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§1. Introduction

Since the notion of homeomorphism was clearly defined, classification of topological spaces
up to homeomorphism has become the main problem in topology. This soon became a hopeless
job, and so what we know today as algebraic topology was born, where topological problems
are studied by casting them into a simpler form by means of some algebraic structures. An
example of this is given by invariant algebraic structures associated with topological spaces,
such as homology, cohomology, or homotopy groups.

This review fits into the field of algebraic topology and, more explicitly, of homological al-
gebra, which studies “the pure algebraic properties of algebraic objects in algebraic topology.”
A principal problem in homological algebra is to find efficient algorithms for homological com-
putations applicable for solving problems on algebraic topology, though this subject directly
influences the development of not so close areas such as cohomological physics [22, 45, 46] or
secondary calculus [24, 53, 52].

The literature contains some papers in which the foundations for building up constructive
algebraic topology are given (see, e.g., [41, 42]). In the present paper, we follow some ideas of
[42]. More precisely, we adopt the Eilenberg–MacLane philosophy sketched in the remarkable
papers [14, 15, 27], i.e., we work in the combinatorial setting (provided by simplicial topology
[31]) and take explicit homotopy equivalences between differential graded modules as initial
data. All this is complemented by the homological perturbation machinery [19, 20, 23]. In this
way, a suitable framework for computing homology in algebraic topology is raised.

Whereas the question of computability in algebraic topology is delicate (see [7, 30, 54, 29, 33,
49, 27, 35, 50, 41, 42], etc.), the first approach to the problem of complexity is disappointing. In
most algorithms in this area, there are high computational costs and the problems of efficiency
amount to improving parts of the algorithms, so that the number of steps is minimized.

We analyze three algorithms that we have already designed in previous papers from the
complexity point of view. The first one is an algorithm for computing the homology of com-
mutative differential graded algebras (briefly, CDGAs) [2]. This process can be regarded as a
refined version of the method outlined in [25]. In the second one, combinatorial fibrations are
treated. More specifically, a “constructive” version of the Serre spectral sequence for twisted



Cartesian products (briefly, TCPs) of Eilenberg–MacLane spaces is established (see [1]). Fi-
nally, starting from a manageable combinatorial formulation of the morphisms measuring the
strong homotopy commutativity of the cup product in cohomology (see [37, 21]), we discuss
the complexity of computing the Steenrod squares of cochains.

§2. Preliminaries

Although relevant notions of homological algebra are explained through the exposition of
this survey, most of the common concepts are not explicitly given and are used without further
explanations (for details, see [10, 28]).

We recall the notions of DG-module and DG-algebra.

DG-modules and DG-algebras. Our ground ring Λ is Z or Z localized at a prime p. A
differential graded module (M,d) is a module M graded on the positive integers and endowed
with a differential operator d of degree −1 such that d◦d = 0. The homology H∗(M) of (M,d)
consists of the quotient groups Hn(M) = Ker dn/ Im dn+1. If this object is also endowed with
an inner product which is compatible with both the grading and the differential, then a new
structure arises, a DG-algebra.

For instance, we can consider the exterior algebra with one generator u of degree 2n + 1
and the trivial product, or the polynomial algebra with one generator v of degree 2n and the
natural product of monomials.

An augmented graded differential algebra (DGA-algebra) A is a DG-algebra endowed with
two graded morphisms ξA : A → Λ (augmentation) and ηA : Λ → A (co-augmentation) such
that ξA ◦ ηA = 1Λ and ξA ◦ d1 = 0.

In what follows, we use the designation (A, dA, ∗A) for a DGA-algebra A endowed with a
differential operator dA and an associative product ∗A. If there is no confusion, subindices or
operators are omitted. The degree of an element a ∈ An is denoted by |a| = n or with the
index: an.

Simplicial sets. Algebraic topology analyzes transformations from continuous data to dis-
crete data. Usually, these transformations involve combinatorial methods, one of the earliest
and most significant of which is a triangulation of a topological space.

A simplicial set [31] is a graded set indexed on the nonnegative integers together with
two families of morphisms (face operators and degeneracy operators) satisfying the following
commutativity relations:

∂i∂j = ∂j−1∂i if i < j; sisj = sj+1si if i ≤ j;

∂isj = sj−1∂i if i < j; ∂isj = sj∂i−1 if i > j + 1;

∂jsj = 1K = ∂j+1sj .

