 − z0| as n → +∞.

Finally, according to (5.10), we have

1 − z0
1 + z0

=
(
exp
(
i α−−α+

2

))π/(α−+α+) = exp
(
iηπ

2

)
.

This completes the proof. ��
Now, we are going to apply the above results to domains starlike at infinity whose

boundary is contained in a “neighbourhood” of the boundary of a sector Sp(β1, β2).

Corollary 5.8 Let (ϕt )be a non-elliptic semigroup in D with DW-point τ ∈ ∂D, Koenigs
function h, and planar domain Ω := h(D). Let ρ : C → [0,+∞) be a continuous
function such that ρ(w)/|w| → 0 as w → ∞. Fix some p ∈ C and β1, β2 ∈ [0, π ]
with β1 + β2 > 0 and suppose that

dist
(
w, ∂Sp(β1, β2)

) ≤ ρ(w) for any w ∈ ∂Ω. (5.11)
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If β1β2 = 0, we additionally require that for all R > 0 large enough,

p + i R exp
(
i(β1 − β2)/2

) ∈ Ω, (5.12)

and if β1 = π �= β2 or β1 �= π = β2, then we additionally require that

p − i R exp
(
i(β1 − β2)/2

) ∈ C \ Ω for all R > 0 large enough. (5.13)

Then for all z ∈ D,

Slope[t �→ ϕt (z), τ ] = {ηπ
2

}
, η := β1 − β2

β1 + β2
.

Remark 5.9 Note that the additional conditions (5.12) and (5.13) in Corollary 5.8
cannot be omitted. For example, if Ω satisfies condition (5.14), then it satisfies
also (5.11)—for a suitable p ∈ C and a constant function ρ—whenever π ∈ {β1, β2}.
Condition (5.13) excludes all the cases, except for β1 = β2 = π . Another similar
example is provided by any hyperbolic one-parameter semigroup, for which the con-
clusion of Corollary 5.8 is not valid (see Remark 1.2). Since the planar domain of a
hyperbolic semigroup is contained in somevertical strip, condition (5.11)would be sat-
isfied for such a semigroup both with (β1, β2) := (0, π) and with (β1, β2) := (π, 0).
At the same time, conditions (5.12) and (5.13) fail in this case.

In the special case ρ = const and β1 = β2 = π , we recover a result of
Betsakos [3].

Corollary 5.10 ([3, Theorem 2], see also [5, Corollary 5.1 (3)])
Let (ϕt ) be a non-elliptic semigroup in D with DW-point τ ∈ ∂D and Koenigs function h
and let Ω := h(D). If there exist positive numbers a1, a2, and b such that

∂Ω ⊂ {x + iy : a1 < x < a2, y < b}, (5.14)

then for all z ∈ D,

Slope[t �→ ϕt (z), τ ] = {0} .

Assuming now that (β1, β2) �= (π, π), for ρ = const we obtain the following
statement.

Corollary 5.11 Let (ϕt ) be a non-elliptic semigroup in D with DW-point τ ∈ ∂D,
Koenigs function h, and planar domain Ω := h(D). Fix arbitrary β1, β2 ∈ [0, π ]
with 0 < β1 + β2 < 2π . If for some p ∈ C and some q ∈ Sp(β1, β2),

Sq(β1, β2) ⊂ Ω ⊂ Sp(β1, β2),

then for all z ∈ D,

Slope[t �→ ϕt (z), τ ] = {ηπ
2

}
, η := β1 − β2

β1 + β2
.

123



Angular Extents and Trajectory Slopes in the Theory of Holomorphic

Setting β1 = β2 in the above corollary, we immediately obtain the statements (1)
and (2) of [5, Corollary 5.1].

Since Corollaries 5.10 and 5.11 follow directly from Corollary 5.8, we only need to
prove the latter one. Two examples making use of Corollary 5.8 with a non-constant
function ρ can be found at the beginning of Sect. 6.

