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Abstract

In this paper we study Butson Hadamard matrices, and codes over
finite rings coming from these matrices in logarithmic form, called
BH-codes. We introduce a new morphism of Butson Hadamard ma-
trices through a generalized Gray map on the matrices in logarithmic
form, which is comparable to the morphism given in a recent note of
Ó Catháin and Swartz. That is, we show how, if given a Butson Ha-
damard matrix over the kth roots of unity, we can construct a larger
Butson matrix over the ℓth roots of unity for any ℓ dividing k, provided
that any prime p dividing k also divides ℓ.

We prove that a Zps-additive code with p a prime number is isomor-
phic as a group to a BH-code over Zps and the image of this BH-code
under the Gray map is a BH-code over Zp (binary Hadamard code for
p = 2). Further, we investigate the inherent propelinear structure of
these codes (and their images) when the Butson matrix is cocyclic.
Some structural properties of these codes are studied and examples
are provided.

Keywords: Cocycles, Butson Hadamard matrices, Gray map, prope-
linear codes.

Mathematics Subject Classification (2010): 05B20, 05E18, 94B60.
∗E-mail:armario@us.es
†E-mail:ivan.bailera@uab.cat
‡E-mail:ronan.egan@nuigalway.ie

1

http://arxiv.org/abs/2010.06206v2
E-mail: armario@us.es
E-mail: ivan.bailera@uab.cat
E-mail: ronan.egan@nuigalway.ie


1 Introduction

Let n and k be positive integers, and ζk = exp (2π
√
−1/k) be the complex

kth root of unity. We write 〈ζk〉 = {ζjk}0≤j≤k−1. Let Zk be the ring of integers
modulo k with k > 1, and denote by Z

n
k the set of n-tuples over Zk. We use

bold notation x = [x1, . . . , xn] ∈ Znk to denote vectors (or codewords) in Znk .
We denote the set of n× n matrices with entries in a set X by Mn(X).

1.1 Butson Hadamard matrices

A Butson Hadamard (or simply Butson) matrix of order n and phase k is a
matrix H ∈ Mn(〈ζk〉) such that HH∗ = nIn, where In denotes the identity
matrix of order n and H∗ denotes the conjugate transpose of H . We write
BH(n, k) for the set of such matrices. The simplest examples of Butson ma-
trices are the Fourier matrices Fn = [ζ

(i−1)(j−1)
n ]ni,j=1 ∈ BH(n, n). Hadamard

matrices of order n, as they are usually defined, are the elements of BH(n, 2).
The phase and orthogonality of a BH(n, k) is preserved by multiplication on
the left or right by a n× n monomial matrix with non-zero entries in the kth

roots of unity. For any pair of such monomial matrices (P,Q) the operation
defined by H(P,Q) = PHQ∗ = H ′ is an equivalence operation, and H and
H ′ are said to be equivalent. If H = H ′, then (P,Q) is an automorphism of
H .

A Butson matrix H ∈ BH(n, k) is conveniently represented in logarithmic
form, that is, the matrix H = [ζ

ϕi,j

k ]ni,j=1 is represented by the matrix L(H) =
[ϕi,j mod k]ni,j=1 with the convention that Li,j ∈ Zk for all i, j ∈ {1, . . . , n}.

Example 1.1. he following is a BH(4, 8) matrix H , display in logarithmic
form

L(H) =









0 0 0 0
0 2 4 6
0 4 0 4
0 6 4 2









Observe that the matrix above is in dephased form, that is, its first row
and column are all 0. Every matrix can be dephased by using equivalence
operations. Throughout this paper all matrices are assumed to be dephased.

Example 1.2. Let p be a prime number. If L(D) = [xyT ]x,y∈Zn
p

then D is a
BH(pn, p). In fact D is the n-fold Kronecker product of the Fourier matrix
of order p. When p = 2 this is the well known Sylvester Hadamard matrix
of order 2n.
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Butson matrices have been subject to a considerable increase in interest
recently for a variety of reasons. For one, a BH(n, k) exists for all n, (the
Fourier matrix for example), but real Hadamard matrices, i.e., BH(n, 2), ex-
ist when n > 2 only if n ≡ 0 mod 4, and this condition is famously not
yet known to be sufficient. A Butson morphism [8] is a map BH(n, k) →
BH(m, ℓ). This motives the study of Butson matrices even if real Hadamard
matrices are the primary interest. In Section 2.2 we construct a morphism
BH(n, k) → BH(nm, k/m) where k = pe11 · · · pett and m = pe1−1

1 · · · pet−1
t ,

matching the parameters of the morphism discovered by Ó Catháin and
Swartz in [18]. But their applications in applied sciences most strongly mo-
tivate their study. A BH(n, k) scaled by a factor of 1/

√
n is an orthonormal

basis of Cn. In any set of mutually unbiased bases (MUBs) which includes the
standard basis, all other bases are necessarily of this form. MUBs have im-
portant applications in quantum physics, such as yielding optimal schemes of
orthogonal quantum measurement (see e.g., [2]). Butson matrices also have
applications in coding theory, as we discuss next.

1.2 BH-codes and propelinear codes

Interest in studying codes over finite rings increased significantly after it was
proved in [11] that certain notorious non-linear binary codes (such as the
Preparata codes or the Kerdock codes), which had some of the properties of
linear codes were, in fact, the images of codes over Z4 under a non-linear map
(the Gray map). Codes constructed from Butson matrices [10, 17, 19, 21]
are a particular type of codes over a finite ring. A code over Zk (or Zk-
code) of length n is a nonempty subset C of Znk . The elements of C are
called codewords. The Hamming weight of a vector x ∈ Zk, denoted by
wtH(x), is the number of nonzero coordinates of x. The Hamming distance
between two vectors x,y ∈ Z

n
k , denoted by dH(x,y) = wtH(x− y), is the

number of coordinates in which they differ. Given a minimum Hamming
distance d = minx,y∈C,x 6=y dH(x,y) for a code C of length n, we say C is
a (n, |C|, d) code. Other distances functions are used, for instance, the Lee
distance between two vectors x,y ∈ Znk is dL(x,y) = wtL(x− y) where the
Lee weight of a vector z = [z1, . . . , zn] ∈ Znk is wtL(z) =

∑n
i=1wtL(zi) with

wtL(zi) = min{zi, k − zi}.
Given H ∈ BH(n, k), we denote by FH the Zk-code of length n consisting

of the rows of L(H), and by CH the Zk-code defined as CH = ∪α∈Zk
(FH+α1)

where 1 denotes the all-one vector (and α1 the all-α vector). We will write
1n to denote the all-one vector of length n when clarification is required. The
code CH over Zk is called a Butson Hadamard code (briefly, BH-code).
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Example 1.3. Given H ∈ BH(4, 8) of Example 1.1. Then

FH = {[0, 0, 0, 0], [0, 2, 4, 6], [0, 4, 0, 4], [0, 6, 4, 2]},

CH =















































[0, 0, 0, 0], [0, 2, 4, 6], [0, 4, 0, 4], [0, 6, 4, 2],
[1, 1, 1, 1], [1, 3, 5, 7], [1, 5, 1, 5], [1, 7, 5, 3],
[2, 2, 2, 2], [2, 4, 6, 0], [2, 6, 2, 6], [2, 0, 6, 4],
[3, 3, 3, 3], [3, 5, 7, 1], [3, 7, 3, 7], [3, 1, 7, 5],
[4, 4, 4, 4], [4, 6, 0, 2], [4, 0, 4, 0], [4, 2, 0, 6],
[5, 5, 5, 5], [5, 7, 1, 3], [5, 1, 5, 1], [5, 3, 1, 7],
[6, 6, 6, 6], [6, 0, 2, 4], [6, 2, 6, 2], [6, 4, 2, 0],
[7, 7, 7, 7], [7, 1, 3, 5], [7, 3, 7, 3], [7, 5, 3, 1]















































.