Depending on the initial category, many other simplicial objects arise (for instance, simplicial
modules, simplicial groups, etc.) if both face and degeneracy operators belong to the same
category.

For instance, here is a combinatorial description of the 2-sphere.



Homology. The next step towards an algebra is that every simplicial set X yields an algebraic
object C?(X) canonically associated with X and endowed with the structure of a DG-module.
Namely, the n-component of C?(X) is the free Λ-module Cn(X) = Λ[Xn] generated by the
n-simplices of X, and the differential operator dn : Cn(X) → Cn−1(X) is given by the formula
dn =

∑
0≤i≤n(−1)i∂i.

The subset s(C?(X)) consisting of all degenerate simplices of C?(X) is a graded submodule
preserved by the action of the differential (i.e., dn(s(C?(X))n) ⊂ s(C?(X))n−1), so that the
quotient complex, simply denoted by C(X) = {C?(X)/s(C?(X))}, also becomes a DG-module,
which is called the normalized DG-module canonically associated with X.

The homology H?(X) of X is defined by the formula H?(X) = H?(C(X)).
In the example above, the n-simplices are the weakly increasing (n + 1)-sequences formed

by given ordered vertices; the ith face of an n-simplex is obtained by removing the ith vertex;
similarly, the ith degeneracy operator arises from duplicating the ith vertex.

Fiber bundles. In the context of simplicial topology, the fiber bundles simplify their struc-
tures and are regarded in a factorized fashion as a twisted Cartesian product F ×τ B of two
simplicial sets, F (fiber) and B (base), where the τ operator means a “twisting” action on the
0-face operator of F ×B.

For instance, consider the fiber bundle whose fiber is S 1 and whose base is the unit segment
I, i.e., the fiber bundle is a cylinder. The Möbius band is obtained from this cylinder by
applying a suitable twisting function τ :

We note that homology is preserved in a suitable way.

Contractions. The main tool for reducing the homology of a twisted Cartesian product to
that of a twisted tensor product is a special type of homotopy equivalence, which is due to



Eilenberg and Zilber [17], the so-called Eilenberg–Zilber contraction.
In our framework, the main input data are the contractions [14, 23]. A contraction c from

a DG-module N to a DG-module M , sometimes simply denoted by N
c⇒ M or (f, g, φ), is

a homotopy equivalence determined by three morphisms f , g, and φ, where f : N? → M?

(projection) and g : M? → N? (inclusion) are DG-module morphisms and φ : N? → N?+1 is a
homotopy operator. Moreover, we assume that the following conditions are fulfilled:

fg = 1M , fφ = 0, φg = 0, φdN + dNφ + gf = 1N , and φφ = 0;

thus, the DG-modules involved have isomorphic homology.
Using explicit contractions as data, we note that the basic procedure for computing the

homology of an object (see [42]) consists of the construction of an explicit contraction from
an initial DG-module N to a free DG-module M of finite type, so that the homology of N is
actually computable from that of M via a matrix algorithm due to Veblen [51] (based upon
the normal Smith form of the matrices representing the differentials at each degree).

Now we present a typical type of contraction. Let X and Y be simplicial sets, and let AW ,
EML, and SHI be the following morphisms:
Alexander–Whitney,

AW : C(X × Y ) −→ C(X)⊗ C(Y ),

Eilenberg–MacLane,
EML : C(X)⊗ C(Y ) −→ C(X × Y ),

and Shih,
SHI : C(X × Y ) −→ C(X × Y ),

which are defined on positive degrees by the formulas

AW (an × bn) =
n∑

i=0

∂i+1 · · ·∂nan ⊗ ∂0 · · ·∂i−1bn,

EML(ap ⊗ bq) =
∑

(α,β)∈{(p,q)-shuffles}
(−1)sg(α,β)(sβq · · · sβ1ap × sαp · · · sα1bq),

SHI(an × bn)

= −
∑

(−1)m+sg(α,β)(sβq+m · · · sβ1+msm−1∂n−q+1 · · ·∂nansαp+1+m

· · · sα1+m∂m · · ·∂m+p−1bn),

where

m = n− p− q, sg(α, β) =
p∑

i=1

(αi − (i − 1)),

and the latter sum is taken over the indices 0 ≤ q ≤ n − 1, 0 ≤ p ≤ n − q − 1 and (α, β) ∈ 
{(p + 1, q)-shuffles}.

We note that in degree one the morphisms AW and EML coincide with the identity map 
and SHI is zero.