Proof of Corollary 5.8 Clearly, without loss of generality we may assume that p = 0.
Fix some θ ∈ (0, 1). Denote ζ := i exp

(
i(β1 − β2)/2

)
. The ray {Rζ : R > 0} is

the internal bisector of S0(β1, β2). Hence

AR := {teiψζ : t > R, |ψ | < θ(β1 + β2)/2
} ⊂ S0(β1, β2)

for any R > 0. Moreover, there exists ε > 0 such that

dist
(
w, ∂S0(β1, β2)

)
> ε|w| for any R > 0 and all w ∈ AR . (5.15)

Taking into account that dist
(
0, AR

) = R, we see that there exists R0 > 0 such
that ρ(w) ≤ ε|w| for all w ∈ AR0 . Thanks to (5.11) and (5.15), it follows that
AR0

⋂
∂Ω = ∅ and hence, either AR0 ⊂ Ω or AR0 ⊂ C \ Ω .

Consider the following cases.
Case 1: β1 = β2 = π . In this case, for any w ∈ C, the ray {w + i t : t ≥ 0}
intersects AR0 . Hence we may conclude that AR0 ⊂ Ω . It follows that 0 ∈ NP(Ω)

and

θπ ≤ α−
Ω,0(t), α

+
Ω,0(t) ≤ π for allt > R0.

Since θ can be chosen as close to 1 as we wish, this means that α−
Ω,0(t), α

+
Ω,0(t) → π

as t → +∞ and it remains to refer to Theorem 5.4.
From now on we will suppose that (β1, β2) �= (π, π). Arguing as above, we see

that for any θ ∈ (0, 1), there exists R1 > 0 such that BR1

⋂
∂Ω = ∅, where

BR := {− teiψζ : t > R, |ψ | < θ(2π − β1 − β2)/2
}
.

Case 2: β1, β2 ∈ (0, π). If θ is sufficiently close to 1, then for any w ∈ C,

{w + i t : t ≥ 0} ⋂ AR0 �= ∅ and {w + i t : t ≤ 0} ⋂ BR1 �= ∅.

It follows that AR0 ⊂ Ω and BR1 ⊂ C \ Ω . Therefore, 0 ∈ NP(Ω) and for every
t > max{R0, R1} we have

β1 − (1 − θ)
β1 + β2

2
≤ α−

Ω,0(t) ≤ β1 + (1 − θ)
2π − β1 − β2

2

and β2 − (1 − θ)
β1 + β2

2
≤ α+

Ω,0(t) ≤ β2 + (1 − θ)
2π − β1 − β2

2
.

Again, in this case, the conclusion of the corollary follows from Theorem 5.4.
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Case 3: 0 < β1 < π , β2 = π . As in the previous case, we see that AR0 ⊂ Ω . Thanks
to (5.13), we also have BR1 ⊂ C \ Ω . The rest of the proof is the same as in Case 2.

Case 4: β1 = 0, 0 < β2 < π . As in Case 2, we see that BR1 ⊂ C \ Ω . Moreover,
condition (5.12) allows us to conclude that AR0 ⊂ Ω . SinceΩ is starlike at infinity, the
latter inclusion implies that there exists q ∈ Ω such that Sq(0, θβ2) ⊂ Ω . It follows
that

lim inf
t→+∞ αΩ,q(t) ≥ β2 > 0.

Moreover, since θ can be chosen arbitrarily close to 1, the inclusion BR1 ⊂ C \ Ω

implies that α−
Ω,q(t) → 0 as t → +∞. Therefore, by Proposition 5.3 (C), Slope[t �→

ϕt (z), τ ] = {−π/2}.
Case 5: β1 = 0, β2 = π . Conditions (5.12) and (5.13) allows us to conclude that
AR0 ⊂ Ω and BR1 ⊂ C \ Ω . As in the previous case, using the fact that Ω is starlike
at infinity, we see that there exists q ∈ Ω such that Sq(0, θπ) ⊂ Ω . The rest of the
proof is literally the same as in Case 4.

We omit the remaining three cases: β1 = π and 0 < β2 < π ; 0 < β1 < π and
β2 = 0; β1 = π and β2 = 0, because they are analogous to Cases 3, 4, and 5, respec-
tively. ��

Denote byS the set of all sequences (tn) ⊂ (0,+∞) tending to+∞ and such that

sup
n∈N

|tn+1 − tn| < +∞.