Assuming the Hamming metric, any isometry of Znk is given by a coor-
dinate permutation π and n permutations σ1, . . . , σn of Zk. We denote by
Aut(Znk) the group of all isometries of Znk :

Aut(Znk) = {(σ, π) : σ = (σ1, . . . , σn)with σi ∈ SymZk, π ∈ Sn}

where SymZk and Sn denote, respectively, the symmetric group of permuta-
tions on Zk and on the set {1, . . . , n}. The action of (σ, π) is defined as

(σ, π)(v) = σ(π(v)) for any v ∈ Z
n
k ,

and the group operation in Aut(Zk) is the composition

(σ, π) ◦ (σ′, π′) = ((σ1 ◦ σ′
π−1(1), . . . , σn ◦ σ′

π−1(n)), π ◦ π′)

for all (σ, π), (σ′, π′) ∈ Aut(Zk).

Definition 1.4. A code C of length n over Zk has a propelinear structure if
for any codeword x ∈ C there exist πx ∈ Sn and σx = (σx,1, . . . , σx,n) with
σx,i ∈ SymZk satisfying:

(i) (σx, πx)(C) = C and (σx, πx)(0) = x,

(ii) if y ∈ C and z = (σx, πx)(y), then (σz, πz) = (σx, πx) ◦ (σy, πy).

The propelinear structure was introduced in [22] for binary codes, and it
was generalized in [3] for q-ary codes.

For a code C ⊆ Znk , we denote by Aut(C) the group of all isometries
of Znk fixing the code C and we call it the automorphism group of the code
C. A code C over Zk is called transitive if Aut(C) acts transitively on its
codewords, i.e., the code satisfies the property (i) of the above definition.
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Assuming that C has a propelinear structure then a binary operation ⋆
can be defined as

x ⋆ y = (σx, πx)(y) for any x,y ∈ C.

Therefore, (C, ⋆) is a group, which is not abelian in general. This group
structure is compatible with the Hamming distance, that is, dH(x ⋆ u,x ⋆
v) = dH(u,v) where u,v ∈ Znk . The vector 0 is always a codeword where
π0 = Idn is the identity coordinate permutation and σ0,i = Idk is the identity
permutation on Zk for all i ∈ {1, . . . , n}. Hence, 0 is the identity element in
C and πx−1 = π−1

x and σx−1,i = σ−1
x,πx(i)

for all x ∈ C and for all i ∈ {1, . . . , n}.
We call (C, ⋆) a propelinear code. Henceforth we use C instead of (C, ⋆) if
there is no confusion.

Definition 1.5. A full propelinear code is a propelinear code C such that for
every a ∈ C, σa(x) = a+x and πa has not any fixed coordinate when a 6= α1
for α ∈ Zk. Otherwise, πa = Idn.

Remark 1.6. Every linear code is propelinear but not necessarily full.

A Butson Hadamard code, which is also full propelinear, is called a Butson
Hadamard full propelinear code (briefly, BHFP-code). In the binary case, we
have the Hadamard full propelinear codes, they were introduced in [23] and
their equivalence with Hadamard groups was proven. In the q-ary case,
i.e., codes over the finite field Fq where q is a prime power, the generalized
Hadamard full propelinear codes were introduced in [1]. Their existence is
shown to be equivalent to the existence of central relative (n, q, n, n/q).

Propelinear codes are a topic of increasing interest in algebraic coding the-
ory. The primary reason for this is that they offer one of the main benefits of
linear codes, which is that they can be entirely described by a few generating
codewords and group relations. However as the codes are not necessarily
linear, they are not subject to all of the same minimum distance constraints
as linear codes with the same number of codewords. Some propelinear codes
may outperform comparable linear codes by having a larger minimum dis-
tance that any linear code of the same size, or by having more codewords
than any linear code with a given minimum distance [1, 11]. In this paper we
extend the work of the authors in [1] and describe the connection between
cocyclic Butson Hadamard matrices and BHFP-codes.
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2 Constructing Butson Hadamard matrices and

related codes

Throughout this paper we study BH-codes over Zk. We have already intro-
duced the Lee and Hamming distance between vectors x and y. We define
other useful distance functions here. Initially, let k = ps for a prime p. The
weight function wt∗(x) with x ∈ Zps is defined by

wt∗(x) =







(p− 1)ps−2 x 6= kps−1 mod ps, k ∈ Zp

ps−1 x = kps−1 mod ps, k ∈ Zp \ {0}
0 x = 0 mod ps

For p = s = 2, this is the Lee weight. The corresponding distance d∗ on
Znps is defined as follows:

d∗(x,y) =

n
∑

i=1

wt∗(yi − xi), (1)

where x = [x1, . . . , xn] and y = [y1, . . . , yn] in Znps . More generally, let
k = mps for m coprime to p. Any x ∈ Zk may be written uniquely in
the form x = aps + bm mod k where 0 ≤ a ≤ m − 1 and 0 ≤ b ≤ ps − 1.
Define the weight function wt†(x) on Zk by

wt†(x) =

{

wt∗(b) a = 0
ps−1 a 6= 0.

The definition of the weight function here is consistent with the homo-
geneous metric introduced in [5]. The corresponding distance d† on Z

n
mps is

defined as follows:

d†(x,y) =
n

∑

i=1

wt†(yi − xi), (2)

where x = [x1, . . . , xn] and y = [y1, . . . , yn] in Znmps .
Given H ∈ BH(n, k), recall that FH is the Zk-code of length n consisting

of the rows of L(H), and CH = ∪α∈Zk
(FH + α1). Let riH(l) be the number

of repetitions of l ∈ Zk in the i-th row of L(H) and rH(l) = max
2≤i≤n

riH(l).

For k = ps, Lemma 3.1 of [16] gives a pattern that any row of L(H)
has to follow. That is, any row x has to be a permutation of the vector
(u, r11 + u, . . . , rt−11 + u) where u = [0, ps−1, 2ps−1, . . . , , (p − 1)ps−1], ri ∈
Zps−1 , for 1 ≤ i ≤ t− 1 with t = n

p
. Therefore,

rH(l) ≤
{ n

p
l = hps−1 where h ∈ Zp

n
p
− 1 Otherwise.
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As a consequence, n − n
p

is an upper bound for the minimum Hamming
distance of FH when k = ps. Furthermore, the minimum Hamming distance
of both codes, FH and CH , is the same in this case.