Then, the collection

EZX,Y : {C(X × Y ), C(X)⊗ C(Y ), AWX,Y , EMLX,Y , SHIX,Y } (1)

is a contraction, which is often called an Eilenberg–Zilber contraction.
The above explicit formula for the operator SHI was stated by Rubio [40] and proved

by Morace (see the appendix in [38]). It is quite surprising that until now there has not
been an active interest in the study of the homotopy operator involved in an Eilenberg–Zilber
contraction, not only from the point of view of getting an explicit formula for it (a recursive
formula was determined by Eilenberg and MacLane [15]) but also from the point of view
of obtaining algebraic preservation results of this operator with regard for the underlying
coalgebra structure on C(X × Y ).

A deep analysis of the complexity involved in the above contraction shows that the projection
morphism AW acts in polynomial time O(n2), though the inclusion and homotopy operators
act in exponential time O(2n) since the number of (p, q)-shuffles is given by the expression(
p+q−1

p−1

)
. We note that the size of the instance is given by the degree of the elements and the

elementary operations are the simplicial operators.
In some sense, the problem of computational complexity in our algorithmic approach is

summarized in the previous example. Our main goal is to avoid the categorically exponential
complexity of EML and SHI in our algorithms. Thus, an interesting problem arises: to deter-
mine the lack of certain classes of elements such that the above morphisms act in “reasonable”
time and the homological information is completely localized over these elements.

In fact, the tool provided by contractions suggests, in general, new perspectives and ap-
proaches to classical problems of algebraic topology and homological algebra: Eilenberg and
MacLane fit an unusual way of working into algebraic topology, which is summarized in [14–
16]. Here, we follow these characteristic procedures rather than the Cartan ones. Indeed, the
deep analysis of the morphisms, products, and algebra structures involved in most of the con-
tractions in algebraic topology leads to a new and unexplored field, which is the direction in
which we are movingin: we refer to the homological perturbation theory applied to the algebra
or coalgebra category.

Perturbations. Shih [43] first established a perturbation process on Brown’s theorem [6] in
1961, but it was not until 1989 that perturbation theory was finally described. Gugenheim,
Lambe, and Stasheff [19, 20] found that, under certain circumstances, the process of “perturb-
ing” a given contraction stops and leads to a new contraction that connects the homologies
of the respective modules. This technique is called the “basic perturbation lemma,” which we
describe next.

First, we recall the concept of a perturbation datum. Let N be a graded module, and let
f : N → N be a morphism of graded modules. The morphism f is pointwise nilpotent if for all
x ∈ N , x 6= 0, there exists a positive integer n such that fn(x) = 0. Note that, generally, the
integer n depends on the element x.

A perturbation of a DGA-module N is a morphism of graded modules δ : N → N of degree
−1 such that (dN + δ)2 = 0 and ξNδ = 0. A perturbation datum of the contraction c =
{N,M, f, g, φ} is a perturbation δ of the DGA-module N such that the composition φδ is
pointwise nilpotent.



Basic perturbation lemma (BPL). We now state the main tool for handling contrac-
tions. The basic perturbation lemma [19, 20] is an algorithm which, for a contraction c =
{N,M, f, g, φ} and a perturbation datum δ of c, generates a new contraction

cδ : {(N, dN + δ), (M,dM + dδ), fδ, gδ, φδ},

defined by the formulas

dδ = fδΣδ
cg, fδ = f(1 − δΣδ

cφ), gδ = Σδ
cg, φδ = Σδ

cφ,

where
Σδ

c =
∑
i≥0

(−1)i (φδ)i = 1− φδ + φδφδ − · · · + (−1)i(φδ)i + · · · .

The stop condition of this theorem is guaranteed by the pointwise nilpotency of the composition
φδ. We note that the main difficulty in establishing algorithms in our setting lies in determining
that the stop condition of the BPL applied to a specified case be satisfied.

In the particular case where both N and M are DGA-algebras, a new notion appears: an
algebra perturbation datum δ of a contraction c from N to M is a perturbation datum δ of c
that is also a derivation, i.e., satisfies the relations

δ∗N = ∗N(1 ⊗ δ + δ ⊗ 1), ξNδ = 0.

We can deal with perturbation results particularized to the DGA-algebra category, often
applied to special algebra contractions (called semifull algebra contractions), in which the
injection preserves products and the projection and homotopy operators f and φ satisfy the
relations

f ∗A (φ⊗ φ) = 0, f ∗A (φ⊗ g) = 0, f ∗A (g ⊗ φ) = 0 (2)

and
φ ∗A (φ⊗ φ) = 0, φ ∗A (φ⊗ g) = 0, φ ∗A (g ⊗ φ) = 0. (3)

In this sense, we give the following more specific version of the “basic perturbation lemma.”