Definition 5.12 Let Ω be a domain starlike at infinity, p ∈ C and α, β ∈ [0, π ] with
α + β > 0. We say that Ω meets Sp(α, β) on the left (resp. on the right) at uniform
times if there exists a sequence (tn) ∈ S such that

{p + i tneiα : n ∈ N} ⊂ ∂Ω (resp. {p + i tne−iβ : n ∈ N} ⊂ ∂Ω). (5.16)

Corollary 5.13 Let (ϕt ) be a non-elliptic semigroup in D with DW-point τ ∈ ∂D,
Koenigs function h, and planar Ω := h(D). Let p ∈ C. The following statements
hold.

(A) Assume there exist β1, β2 ∈ (0, π) such that Sp(β1, β2) ⊂ Ω and Ω meets
Sp(β1, β2) on the right and on the left at uniform times. Then

Slope[t �→ ϕt (z), τ ] = {ηπ
2

}
, η := β1 − β2

β1 + β2
, for all z ∈ D.

(B) Assume there exists β ∈ (0, π) such that Sp(π, β) ⊂ Ω, and Ω meets Sp(π, β)

on the right at uniform times. Then for all z ∈ D,

Slope[t �→ ϕt (z), τ ] = {ηπ
2

}
, η := π − β

π + β
.
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(C) Assume there exists β ∈ (0, π) such that Sp(β, π) ⊂ Ω, and Ω meets Sp(π, β)

on the left at uniform times. Then for all z ∈ D,

Slope[t �→ ϕt (z), τ ] = {ηπ
2

}
, η := β − π

β + π
.

Proof The hypothesis of (A) implies that p ∈ NP(Ω) and that

α−
p,Ω(t ′n) = β1 and α+

p,Ω(t ′′n ) = β2, n ∈ N,

for some sequences (t ′n), (t ′′n ) ∈ S. Note that t ′n+1/t ′n, t ′′n+1/t ′′n → 1 as n → +∞.
Therefore, by Theorem 3.9, α−

Ω,p(t) → β1 and α+
Ω,p(t) → β2 as t → +∞. Thus, the

desired conclusion holds by Theorem 5.4.
Proof of (B) Since Sp(π, β) ⊂ Ω , we have p ∈ NP(Ω) and α−

Ω,p(t) = π for all t > 0.

Moreover, since Ω meets Sp(π, β) on the right at uniform times, α−
Ω,p(tn) = β for a

suitable sequence (tn) ∈ S. Therefore, as above, the desired conclusion follows from
Theorems 3.9 and 5.4 .

Proof of (C) is omitted because it is similar to that of assertion (B). ��

6 Examples

We start this section with a few simple examples illustrating Corollary 5.8. Recall
that any domain Ω starlike at infinity and different from C defines a non-elliptic one-
parameter semigroup (Remark 1.6). Moreover, this semigroup is parabolic and of zero
hyperbolic step if and only if NP(Ω) = C.

Example 6.1 Let f : R → R be a continuous function such that the limits

κ1 := lim
x→−∞

f (x)

|x | , κ2 := lim
x→+∞

f (x)

x

exist and they are finite. Then for the parabolic one-parameter semigroup (ϕt ) with
zero hyperbolic step whose planar domain is Ω := {x + iy : y > f (x)} we have

Slope[t �→ ϕt (z), τ ] = {ηπ
2

}
, η := arctan k1 − arctan k2

arctan k1 + arctan k2
,

for any z ∈ D. Indeed, the hypothesis of Corollary 5.8 is satisfied in this case with
p := 0, β j := arctan κ j , j = 1, 2, and

ρ(x + iy) :=
{

| f (x) − κ1x | if x < 0,

| f (x) − κ2x | if x ≥ 0.
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Example 6.2 Corollary 5.8 can be applied for a one-parameter semigroup with planar
domain Ω := {x + iy : y > x3} if we set ρ(w) := |w|1/3 and p := 0. This example
illustrates the role of conditions (5.12) and (5.13): in this case, (5.11) is satisfied
both with (β1, β2) := (π, 0) and with (β1, β2) := (0, π); however, conditions (5.12)
and (5.13) exclude the latter possibility.

Example 6.3 Let (t ′n), (t ′′n ) ∈ S, see page 23. Fix some β1, β2 ∈ (0, π) and let

E1 :=
⋃

n∈N
{i t ′neiβ1 + iy : y ≤ 0}, E2 :=

⋃

n∈N
{i t ′′n e−iβ2 + iy : y ≤ 0}.