In [19, 21], the authors prove that if n = psm and k = ps then the
minimum Hamming distance of FH is n− n

p
and the minimum Lee distance

is given by

dL =

{

2m+s−2, p = 2
ps(m+1)−2

4
(p2 − 1), p > 2 prime;

where H is the Butson matrix of Theorem 2.3 and m = t1− 1 for t1 > 0 and
t2 = . . . = ts = 0.

Finally, Theorem 5.4 of [10] claims that for any pair (n, k) such that
BH(n, k) 6= ∅, if H ∈ BH(n, k) then the code obtained by deleting the first
coordinate in FH has parameters (n − 1, n, γn) meeting the Plotkin bound
over Frobenius rings where γ is the average homogeneous weight over Zk.

2.1 A Fourier type construction and simplex codes

In what follows, we describe a method to construct Butson matrices of or-
der n = pst1+(s−1)t2+...+ts−s and phase k = ps, where p is a prime. Let s
be a positive integer, t1, t2, . . . , ts be nonnegative integers with t1 ≥ 1, and
A1,0,...,0 = [0]. The matrix At1,t2,...,ts , where pi−1 denotes the all-pi−1 vector,
is defined recursively according to the following algorithm, where initially,
(t′1, t

′
2, . . . , t

′
s) = (1, 0, . . . , 0).

for i=1 until s do

while t′i < ti do

A← At
′

1,...,t
′

s

t′i ← t′i + 1

At
′

1,...,t
′

s ← Ai =

[

A A . . . A
0 · pi−1 1 · pi−1 . . . (ps−i+1 − 1) · pi−1

]

end while

end for

By construction, it is clear that At1,t2,...,ts is a (t1 + t2 + . . . + ts) ×
(pst1+(s−1)t2+...+ts−s) matrix. This is a generalization of the construction of
[19] as we will point out in Corollary 2.8.

Example 2.1. For p = 2 and s = 3. We have A1,1,0 =

[

0 0 0 0
0 2 4 6

]

and
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A1,1,1 =





0 0 0 0 0 0 0 0
0 2 4 6 0 2 4 6
0 0 0 0 4 4 4 4



 .

Given x ∈ Znk , the order of x is the smallest positive integer m such that
mx = 0 over Zk.

Lemma 2.2. Let k = ps and ui = [ 0 · pi−1, 1 · pi−1, . . . , (ps−i+1 − 1) · pi−1 ] ∈
Z
ps−i+1

ps where 1 ≤ i ≤ s. Then

•
ps−i+1−1
∑

j=0

ζjp
i−1

k = 0, for all 1 ≤ i ≤ s.

• The order of ui is ps−i+1.

• If gcd(m, ps−i+1) = 1 then [mui]j = [ui]π(j) where π ∈ Sps−i+1.

• If gcd(m, ps−i+1) = pl then [mui]j = [m
pl
ui+l]π(j mod ps−(i+l)+1) where π ∈

Sps−(i+l)+1.

Proof. It is a straightforward comprobation.

Theorem 2.3. Let n = pst1+(s−1)t2+...+ts−s and L(H) be the n × n matrix
whose rows are the n possible linear combinations (with coefficients in Zps)
of the rows of At1,t2,...,ts. Then, H ∈ BH(n, ps).

Proof. By construction, the difference between two distinct rows of L(H) is a
linear combination (with coefficients in Zps) of the rows of At1,t2,...,ts . Hence,
it is a row of L(H).

Therefore, proving HH∗ = nIn reduces to proving that every row sum of
H is 0. For the rows of H corresponding to multiples of the rows of At1,t2,...,ts,
this holds as a consequence of Lemma 2.2. Finally, the proof for the rows
of H corresponding to a linear combination of the rows of At1,t2,...,ts is by a
simple induction.

We provide some examples of Butson matrices coming from Theorem 2.3.

Example 2.4. Let p = 2 and s = 3. For t1 = 1, t2 = 1, t3 = 0 then
L(H) is the matrix given in Example 1.1. For t1 = 1, t2 = 1, t3 = 1 then
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H ∈ BH(8, 8) where

L(H) =

























0 0 0 0 0 0 0 0
0 2 4 6 0 2 4 6
0 4 0 4 0 4 0 4
0 6 4 2 0 6 4 2
0 0 0 0 4 4 4 4
0 2 4 6 4 6 0 2
0 4 0 4 4 0 4 0
0 6 4 2 4 2 0 6

























Remark 2.5. Let L(H) be the matrix of Example 2.4 for t1 = 1, t2 = 1, t3 =
1. Then L(H) = L(F2 ⊗F4) where we have used that F2 ⊗F4 ∈ BH(8, 8) by
means of ζ2 = ζ48 and ζ4 = ζ28 .

In general we have the following.

Proposition 2.6. Let n = pst1+(s−1)t2+...+ts−s and L(H) be the n× n matrix
of Theorem 2.3. Then, H is equivalent to

(Fp)
ts ⊗ (Fp2)

ts−1 ⊗ . . . ⊗ (Fps−1)t2 ⊗ (Fps)
t1−1

where Fps−j denotes the Fourier matrix of order ps−j embedded in BH(ps−j, ps)

using that ζps−j = ζp
j

ps , and (M)r denotes the r-fold Kronecker product of the
matrix M .

Proof. The proof is by induction. The case t1, t2, . . . , ts = 1, 0, . . . , 0 is
trivial, so consider the case t1 = 2 and t2 = . . . = ts = 0. It is clear

that L(H) = L(Fps) since A2,0...,0 =

[

0 0 · · · 0
0 1 · · · ps − 1

]

. For the next

step of the induction, we assume that ti+1 = . . . = ts = 0 and L(H) =
L((Fps−(i−1))t

′

i ⊗ (Fps−(i−1))ti−1 ⊗ . . . ⊗ (Fps−1)t2 ⊗ (Fps)
t1−1). Now, we have

to distinguish two possibilities:

• t′i < ti; then let t′i ← t′i + 1 and ti+1 = . . . = ts = 0. All the possible
linear combinations of the rows of At1,...,ti−1,t′i+1,0...,0 are the rows of
B = L(Fps−(i−1) ⊗H).

• t′i = ti; then take ti+1 = 1 with ti+2 = . . . = ts = 0. Proceeding in a
similar way, the result holds.

It is clear now that this construction is not new, in the sense that it
does not produce any Butson matrices not already known. However this
perspective gives us new insights into the related BH-codes.
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Remark 2.7. For t1 6= 0, t2 = . . . = ts = 0 and p = 2, the code generated
with the rows of At1,0,...,0 is a Zps-simplex code of type α (see [19, Definition
4.1]). Furthermore, this code is self-orthogonal if s = 2.