Theorem 2.1 (SF-APL [38]). Let c be a semifull algebra contraction, and let δ be an algebra 
perturbation datum of c. Then the perturbed contraction cδ is a semifull algebra contraction.

Thus, the general procedure that we state here in order to compute the homology of a 
DGA-algebra concerns the existence of “small models” [23].

However, the technique described above is not good enough: the main obstacle is the high 
complexity of the procedures often involved. For instance, if F ×τ B is a twisted Cartesian 
product, Shih [43] proved that if we perturb the Eilenberg–Zilber contraction C(F × B) ⇒ 
C(F )©C(B), where

δ(f, b) = (τb  ∗  ∂0f, ∂0b) − (∂0f, ∂0b)

is the perturbation datum, we recover Brown’s theorem [6], in which a contraction from the 
normalized DG-module associated with the twisted Cartesian product F ×τ B onto the twisted 
tensor product C(F )©t C(B) is established. Then, the computation of the homology of the



combinatorial fiber bundle F×τ B reduces to determining a Brown cochain t and the knowledge
of some homological information (in terms of contractions) for the factors F and B.

Of course, the Brown cochain t is determined by the differential dδ resulting from the
perturbation process.

Now, we recall the formula for the perturbed differential operator dδ in terms of the proper
morphisms AW , EML, and SHI of the initial Eilenberg–Zilber contraction:

dδ = AW ◦ δ ◦ (1 − SHI ◦ δ + SHI ◦ δ ◦ SHI ◦ δ − · · · ) ◦EML.

The formula reveals an exponential character of the action of the differential operator, since
EML and SHI act so. This is a common fact in general perturbation processes of algebraic
topology.

We note that in the early sixties, Szczarba [48] gave an explicit formula for the cochain t
involved in the differential operator dδ.

In order to simplify the high computational charges of the techniques above, it is convenient
to use the algebraic structures present in the contractions. This approach allows us to get
interesting results in our research, as we show in this paper.

§3. The first algorithm: homology of CDGAs

There are various methods of computing the homology groups of commutative differential
graded algebras (CDGAs), though they often involve high complexity processes.

There is an approximation which deals with the recursive construction of a resolution of the
ground ring Λ over an initial algebra (see [26]). A resolution of Λ over a DGA-algebra A is
a differential A-module X such that X is projective as an A-module and the homology of X
vanishes except in degree 0, where it is Λ. If X is actually a free A-module, then X is called
a free resolution.

Working in the context of CDGAs, homological perturbation theory [19, 20] supplies a
general algorithm for computing the homology of these objects (see [25]), which often bears high
computational charges and actually restricts its application to the low-dimensional homological
calculus.

It is possible to improve this general method by applying SF-APL: the refining of the
above algorithm, by means of preservation issues over the category of CDGAs when applying
perturbation techniques [38], is partially shown in [2].

It is commonly known that every commutative DGA-algebra A “factorizes” into the ten-
sor product of exterior and polynomial algebras endowed with a differential-derivation in the
sense that there exists a weak homotopy equivalence, i.e., a homomorphism connecting both
structures that induces an isomorphism in homology (see [8]).

Twisted tensor products. Next, we recall the definition of a “twisted tensor product of
algebras.”

A twisted tensor product (TTP)
⊗̃ρ

i∈IAi is a CDGA satisfying the following conditions:
(i) It is the usual tensor product

⊗
i∈I Ai as a graded algebra.

(ii) The differential operator is the sum of the differentials corresponding to the banal tensor
product and a derivation ρ.

Actually, a TTP of DGA-algebras is a perturbed DGA-algebra in which the perturbation
only affects the differential and not the product.