Then by Corollary 5.13, Ω1 := C \ E1, Ω2 := C \ E2, and Ω3 := C \ (E1
⋃

E2
)

are the planar domains of parabolic one-parameter semigroups (ϕk
t ), k = 1, 2, 3,

respectively, with

Slope[t �→ ϕk
t (z), τ ] = {ηk

π
2

}
for all z ∈ D,

where

η1 := β1 − π

β1 + π
, η2 := π − β2

π + β2
, η3 := β1 − β2

β1 + β2
.

The next two examples illustrate the difference between the distance functions δ±
Ω,p

and the angular extents α±
Ω,p as characteristics of the geometry of a domain starlike

at infinity Ω � C near the point ∞.

Example 6.4 There exists a domain Ω starlike at infinity and a point p ∈ NP(Ω) such
that the functions t �→ δ+

Ω,p(t) and t �→ tα+
Ω,p(t) are not asymptotically equivalent

as t → +∞.

Proof For n ∈ N we set tn := n!, γ := √
2/2, yn :=

√
t2n+1 − t2n γ 2,

Γ0 := {w ∈ C : Rew = 0, Imw ≤ 0},
and Γn := {w ∈ C : Rew = tnγ, Imw ≤ yn − 1}.

Consider the domain

Ω := C
∖ ∞⋃

n=0

Γn . (6.1)

Notice that for each n ∈ N, the point tnγ + iyn lies on the semicircle

Cn+1 := {w : |w| = tn+1, Imw ≥ 0}.
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It follows that the slits Γm with m ≤ n do not intersect Cn+1. Moreover, tkγ > tn+1
for any k > n + 1. Therefore, the slits Γk with k > n + 1 do not intersect Cn+1 either.
On the other hand,

yn+1 − 1 = tn+1

√
(n + 2)2 − γ 2 − 1 > tn+1 for all n ∈ N. (6.2)

It follows that Cn+1 intersect Γn+1 at the point tn+1(γ + i
√
1 − γ 2) = tn+1eiπ/4.

Thus

α+
Ω,0(tn+1) = π/4 for all n ∈ N. (6.3)

On the other hand, by the very definition,

δ+
Ω,0(tn+1) ≤ |i tn+1 − tnγ − i(yn − 1)|.

Using the triangle inequality, we obtain

|i tn+1 − tnγ − i(yn − 1)| ≤ |i tn+1 − tnγ − iyn| + 1 = √2tn+1(tn+1 − yn) + 1

for any n ∈ N. Furthermore,

θn := tn+1 − yn

tn+1
· 4(n + 1)2 =

(

1 −
√

1 − 1

2(n + 1)2

)

· 4(n + 1)2 → 1

as n → +∞. Hence,

δ+
Ω,0(tn+1) ≤ |i tn+1 − tnγ − i(yn − 1)| ≤ √

θn
tn+1√
2(n + 1)

+ 1.

Thus, taking into account (6.3), we have

lim
n→+∞

δ+
Ω,0(tn+1)

tn+1α
+
Ω,0(tn+1)

= 0.

In particular, δ+
Ω,0 and t �→ tα+

Ω,0(t) are not asymptotically equivalent at +∞. ��
The next example shows that it is not possible to get a result similar to Theorem 4.5

using the functions α±
Ω,p instead of δ±

Ω,p.

Example 6.5 There exists a parabolic semigroup (ϕt ) in D of zero hyperbolic step
with the associated planar domain Ω and a sequence (tn) ⊂ (0,+∞) tending to +∞
such that (ϕtn (z)) converges to the DW-point of the semigroup non-tangentially, but
α−

Ω,0(tn) and α+
Ω,0(tn) are not asymptotically equivalent.
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Proof For n ∈ N, we denote tn := n!, αn := arcsin(1/n) ∈ (0, π/2], and

yn :=
√

t2n+1 − (tn sin αn)2.

Furthermore, for each n ∈ N, let

Γn := {w ∈ C : Rew = tn sin αn, Imw ≤ yn − 1},
Λn := {w ∈ C : Rew = −tn sin αn, Imw ≤ yn},
Γ := {w ∈ C : Rew = 0, Imw ≤ 0}.