Corollary 2.8. A simplex code of type α over Z2s of length 2sm (see [19]) and
the code whose codewords are the rows of L((F2s)

m) are the same. Therefore
Mψ, the cocyclic BH(2sm, 2s) of [19, Theorem 5.1, ii)] is equivalent to (F2s)

m.
Similarly, when p > 2 prime, the analogous classifying result for the cocyclic
BH(psm, ps) of [21, Proposition 3.1, ii)] holds.

Proof. Attending to the Remark above, a simplex code of type α over Z2s

of length n = 2st1 is exactly the code FH where H is the n × n matrix of
Theorem 2.3. Applying Proposition 2.6, the results follows.

The classifying result above follows also as a consequence of [17, Theorem
13].

A nonempty subset C of Znps is a Zps-additive code if it is a subgroup of
Znps (i.e., a Zps-module). Clearly, given a Zps-additive code, C, of length n
there exist some non negative integers t1, . . . , ts such that C is isomorphic (as
an abelian group) to Z

t1
ps × Z

t2
ps−1 × . . . × Ztsp . Thus, C is said to be of type

(n; t1, . . . , ts). Note that |C| = pst1p(s−1)t2 . . . pts since there are t1 (generators)
codewords of order ps, t2 of order ps−1 and so on.

Remark 2.9. Let t1, . . . , ts be non negative integers and taking A1,0,...,0 = [1]
instead of [0], the method described at the beginning of this section provides
At1,t2,...,ts as a generator matrix for a Zps-additive code of type (n; t1, . . . , ts)
where n = pst1+(s−1)t2+...+ts−s. The description of recursive constructions of
these matrices are in [9, 13, 14] for p = 2. The case p 6= 2 has been studied in
[24]. We will denote the codes associated to these matrices by Ht1,...,ts. Let
us point out that H0,t2,...,ts ⊂ H1,t2,...,ts .

Now, we establish the following result.

Proposition 2.10. For t1 > 0, every Ht1,...,ts is a BH-code where the Butson
Hadamard matrix is a Kronecker product of Fourier matrices.

Proof. Let CH be the BH-code associated to H of Theorem 2.3. It is clear
that CH is equivalent to Ht1,...,ts . Now, the result follows from Proposition
2.6.

The following is an example of a BH-code which is not additive.
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Example 2.11. Let H ∈ BH(8, 4) with

L(H) =

























0 0 0 0 0 0 0 0
0 1 3 0 2 3 1 2
0 3 2 1 0 3 2 1
0 0 1 1 2 2 3 3
0 2 0 2 0 2 0 2
0 3 3 2 2 1 1 0
0 1 2 3 0 1 2 3
0 2 1 3 2 0 3 1

























.

CH is not Z22-additive since the double of the second row is not a codeword.

Now, we can state that, in a certain sense, the class of BH-codes encom-
passes strictly the class of Zps-additive codes. Since any Zps-additive code
is always of type (n; t1, . . . , ts) for some non negatives integers t1, . . . , ts and
Ht1,...,ts ∈ BH(pst1+(s−1)t2+...+ts−s, ps), assuming that t1 > 0.

2.2 Generalized Gray map

The Gray map is a function from Z4 to Z2
2 which is typically used to form

binary codes from Z4-codes. In what follows, we introduce a generalized Gray
map Φp from Zps to Zp

s−1

p , and extend this to a yet more general function
Ψp from Zmps to Zp

s−1

mp . For k = pe11 · · · pett , and ℓ = p1 · · · pt the composition

Ψpt · · ·Ψp1 is a function from Zk to Z
k/ℓ
ℓ . From this function we construct

a morphism BH(n, k) → BH(nk/ℓ, ℓ). Where x = [x1, . . . , xn] ∈ Znk and
ϕ is any function with domain Zk, we will write ϕ(x) = [ϕ(x1), . . . , ϕ(xn)].
Further, we write ϕ(C) = {ϕ(c) : c ∈ C} where C ⊆ Znk .

We consider the elements of Zs−1
p to be ordered in increasing lexicographic

order. We denote by D the BH(ps−1, p) matrix defined in Example 1.2 and
label the rows of L(D) in the order 0, 1, . . . , ps−1−1. Let [L(D)]i denotes the
row of L(D) labeled by i. Then we let Φp : Zps → Z

ps−1

p be the map defined
by

Φp(x) = [L(D)]b + a1, x = aps−1 + b.

Let us observe that for p = 2, Φp is the well-known Carlet’s map [4] and for
p > 2, Φp is of type ϕ given in [24]. For what remains of this section we write
Φ = Φp for brevity unless there is some confusion.

Proposition 2.12 ([24]). The entrywise application of Φ is an isometric
embedding of (Znps, d

∗) into (Zp
s−1n
p , dH). Furthermore, if C is a code with

parameters (n,M, d∗) over Zps, then the image code C = Φ(C) is a code with
parameters (ps−1n,M, dH) over Zp.

11



Lemma 2.13. Let x, y ∈ Zps. Then Φ(x − y) = Φ(x) − Φ(y) + α1 where
α ∈ {0, p− 1}.

Proof. Let x = a1p
s−1 + b1 and y = a2p

s−1 + b2. Then

x− y =

{

(a1 − a2)ps−1 + (b1 − b2), if b1 ≥ b2

(a1 − a2 − 1)ps−1 + (b1 − b2), if b1 < b2.

Further, by the linearity of the inner product vwT and the definition L(D) =
[vwT ]v,w∈Zn

p
it follows that Φ(b1 − b2 mod ps−1) = [L(D)]b1−b2 = [L(D)]b1 −

[L(D)]b2 = Φ(b1) − Φ(b2). Thus Φ(x − y) = Φ(x) − Φ(y) + α1 where α = 0
if b1 ≥ b2, and α = p− 1 otherwise.

Given H ∈ Mn(〈ζps〉), we write L(HΦ) for the entrywise application of
Φ to















L(H)
L(H) + J
L(H) + 2J

...
L(H) + (ps−1 − 1)J















.

Then HΦ is the corresponding matrix inMnps−1(〈ζp〉).

Theorem 2.14. If H ∈ BH(n, ps), then HΦ ∈ BH(nps−1, p).

Proof. Observe that HΦ is Butson Hadamard over 〈ζp〉 if, for all i 6= j, the
sequence of differences [L(HΦ)]i,l − [L(HΦ)]j,l, 0 ≤ l ≤ n · ps−1 − 1 contains
each element of Zp equally often. First note that for all i 6= j, the sequence
of differences [L(H)]i,l− [L(H)]j,l, 0 ≤ l ≤ n−1 contains each element of the
form aps−1 equally often for a = 0, . . . , p− 1. This is a consequence of ζap

s−1

k

being a pth root of unity. By Lemma 2.13, if x− y = aps−1 then Φ(x− y) =
Φ(x) − Φ(y). Since Φ(aps−1) = a1 for a ∈ Zp, it follows that if the set of
differences [L(H)]i,l− [L(H)]j,l contains m repetitions of each element of the
form aps−1, then the set of corresponding differences in [L(HΦ)]i,l−[L(HΦ)]j,l
contains mps−1 repetitions of each element of Zp. Finally, if x − y 6≡ 0
mod ps−1, then Φ(x)−Φ(y) = Φ(x−y)+α1 for some α, where x−y = aps−1+b
and b 6= 0. Thus Φ(x − y) = a1 + [L(D)]b which contains every element of
Zp exactly ps−2-times, and so too does Φ(x)− Φ(y).