Now we recall that the reduced bar construction associated with a CDGA-algebra A is a
DGA-algebra

B(A) =
(⊕

n≥0

An, | |s + | |t, ds + dt

)
with grading | | = | |s + | |t, where

|[a1| · · · |an]|t =
n∑

i=1

|ai|, |[a1| · · · |an]|s = n,

and with differential operator d = ds + dt, where

dt([a1| · · · |an]) = −
n∑

i=1

(−1)ei−1[a1| · · · |dA(ai)| · · · |an],

ds([a1| · · · |an])

= ξA(a1)[a2| · · · |an] +
n−1∑
i=1

(−1)ei [a1| · · · |ai ∗A ai+1| · · · |an] + (−1)en [a1| · · · |an−1]ξA(an),

and ei = i + |a1|+ · · · + |ai|.
The product on B(A) is the shuffle product ∗B:

[a1| · · · |ap] ∗B [b1| · · · |bq] =
∑
(α,β)

(−1)ε(π,a,b)[cπ(1)| · · · |cπ(p+q)],

where (α, β) runs through the (p, q)-shuffles, π is the permutation which determines them,
(c1, . . . , cp+q) = (a1, . . . , ap, b1, . . . , bq), and

ε(π, a, b) =
∑

π(i)>π(p+j)

|[ai]||[bj]|.

Small models. The importance of the reduced bar construction is clear from the following
definition of “small models” for DGA-algebras.

A homological model for a commutative DGA-algebra A is a free DGA-algebra HBA of
finite type and a semifull algebra contraction A

c⇒ HBA onto HBA (see [2]).
The object we start from is a generic commutative DGA-algebra A, factorized into the

model above as a TTP of exterior and polynomial algebras, A =
⊗̃ρ

i∈IAi.
Taking into account the ideas expressed in the previous section, we see that the main goal 

is to obtain a “chain” of contractions starting from the reduced bar construction B(A) of  A  
and ending up at a free DGA-algebra of finite type.

Three almost-full algebra contractions (i.e., semifull algebra contractions endowed with mul-
tiplicative projections) are mainly used in order to find the structure of a graded module on a 
homological model of the DGA-algebra A:



• The contraction CB⊗ from B(A⊗A′) to B(A)⊗B(A′), where A and A′ are two commu-
tative DGA-algebras (see [15]).

The morphisms (f, g, φ) that determine the contraction CB⊗ are given by the following
explicit formulas:

f [x1 ⊗ y1| · · · |xn ⊗ yn] =
n∑

i=0

ξA(x1 · · ·xi)ξA′(yi+1 · · · yn)[x1| · · · |xi]⊗ [yi+1| · · · |yn],

g([x1| · · · |xp]⊗ [y1| · · · |yq]) = [x1 ⊗ 1| · · · |xp ⊗ 1] ? [1⊗ y1| · · · |1⊗ yq ],

and the homotopy operator φ strongly depends on the SHI operator of a particular Eilenberg–
Zilber contraction (up to sign, CB⊗ coincides with an Eilenberg–Zilber contraction [15]).

For a given tensor product
⊗

i∈I Ai of commutative DGA-algebras, a contraction

B
(⊗

i∈I

Ai

)
⇒

⊗
i∈I

B(Ai)

can easily be determined by applying CsB⊗ several times in a suitable way. This new contraction
is also denoted by CB⊗.

• The isomorphism CBE : B(E(x, 2n + 1)) → Γ(σ(x), 2n + 2) of DGA-algebras (also de-
scribed in [15]). We note that the generator v of the previous divided power algebra
is denoted by σ(u), since gE(v) = σ(u), where σ is the Cartan suspension operator,
σ : A → B(A), σ(a) = [a]. The homotopy operator φE obviously becomes zero since CBE

is an isocontraction.
The latter isomorphism can be regarded, in a natural way, as a full algebra contraction (i.e.,

an almost-full algebra contraction endowed with an algebra homotopy operator).
• The contraction CBP from B(P (y, 2n)) to E(σ(y), 2n + 1) (see [15]). The generator of

the exterior algebra is denoted by σ(y) so that both elements y and σ(y) correspond to
each other by the projection fP and the inclusion gP of the contraction.

All of the previous contractions have already been extensively described in recent decades,
and so we do not dwell on them.

Composing these three contractions, we can introduce the following semifull algebra con-
traction C0 = (F,G,Φ):

B
(⊗

i∈I

Ai

)
⇒

⊗
i∈I

B(Ai) ⇒
⊗
i∈I

HBAi,

where HBAi represents an exterior or a divided polynomial algebra, depending on whether Ai

is a polynomial or an exterior algebra, respectively. Note that the product on
⊗

i∈I HBAi is
the natural one.

In the next step, we perturb C0 in order to obtain a homological model of the initial twisted
tensor product

⊗̃ρ

i∈IAi. The morphism ρ produces a perturbation-derivation δ onto the tensor
differential of B(

⊗
i∈I Ai). It is necessary to emphasize that the pointwise nilpotence of φδ is

guaranteed by the following facts:
• The homotopy operator φ increases the simplicial degree of B(

⊗
i∈I Ai) by one.