(6.4)

Consider the domain

Ω := C

∖(
Γ ∪

+∞⋃

n=2

(Γn ∪ Λn)
)

(6.5)

sketched in Fig. 1. Clearly Ω is starlike at infinity. Fix any conformal map h of D

onto Ω and consider the semigroup (ϕt ) defined by ϕt := h−1 ◦ (h + i t) for all t ≥ 0.
To simplify the notationwewrite δ±(t) := δ±

Ω,0(t) and α±(t) := α±
Ω,0(t) for all t > 0.

Let us show that (ϕtn (z)) converges non-tangentially to the DW-point of the semi-
group (ϕt ). Bearing in mind Theorem 4.5, we have to prove that δ+(tn) behaves
asymptotically like δ−(tn) as n → +∞.

Fix for a while some n ≥ 2 and κ ∈ {0, 1}. For m ∈ {1, . . . , n} denote cm :=
i tn+1 − wm , where wm := (−1)1−κ tm sin αm + iym − iκ is the tip of the slit Λm

if κ = 0 or that of Γm if κ = 1. Using the inequality
√

x > x valid for all x ∈ (0, 1)
and taking into account that ym < tm+1, we see that

ym+1 − ym > ym+1 − tm+1 > (m + 1) (m + 1)! − (m + 1)! = m(m + 1)!
(6.6)

for all m ∈ N. Hence if 1 ≤ m < n, then

(Im cm)2 − (Im cm+1)
2 = (ym+1 − ym)

(
2tn+1 − ym − ym+1 + 2κ

)

> m(m + 1)! · (2tn+1 − tm+1 − tm+2
)

≥ m(m + 1)! · ((n + 1)! − n!) = mn(m + 1)! n!,

from which it follows that

|cm |2 − |cm+1|2 > mn(m + 1)! n! − (
(m!)2 − ((m − 1)!)2)

= mn(m + 1)! n! − (m2 − 1)((m − 1)!)2 ≥ 0
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Fig. 1 The planar domain of the semigroup in Example 6.5

whenever 1 ≤ m < n. Therefore, for all such m, we have |cm | > |cn| and
|cn|2 = (tn+1 − yn + κ)2 + (tn sin αn)2

=
(

tn+1 − tn+1

√
1 − ( tn

tn+1
sin αn

)2 + κ
)2 + (tn sin αn)2

<
(
(n − 1)!)2

(
1

n(n+1) + 1
(n−1)!

)2 + ((n − 1)!)2

< 3
(
(n − 1)!)2 < (tn+1 sin αn+1)

2 < t2n+1,
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where we again used the fact that
√

x > x if 0 < x < 1. With κ := 1 it follows that

δ+(tn+1)
2 = |i tn+1 − (tn sin αn + iyn − i)|2 = (tn+1 − yn + 1)2 + (tn sin αn)2

= 2t2n+1 − 2tn+1yn + 2tn+1 − 2yn + 1 for any n ≥ 2, (6.7)

and with κ := 0 we get

δ−(tn+1)
2 = |i tn+1 − (−tn sin αn + iyn)|2 = (tn+1 − yn)2 + (tn sin αn)2

= 2t2n+1 − 2tn+1yn for any n ≥ 2. (6.8)

Note that

tn+1 − yn ≥ tn+1 − tn+1

(
1 − (tn sin αn)2

2t2n+1

)
= (n − 1)!

2n(n + 1)
, (6.9)

where we used the inequality
√
1 + x ≤ 1 + x/2 for all x ≥ −1. Combining (6.7),

(6.8), and (6.9), we see that

δ+(tn+1)
2

δ−(tn+1)2
= 1 + 1

tn+1
+ 1

2tn+1(tn+1 − yn)
→ 1 as n → +∞.

Therefore, on the one hand by Theorem 4.5, the sequence (ϕtn (z)) converges to
the DW-point non-tangentially. On the other hand, by (6.6), y1 < y2 < . . . < yn and
tn+1 < yn+1 − 1. Hence, by the construction,

tn+1 sin α+(tn+1) = tn+1 sin αn+1 and tn+1 sin α−(tn+1) = tn sin αn

for all n ≥ 2. Therefore,

sin α−(tn+1)

sin α+(tn+1)
= tn sin αn

tn+1 sin αn+1
= 1

n
.

In particular, α−(tn+1)/α
+(tn+1) → 0 as n → +∞. ��
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