Corollary 2.15. The image of any BH-code over Zps of length n by Φ is a
BH-code over Zp of length n · ps−1 and minimum Hamming distance dH =
nps−2(p− 1).

12



Remark 2.16. Let us point out that Theorem 1 of [9] is a particular case
of Corollary 2.15 (when the BH-code is of type Ht1,...,ts and p = 2).

Proposition 2.17. Any BH-code CH of length n over Zps has minimum
distance d∗ = nps−2(p− 1).

Proof. Taking into account that BH(n, p) = GH(p, n/p) where GH(p, n/p)
denotes the set of generalized Hadamard matrices of order n over Fp (see [7,
Lemma 2.2]). Thus, CHΦ = Φ(CH) is a generalized Hadamard code as well
since HΦ ∈ BH(ps−1n, p). The minimum Hamming distance of these codes
is well known to be nps−2(p− 1). The fact that Φ is an isometric embedding
(Proposition 2.12) concludes the proof.

Now let k = mps where p does not divide m and recall that every element
x ∈ Zk can be written uniquely as x = aps + bm mod k for some 0 ≤ a ≤
m− 1 and 0 ≤ b ≤ ps − 1. Then let

Ψp(ap
s + bm) = mΦp(b) + ap1

define a map Zk → Zp
s−1

mp .

Proposition 2.18. The entrywise application of Ψp is an isometric embed-
ding of (Znmps , d

†) into (Zp
s−1n
mp , dH). Furthermore, if C is a code with param-

eters (n,M, d†) over Zmps, then the image code C = Ψp(C) is a code with
parameters (ps−1n,M, dH) over Zmp.

Proof. This follows from a straight forward extension of Proposition 2.12.

Given H ∈Mn(〈ζk〉) where k = psm, we write L(HΨp) for the entrywise
application of Ψp to















L(H)
L(H) +mJ
L(H) + 2mJ

...
L(H) + (ps−1 − 1)mJ















.

Then HΨp is the corresponding matrix inMnps−1(〈ζpm〉). We will devote the
rest of this section to a proof of the following.

Theorem 2.19. If H ∈ BH(n, k) where k = psm, then HΨp ∈ BH(nps−1, pm).

Repeated application of Ψp for all primes p dividing k gives the following.
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Corollary 2.20. If there exists a BH(n, k) where k = ps11 · · · psrr , then there
exists a BH(nk/ℓ, ℓ) where ℓ = p1 · · · pr.

Before we can prove Theorem 2.19, we will need to establish some pre-
liminary results. Hereafter we fix a prime p and let Ψ = Ψp.

Lemma 2.21. For all 0 ≤ x, y < k = mps, Ψ(x− y) = Ψ(x)−Ψ(y) +mα1
where α ∈ {0, p− 1}.

Proof. Let x = aps + bm and y = cps + dm. Observe that Ψ(x − y) =
(a− c)p1+mΦ(b− d). By Lemma 2.13, Φ(b− d) = Φ(b)−Φ(d) +α1 where
α ∈ {0, p− 1}. The result follows.

Lemma 2.22. Let z 6= fps−1 for any 0 ≤ f ≤ mp− 1. Then
∑ps−1

i=1 ωΨ(z)i =
0 where ω is a primitive kth root of unity. Otherwise, Ψ(z) = f1, and
∑ps−1

i=1 ωΨ(z)i = ps−1ωf .

Proof. First suppose that z 6= fps−1. Observe that Ψ(z) = m[L(D)]j + α1

for some α ∈ Zpm and j 6= 0. Then
∑ps−1−1

i=0 ωΨ(z)i =
∑ps−1

i=1 ω[L(D)]j,i+α =

ωα
∑ps−1−1

i=0 ω[L(D)]j,i = 0.
Now suppose that z = fps−1. Then f = gm + hp mod mp where 0 ≤

g ≤ p − 1 and 0 ≤ h ≤ m − 1. Thus fps−1 = hps + gmps−1 mod psm. It
follows that Ψ(z) = hp1+mΦ(gps−1) = hp1+ gm1 = f1.

Corollary 2.23. If x = fps−1 and y 6= 0 mod ps−1, then Ψ(x − y) =
Ψ(x) − Ψ(y) +m(p− 1)1. Consequently, for any multiset X of elements of
Zk such that x ∈ X only if x = fps−1,and for any y 6= 0 mod ps−1, then
∑

x

∑ps−1

i=1 ωΨ(x−y)i = 0.

Proof. Since x = fps−1, by Lemma 2.22 we have Ψ(x) = f1. Since y =

cps+dm 6= 0 mod ps−1, by Lemma 2.22 we have
∑ps−1

i=1 ωΨ(y)i = 0. Complex

conjugation is a field automorphism so it follows too that
∑ps−1

i=1 ω−Ψ(y)i = 0.
It follows from Lemma 2.21 that Ψ(x− y) = Ψ(x)−Ψ(y) +m(p− 1)1, and
so

∑ps−1

i=1 ωΨ(x−y)i = ωf+m(p−1)
∑ps−1

i=1 ω−Ψ(y)i = 0.

We will require the following result of Lam and Leung.

Lemma 2.24 (Corollary 3.2, [15]). If α1+· · ·+αr = 0 is a minimal vanishing
sum of nth roots of unity, then after a suitable rotation, we may assume that
all αi’s are nth

0 roots of unity where n0 is square-free.

14



The sum α1 + · · ·+ αr = 0 is minimal if no proper subsums can be zero.
A rotation in this context is a multiplication of the sum by an nth root of
unity.

Suppose that for some multisetX of elements of Zk, we have that
∑

x ω
x =

0 is minimal, and further assume that each ωx is an nth
0 root of unity for n0

square-free. Then for each x ∈ X, x = fps−1 for some f . Lemma 2.22
implies that

∑

x

∑ps−1

i=1 ωΨ(x)i = 0, and then applying Corollary 2.23, we get

that
∑

x

∑ps−1

i=1 ωΨ(x−y)i = 0 for all y 6= 0 mod ps−1. Any vanishing sum with
terms that are not nth

0 roots of unity can only be scaled so that the terms
are all nth

0 roots of unity by some ωy where y 6= 0 mod ps−1. Thus we prove
the following.

Lemma 2.25. If
∑

x ω
x = 0 is minimal, then

∑

x

∑ps−1

i=1 ωΨ(x)i = 0.