• The perturbation δ does not change the simplicial degree. Indeed, δ lowers the tensor
degree by one.

Therefore, applying SF-APL (see Theorem 2.1), we obtain a new semifull algebra contraction
(Fδ, Gδ ,Φδ):

B
(⊗̃ρ

i∈I
Ai

)
(C0)δ⇒

(⊗
i∈I

HBAi, dδ

)
,

where the differential dδ is determined by the perturbation process. This means that HBA=⊗
i∈I

(HBAi, dδ) is a homological model of A =
⊗̃

i∈IAi. We note that the homotopy operator

Φδ increases the simplicial degree at least by one.

Theorem 3.1 [2]. Let A be a finite-type twisted tensor product of exterior and polynomial
algebras. Then there exists a semifull algebra contraction from the reduced bar construction
B(A) to a free DGA-algebra H of finite type. That is, we have a homological model for A.
Moreover, H is a TTP of exterior and divided power algebras such that, at the graded algebra
level, we have:

• each E(u, 2n− 1) factor in A yields a Γ(σ(u), 2n) factor in H .
• each P (u, 2n) factor in A yields an E(σ(u), 2n + 1) factor in H .

Thus, a general algorithm for computing the homology of CDGAs is described. We note
that it is connected with the classical notion of homology, since, following Lambe’s notation,
for a given twisted tensor product A of exterior and polynomial algebras (see [26]), there exists
a free resolution A⊗̃ρ′

H that splits off from the reduced bar construction, and this splitting is
a semifull algebra contraction [2].

The computational cost for constructing the contraction (C0)δ is significant. Note that both
the inclusion and homotopy operators of the contractions CB⊗ give an answer in exponential
time, when evaluated on each element, since several Eilenberg–Zilber contractions are involved
at this stage. Thus, the first impression is that the evaluation of dδ at an element becomes, in
general, a process of exponential nature.

In spite of the discourse before, we can use the fact that dδ is a derivation in order to
improve the complexity problem. Indeed, since dδ is a derivation, it is only necessary to know
the value of this morphism applied to the generators of the model (note that the number of
generators is equal to the cardinality of the index set I). This is an enormous improvement in
the computation of the differential on the small model.

In order to clarify the general method, we study in detail what happens when we start
from the particular case of the following CDGA-algebra. In what follows, we assume that the
ground ring is Z.

Let As
e1

denote the CDGA-algebra that consists of the DG-module

E(x, 2s + 1)⊗̃ρ1P (y1, 2s + 2)

and the differential operator
ρ1(y1) = e1 x,

where e1 ∈ N. We start with the following contraction C0 = (F,G,Φ):

B(E(x, 2s + 1)⊗ P (y1, 2s + 1))
C

B⊗=⇒B(E(x, 2s + 1)) ⊗B(P (y1, 2s + 2))
C

BE
⊗C

BP=⇒ Γ(σ(x), 2s + 2)⊗E(σ(y1), 2s + 3).



In the previous notation, this means that

C0 = {(fE ⊗ fP ) ◦ f, g ◦ (gE ⊗ gP ), φ + g ◦ (1Γ ⊗ φP ) ◦ f}.

Now we want to apply the general method described above to this initial contraction. From
now on, the degrees of the algebra generators are omitted in order to simplify the notation.

The differential ρ1 produces a perturbation-derivation δ in

B(E(x) ⊗ P (y1))

in an obvious way.
Applying the perturbation machinery, we obtain the following semifull algebra contraction:

B(As
e1

)
(C0)δ⇒ (Γ(σ(x)) ⊗E(σ(y1)), dδ),

where dδ is the differential determined in the perturbation process.
Hence,

HBAs
e1

= (Γ(σ(x)) ⊗E(σ(y1)), dδ)

is a homological model for this CDGA, where the differential operator is given by the formula

dδ = F ◦ δ ◦
(∑

(−1)i(Φ ◦ δ)i
)
◦G

= (fE ⊗ fP ) ◦ f ◦ δ ◦
(∑

(−1)i
(
(φ + g ◦ (1Γ ⊗ φP ) ◦ f) ◦ δ

)i
)
◦ g ◦ (gE ⊗ gP ).

Since dδ is a derivation, it is only necessary to evaluate the differential at each of the gen-
erators σ(x) and σ(y1). In this particular case, the formula of dδ reduces to F ◦ δ ◦G since
Φ ◦ δ ◦G = 0. Calculating the image of the differential, we obtain dδ(σ(x)) = 0 and dδ(σ(y1)) =
−e1 · σ(x).

This procedure may be generalized in a proper way to every CDGA belonging to the family
A

s,(r1,r2,...,rn−1)
e1,e2,...,en of CDGA-algebras consisting of the DG-module

E(x, 2s + 1)⊗̃ρ1P (y1, 2s + 2)⊗̃ρ2P (y2, (2s + 2)(r1 + 1))⊗̃ρ3

· · · ⊗̃ρnP (yn, (2s + 2)(r1 + 1) · · · (rn−1 + 1))

and the differential operator

ρi(yi) = ei x ⊗ yr1
1 ⊗ yr2

2 ⊗ · · · ⊗ y
ri−1
i−1 , 1 ≤ i ≤ n,

where ei ∈ N with e1 > e2 > · · · > en and ri ∈ N ∪ {0}.
Taking , as perturbation datum, the derivation morphism δ induced by ρi, we can consider

a similar perturbation process for the contraction corresponding to C0.
We should take into account the following important fact: for a particular class of elements,

the perturbed projection Fδ (a quasi-algebra projection) is a multiplicative morphism. For
example:

Fδ([x

m times︷ ︸︸ ︷
⊗y1

r1 ] ∗B · · · ∗B [x⊗ y1
r1 ]) = Fδ([x

m times︷ ︸︸ ︷
⊗y1

r1 ]) ∗HB . . . ∗HB Fδ([x⊗ y1
r1 ]), (4)



where ∗HB denotes the natural product on the homological model.
In this way, it is easy to find the action of dδ on each generator σ(yi):

dδ(σ(yi))

=−ri−1!

[ ∏i−1
k=1(rk+1)

]
!

(ri−1+1)!
∏i−2

k=1(rk+1)
∏ i−1

j=k+1(rj+1)
eiei−1

ri−1

i−2∏
k=1

ek
rk

∏ i−1
j=k+1(rj+1)σ(x)

∏ i−1
k=1(rk+1), (5)

where i = 1, 2, . . . , n.
This completes the study of the calculation of the homology of algebras in the family

A
s,(r1,... ,rn−1)
e1,... ,en . We note that, although the coefficients are sufficiently large, taking Z(p) as

the ground ring, we enormously simplify the difficulties of the real computation of the above
formulas, which have already been implemented in Mathematica [5].

In view of these and similar positive results, we may anticipate the achievement of an
“efficient” general algorithm for computing the homology of CDGAs.

§4. The second algorithm: p-local homology of the K(π, n) ×τ K(π′, n′) spaces

A classical result in algebraic topology is that every simplicial set factorizes, up to homotopy,
into a twisted Cartesian product of irreducible prime factors. These prime spaces K(π, n),
called Eilenberg–MacLane spaces, have nontrivial homotopy group π in only one dimension n.
On the other hand, a common technique in homotopy theory is to “localize” the homological
information, i.e., the homology is sensitive to only one prime.

Our second algorithm computes the p-local homology of a principal twisted Cartesian prod-
uct (PTCP)

X = X(π,m, τ, π′, n) = K(π,m) ×τ K(π′n),

where both K(π,m) and K(π′, n) are Eilenberg–MacLane spaces and π and π′ are finitely
generated Abelian groups, m,n ∈ N. This study is partially represented in [1].

If π is an ordinary (discrete) Abelian group, we can regard Gπ as a simplicial group with
π in each degree and the identity mappings as the face and degeneracy operators. Then the
simplicial group K(π, n) is defined as follows: K(π, 0) = Gπ and K(π, n + 1) = WK(π, n),
where W is the classifying construction [31]. We recall that the classifying construction W (G),
which is canonically associated with a simplicial group G, is the following simplicial group:

W 0(G) = {[ ]};
Wn(G) = Gn−1 × · · · ×G0, n > 0;

s0[ ] = [e0];

∂i[g0] = [ ], i = 0, 1;

∂0[gn, . . . , g0] = [gn−1, . . . , g0],

∂i+1[gn, . . . , g0] = [∂ign, . . . , ∂1gn−i+1, gn−i−1 + ∂0gn−i, gn−i−2, . . . , g0],

s0[gn−1, . . . , g0] = [en, gn−1, . . . , g0],

si+1[gn, . . . , g0] = [sign, . . . , s0gn−i, en−i, gn−i−1, . . . , g0],

where [ ] is the unique element of G0, en is the identity element of (G, +), and [gn−1, . . .  , g0]  
is a typical element of Gn, for n >  0.