Proof. If the terms ωx are nth
0 roots of unity then this is immediate from

Lemma 2.22. Otherwise, we scale by some ωy such that y 6= 0 mod ps−1 so
that the terms are then nth

0 roots of unity. Then again we apply Lemma 2.22
and prove the original equality using Corollary 2.23.

Finally, we can prove Theorem 2.19.

Proof. Observe that the rows ofHΨ can be partitioned into ps−1 blocks of size
n corresponding to the images of the rows of L(H)+rmJ for 0 ≤ r ≤ ps−1−1.
GivenH ∈ BH(n, k), the Hermitian inner product of two distinct rows is zero.
That is, for any two distinct rows x = [x1, . . . , xn] and y = [y1, . . . , yn] of
L(H), the Hermitian inner product of the corresponding rows of H is of the
form

n
∑

i=1

ωxi−yi = 0.

Since we can partition this equation into minimal sums, it follows that
∑n

i=1

∑ps−1

j=1 ω
(Ψ(xi)−Ψ(yi))j = 0. That is, distinct rows of HΨ from each

block of n rows are pairwise orthogonal. To see that two rows taken from
distinct blocks are orthogonal, we observe that tm 6= 0 mod ps−1 for any
1 ≤ t ≤ ps−1 − 1, and so we also apply Corollary 2.23.

Remark 2.26. The application of the map Ψ2 to H ∈ BH(n, 4) is equivalent
to a familiar morphism BH(n, 4) → BH(2n, 2) of Turyn [26]. That is, for
any H ∈ BH(n, 4), the Hadamard matrix obtained from Turyn’s morphism
applied to H is Hadamard equivalent to HΨ2.

By Proposition 2.18 we know that d†(x,y) = dH(Ψ(x),Ψ(y)). We may
also relate the minimum Hamming distance of Ψ(C) directly to the minimum
Hamming distance of C, but less precisely.
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Proposition 2.27. Let C be a BH-code of minimum Hamming distance
d obtained from a BH(n, psm) with p a prime not dividing m. Then the
minimum distance d′ of Ψ(C) is in the range d(p− 1)ps−2 ≤ d′ ≤ dps−1.

Proof. If xi 6= yi, then ps−1 − ps−2 ≤ dH(Ψ(xi),Ψ(yi)) ≤ ps−1. Hence
dH(x,y)(p− 1)ps−2 ≤ dH(Ψ(x),Ψ(y)) ≤ dH(x,y)p

s−1.

Remark 2.28. The upper bound above is attainable. For example, the code
C obtained from the Fourier matrix of order 27 has minimum distance 18. The
code Ψ(C) is a BH-code of length 243, with minimum distance 162 = 18(32).

3 Propelinear codes and cocyclic matrices

The BH-matrix given in Example 2.11, H , is cocyclic over Z8 and its BH-
code associated CH is not linear. Can we define a propelinear structure in
CH? Certainly, we can and this is not an isolated situation.

Let G and U be finite groups, with U abelian, of orders n and k, respec-
tively. A map ψ : G×G→ U such that

ψ(g, h)ψ(gh, k) = ψ(g, hk)ψ(h, k) ∀ g, h, k ∈ G (3)

is a cocycle (over G, with coefficients in U). We may assume that ψ is nor-
malized, i.e., ψ(g, 1) = ψ(1, g) = 1 for all g ∈ G. For any (normalized)
map φ : G → U , the cocycle ∂φ defined by ∂φ(g, h) = φ(g)−1φ(h)−1φ(gh)
is a coboundary. The set of all cocycles ψ : G×G→ U forms an abelian
group Z2(G,U) under pointwise multiplication. Factoring out the subgroup
of coboundaries gives H2(G,U), the second cohomology group of G with co-
efficients in U .

Given a group G and ψ ∈ Z2(G,U), denote by Eψ the canonical cen-
tral extension of U by G; this has elements {(u, g) | u ∈ U, g ∈ G} and
multiplication (u, g) (v, h) = (uvψ(g, h), gh). The image U × {1} of U lies
in the centre of Eψ and the set T (ψ) = {(1, g) : g ∈ G} is a normalized
transversal of U × {1} in Eψ. In the other direction, suppose that E is a
finite group with normalized transversal T for a central subgroup U . Put
G = E/U and σ(tU) = t for t ∈ T . The map ψT : G × G → U defined by
ψT (g, h) = σ(g)σ(h)σ(gh)−1 is a cocycle; furthermore, EψT

∼= E.
Each cocycle ψ ∈ Z2(G,U) is displayed as a cocyclic matrix Mψ: under

some indexing of the rows and columns byG, Mψ has entry ψ(g, h) in position
(g, h).

A n × n matrix A = (ag,h)g,h∈G is called G-invariant (or just group
invariant) if agk,hk = ag,h for all g, h, k ∈ G.

16



Lemma 3.1. If A is G-invariant and ag,h ∈ U then ψ(g, h) = a−1
g,0ag,h−1a−1

0,h−1

is a cocycle.

Remark 3.2. Every group invariant matrix with entries in U is equivalent
to a cocyclic matrix.

Fixing U = 〈ζk〉. A cocycle ψ ∈ Z2(G, 〈ζk〉) is called orthogonal if, for
each g 6= 1 ∈ G, ∑h∈G ψ(g, h) = 0.

Proposition 3.3. [12] Hψ ∈ BH(n, k) if and only if ψ ∈ Z2(G, 〈ζk〉) is
orthogonal.

Fact: A cocyclic Butson Hadamard matrix is not necessarily pairwise row
and column balanced.

Proposition 3.4. Given ψ ∈ Z2(G, 〈ζk〉) and x = ζλk [ψ(g, g1), . . . , ψ(g, gn)]
for a fixed order in G = {g1 = 1, g2, . . . , gn}. Define πx ∈ Sn so that π−1

x (j) =
k where gk = ggj. Then

1. x + πx(y) = ζλ+µk ψ(h, g) [ψ(hg, g1), . . . , ψ(hg, gn)] where + means the
componentwise product and y = ζµk [ψ(h, g1), . . . , ψ(h, gn)].

2. πx+πx(y) = πx(πy).

Proof. 1. Observe that πx(y) = ζµk [ψ(h, gg1), . . . , ψ(h, ggn)]. Hence the
ith component of x + πx(y) is ζλ+µk ψ(g, gi)ψ(h, ggi). Apply (3) letting
(g, h, k) = (h, g, gi) and the result follows.

2. Let z = ζγk [ψ(ℓ, g1), . . . , ψ(ℓ, gn)]. From part 1 we know that x+ πx(y)
is a scalar multiple of the n-tuple defined by ψ(hg,−), and thus the
jth component of πx+πx(y)(z) is ψ(ℓ, hggj). Now observe that the kth

component of πy(z) is ψ(ℓ, hgk). We have πx(k) = j where gk = ggj,
and thus the jth component of πx(πy(z)) is ψ(ℓ, hgk) = ψ(ℓ, hggj).

Corollary 3.5. Let ψ ∈ Z2(G, 〈ζk〉) and Hψ ∈ BH(n, k). Then the cor-
responding BH-code CH is a BHFP-code where x ⋆ y = x + πx(y) for all
x,y ∈ C.

Proof. Extend the definition of πx for the rows x of L(Hψ) to all of CH by
letting πx+α1 = πx for all α ∈ Zk. The code CH is propelinear by Proposition
3.4, and since x ⋆ y = x + πx(y) for all x,y ∈ C, the first property of
Definition 1.5 is satisfied. Finally observe that because πx ∈ Sn is defined so
that π−1

x (j) = k where gk = ggj, it follows that πx fixes no coordinate when
x 6= α1, and πα1 = IdSn

for all α ∈ Zk.
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Remark 3.6. A notorious class of cocyclic Butson matrices are those that
are equivalent to group invariant (if G is a cyclic group, they are called cir-
culant Butson matrices). A construction method based on bilinear forms on
finite abelian groups is given in [6] which, in turn, provides BHFP-codes.
Furthermore, for G abelian it is known that Bent functions, group invariant
generalized Hadamard matrices and abelian semiregular relative different sets
are all either equivalent to group invariant Butson matrices or to group in-
variant Butson matrices with additional properties (see [25]). Characterising
group invariant Butson matrices in terms of BHFP codes is an open problem.

We refer the reader to [1, Section 3] for a detailed discussion on cocyclic
generalized Hadamard matrices and the corresponding generalized Hadamard
full propelinear codes. Rather than repeat this discussion, we note that the
converse of Corollary 3.5 holds under the assumption that the BH(n, k) is row
and column balanced. A BH(n, p) is necessarily balanced, and is equivalent
to a generalized Hadamard matrix over the cyclic group Cp when p is prime.

Corollary 3.7. Let CH be a BHFP-code of length n over Zk coming from
H ∈ BH(n, k), where H is row and column balanced. Then H is cocyclic.

Proof. The proof follows the proof of Proposition 4 and Corollary 2 of [1].

Let H be a BH(n, k). We consider the following partition of its corre-
sponding code. CH = ∪1≤α≤nCα where Cα = {[L(H)]α+λ1}λ∈Zk

and [L(D)]i
denotes the i-th row of L(D).

Example 3.8. Let H be the BH-matrix of Example 2.11 since it is cocyclic
over Z8. Then,

CH = C1 ∪ C2 ∪ . . . ∪ C8

can be endowed with a full propelinear structure with the following group
Π of permutations

πx =















































I x ∈ C1

(1, 2, 3, 4, 5, 6, 7, 8) x ∈ C2

(1, 3, 5, 7)(2, 4, 6, 8) x ∈ C3

(1, 4, 7, 2, 5, 8, 3, 6) x ∈ C4

(1, 5)(2, 6)(3, 7)(4, 8) x ∈ C5

(1, 6, 3, 8, 5, 2, 7, 4) x ∈ C6

(1, 7, 5, 3)(2, 8, 6, 4) x ∈ C7

(1, 8, 7, 6, 5, 4, 3, 2) x ∈ C8
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CH is a BHFP-code with group structure Z8×Z4 and Π ∼= Z8. The codewords
are

C1 = {[0, 0, 0, 0, 0, 0, 0, 0] + λ1},
C2 = {[0, 1, 3, 0, 2, 3, 1, 2] + λ1},
C3 = {[0, 3, 2, 1, 0, 3, 2, 1] + λ1},
C4 = {[0, 0, 1, 1, 2, 2, 3, 3] + λ1},
C5 = {[0, 2, 0, 2, 0, 2, 0, 2] + λ1},
C6 = {[0, 3, 3, 2, 2, 1, 1, 0] + λ1},
C7 = {[0, 1, 2, 3, 0, 1, 2, 3] + λ1},
C8 = {[0, 2, 1, 3, 2, 0, 3, 1] + λ1}

where λ runs through Z4, and CH is a (8, 32, 4)-code over Z4. CH has a group
structure Z8 × Z4 ≃ 〈a, 1 | a8 = 14 = 0〉, where a = [0, 1, 3, 0, 2, 3, 1, 2].

An interesting family of BH-codes over Zps are those associated to Kro-
necker products of Fourier matrices. They are denoted by Ht1,t2,...,ts (see
Remark 2.9 and Proposition 2.10) and since these matrices are cocyclic over
G = Ztsp × Z

ts−1

p2 × . . . × Z
t2
ps−1 × Z

t1−1
ps , these codes can be endowed with

a full propelinear structure by Corollary 3.5 . Furthermore, for p = 2 and
s = 2 in [20], it is shown that the image of Ht1,t2 under the Gray map are in
fact propelinear codes.

Example 3.9. Considering H1,1,1, the Z8-additive code of length n = 8 asso-
ciated to L(H) of Example 2.4. Then, it can be endowed with a full prope-

linear structure with the following group Π of permutations Π ∼= Z2 × Z4

generated by πx and πy where

x = [0, 2, 4, 6, 0, 2, 4, 6], y = [0, 0, 0, 0, 4, 4, 4, 4],

πx = (1, 4, 3, 2)(5, 8, 7, 6), πy = (1, 5)(2, 6)(3, 7)(4, 8).

The full propelinear code is a group (H1,1,1, ⋆) ∼= Z8×Z4×Z2 = 〈x,y, 1 | x8 =
0, y2 = 14 = x4〉.

4 Propelinear codes via the Gray map

A natural question that arises is whether or not the generalized Gray pre-
serves the property of being propelinear, or full propelinear. It is certainly
true that the number of codewords in a BH-code C obtained from H , a
BH(n,mps), is the same as the number of codewords in the BH-code C ′
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obtained from HΨ. However, in general, it is not the case that C ′ will be
an isomorphic propelinear structure. A simple example to demonstrate this
arises from the Z9-code C obtained from the trivial BH(1, 9), and the Z3-
code Ψ(C) obtained from the BH(3, 3) matrix H ′ = (1)Ψ which written in
log form is

L(H ′) =





0 0 0
0 1 2
0 2 1





The code C is clearly linear, and as a group is isomorphic to the cyclic group
Z9. It is also easily seen to be full propelinear by definition. However it
is a short exercise to verify that Ψ(C) cannot be both full propelinear and
isomorphic to a cyclic group G ∼= Z9 generated by any single element x,
no matter what the coordinate permutation πx may be. The code Ψ(C)
does form a 2-dimensional linear code (so it is also propelinear, but not full
propelinear with x ⋆y = x+y for all x,y ∈ Ψ(C)), and Ψ is a bijective map
between codewords, but in general it is not always the case that Ψ(x ⋆ y) =
Ψ(x) ⋆′ Ψ(y) for any operation ⋆′, and as a consequence Ψ will generally not
preserve a group structure. The code Ψ(C) of this example can also be with
a full propelinear structure, but it will not be isomorphic as a group to C. It
is generated by the codewords x = [0, 1, 2], and 1, where πx = (1, 3, 2). It is
isomorphic to Z2

3.
However, we find that for the special case Ψ2 : Z4m → Z2

2m, we can
carefully construct an isomorphism between the groups of codewords C and
C ′ = Ψ2(C), and determine the group operation ⋆′ so that (C, ⋆) ∼= (C ′, ⋆′).
Let Ψ = Ψ2.

Theorem 4.1. Let m be an odd positive integer, and let C ⊆ Z
n
4m be a full

propelinear code. Then the code C ′ = Ψ(C) is full propelinear with group
structure (C ′, ⋆′) ∼= (C, ⋆).

Proof. First observe that Ψ is a bijection from C to C ′, so we need to deter-
mine the group of permutations for C ′ and show that Ψ : (C, ⋆)→ (C ′, ⋆′) is
a homomorphism. We start with the n = 1 case, so we just need to show that
we can choose ρx ∈ S2 for each x ∈ Z4m so that Ψ(x) + ρx(Ψ(y)) = Ψ(x+ y)
for all y. We will see that ρx = (1, 2)x, i.e., ρx permutes the two coordinates
of a word in Z2

2m or not, according to the parity of x. We adhere to the nota-
tion of the proof of Lemma 2.21. Fix x = 4a+mb and let y = 4c+md where
0 ≤ b, d ≤ 3, so x+y = 4(a+c)+m(b+d) with the value of b+d taken modulo
4. A complete proof requires a verification that Ψ(x) + ρx(Ψ(y)) = Ψ(x+ y)
for each pair (b, d) ∈ Z4, but for brevity we take (b, d) = (3, 1) as an example

20



and leave the rest to the reader. Observe that

Ψ(x) = [2a, 2a] +mΦ(3) = [2a, 2a] +m([0, 1] + [1, 1]) = [2a +m, 2a],

Ψ(y) = [2c, 2c] +mΦ(1) = [2c, 2c] +m([0, 1] + [0, 0]) = [2c, 2c+m],

Ψ(x+ y) = [2(a + c), 2(a+ c)] +mΦ(0) = [2(a+ c), 2(a+ c)].

Since b = 3, x is odd, and so ρx = (1, 2). It follows that Ψ(x) + ρx(Ψ(y)) =
Ψ(x+ y). This verifies the 1-dimensional case.

Now suppose that C is full propelinear of length n, and let x,y ∈ C,
with x ⋆ y = x + πx(y). Let πΦ(x) ∈ S2n permute the n blocks of size 2,
labelled b1, . . . , bn, according to the action of πx on a word of length n. That
is, πΦ(x)(bi) = bj if and only if πx(i) = j. Then πΦ(x)(Ψ(y)) = Ψ(πx(y)).
Further, let ρi = (2i − 1, 2i) be the permutation swapping the entries of
the block bi, and write ρx =

∏n
i=1 ρ

xi
i . It follows that Ψ(x) ⋆′ Ψ(y) :=

Ψ(x) + ρxπΦ(x)(Ψ(y)) = Ψ(x + πx(y)) = Ψ(x ⋆ y). Thus Ψ is a bijective
homomorphism from (C, ⋆) to (C ′, ⋆′).

It remains to verify that the permutation ρxπΦ(x) = IdS2n whenever
Ψ(x) = α12n for any α ∈ Z2m, and has no fixed coordinate otherwise.
Let S = C ∩ {α1n : 0 ≤ α ≤ 4m − 1} and let X ⊂ S be the subset
X = C ∩ {2α1n : 0 ≤ α ≤ 2m − 1}. Note first that Ψ(X) is the set
X ′ = C ′ ∩ {α12n : 0 ≤ α ≤ 2m − 1}. It is clear that ρxπΦ(x) = IdS2n

for all x ∈ X. Further, for any s ∈ S \X, ρs = (1, 2)(3, 4) · · · (2n − 1, 2n),
and so does not fix any coordinate. Finally, for any codeword c ∈ C \ S, πc
does not fix any coordinate of Zn4m, and it follows that πΦ(c) does not fix any
coordinate of Z2n

2m.

Corollary 4.2. Let m be an odd positive integer, and let H ∈ BH(n, 4m).
If the BH-code C obtained from H is full propelinear with group structure
G, then the BH-code C ′ obtained from HΨ where Ψ is full propelinear with
group structure G′ ∼= G.

Example 4.3. Let H3,0 be the BH-code associated to F4 ⊗ F4 ∈ BH(16, 4)
and H3,0 be its image by the Gray map which is known to be a nonlinear code
(see [9, Table 1]). H3,0 is full propelinear, with permutation group Π ∼= Z2

4

generated by πx and πy where

x = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3],

y = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3],

πx = (1, 4, 3, 2)(5, 8, 7, 6)(9, 12, 11, 10)(13, 16, 15, 14),

πy = (1, 13, 9, 5)(2, 14, 10, 6)(3, 15, 11, 7)(4, 16, 12, 8).
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The corresponding permutations ρxπΦ(x) and ρyπΦ(y) are as follows:

ρxπΦ(x) = (1, 7, 6, 4)(2, 8, 5, 3)(9, 15, 14, 12)(10, 16, 13, 11)
(17, 23, 22, 20)(18, 24, 21, 19)(25, 31, 30, 28)(26, 32, 29, 27),

ρyπΦ(y) = (1, 25, 17, 9)(2, 26, 18, 10)(3, 28, 19, 12)(4, 27, 20, 11)
(5, 29, 21, 13)(6, 30, 22, 14)(7, 32, 23, 16)(8, 31, 24, 15).

Thus, H3,0 can be endowed with a full propelinear structure with the
group 〈ρxπΦ(x), ρyπΦ(y)〉 of permutations, which is non-abelian of order 32.
This group contains the element (ρxπΦ(x))(ρyπΦ(y))(ρxπΦ(x))

−1(ρyπΦ(y))
−1 =

ρ1πΦ(1) = (1, 2)(3, 4) · · · (31, 32). The groups (H3,0, ⋆) ∼= (H3,0, ⋆′) are iso-
morphic to Z2 × Z4 × Z8.

Remark 4.4. Even though the codes C and C ′ are isomorphic as groups ac-
cording to Theorem 4.1, the example above shows that the underlying groups
of coordinate permutations are not necessarily isomorphic. As a simpler ex-
ample, take the trivial 1-dimensional Z4 code and its image in Z2

2. Here,
Ψ : [0], [1], [2], [3] 7→ [0, 0], [0, 1], [1, 1], [1, 0]. Both are cyclic, generated by
[1] and [0, 1] respectively, but the group of coordinate permutations of Z4 is
necessarily trivial, and the group of coordinate permutations of the image is
generated by ρ[1]π[0,1] = (1, 2). More generally, if C is a BHFP-code obtained
from a BH(n, 4m) with group Π of coordinate permutations then by Defini-
tion 1.5, |Π| = n, and the group of coordinate permutations for Ψ(C) will be
of order |Π′| = 2n.
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