Now we recall several results that allow us to determine the p-local homology of a PTCP of
Eilenberg–MacLane spaces.

On the one hand, for any commutative simplicial group G, there exists a semifull algebra
contraction C(W (G)) ⇒ B(C(G)) (see [39, 3]).

On the other hand, taking Z(p) as the ground ring, we can define a semifull algebra contrac-
tion from the reduced bar construction of a Cartan elementary complex [9] to a tensor product
of Cartan’s elementary complexes [38].

This “endogamic” process allows us to completely determine the p-local homology of an
Eilenberg–MacLane space. Note that, for a given contraction from the CDGA A to the CDGA
A′ with multiplicative inclusion or projection, the contraction connecting the reduced bar
constructions B(A) and B(A′) is, indeed, a semifull algebra contraction [38].

In order to construct a homological model for C(K(π, n)), where π is a finitely generated
Abelian group, we use two particular almost full algebra contractions, which are established
in [15]. On the one hand, the contraction B(Λ[Z]) ⇒ E(u, 1), where E(u, 1) is the exterior
algebra; on the other hand, the contraction B(Λ[Zpr ]) ⇒ E(u, 1) ⊗ρ Γ(v, 2), where ρ is the
derivation with ρ(v) = pr · u and ρ(u) = 0.

Combining the above results, we obtain the following chain of DGA-algebra contractions:

C(K(π, 1)) ⇒ C(W (K(π, 0))) ⇒ WN(C(K(π, 0))) ⇒ B(Λ[π]) ⇒ G(π, 1);

and hence,

C(K(π, n + 1)) ⇒ C(W (W
n

(K(π, 0)))) ⇒ WN(W
n

N(C(K(π, 0))))

⇒ B(W
n

N(C(K(π, 0))) ⇒ B(B
n
(Λ[π])) ⇒ B(G(π, n)) ⇒ G(π, n + 1).

Using them, we easily prove the following theorem from [36]:

Theorem 4.1 [1]. Let Λ = Z(p) be the ground ring. Let n be a nonnegative integer, and
let π be a finitely generated Abelian group. There is a semifull algebra contraction cπ,n

from C(K(π, n)) to a tensor product G(π, n). The latter is composed of Cartan’s elementary
complexes corresponding to admissible sequences [9].

Obviously, the p-local homology of K(π, n) is the p-local homology of G(π, n), which can
easily be computed since G(π, n) is a free DGA-algebra of finite type.

Once the p-local homology of an Eilenberg–MacLane space is already found from our point
of view, we inquire for the p-local homology of a PTCP of two Eilenberg–MacLane spaces.

Actually, this homology is given by an extension of Brown’s theorem.

Theorem 4.2 [1]. There is a contraction cτ from C(X(π,m, τ, π′, n)) to a free DG-module M
of finite type that can be represented in the form

(G(π,m) ⊗G(π′, n), dG(π,m) ⊗ 1 + 1⊗ dG(π′,n) + dτ).

However, we can deal with particular PTCPs of Eilenberg–MacLane spaces, namely, those
that are naturally endowed with a group structure from that of their component factors.
Furthermore, the twisting function τ itself is a group homomorphism.



A classical result [31] asserts that if X is a commutative simplicial group, then X is homo-
topically equivalent to a banal Cartesian product of Eilenberg–MacLane spaces. We assume 
that X(π, m, τ, π′, n) is a simplicial group, considering, as inner product, the natural inner 
product of the Cartesian product K(π, m) × K(π′, n). In light of the previous comment, it 
seems possible to transform the simplicial group X(π, m, τ, π ′, n) into a simple Cartesian prod-
uct by means of some simplicial techniques. Here, we use a different approach in order to 
compute the p-local homology of X in this case.

Thus, we can apply an improved version of Brown’s theorem concerning the algebra cat-
egory via SF-APL, so that the differential operator dτ obtained by the perturbation process 
is completely determined if we know its images acting on the generators of the final algebra 
G(π, m)©G(π′, n).

Theorem 4.3 [1]. Assume that X(π, m, τ, π′, n), endowed with the natural inner product 
of the Cartesian product X(π, m, 0,π′,n), is a commutative simplicial group. Then cτ is a 
semifull algebra contraction.

Thus, the improvement in the computation of the differential is enormous in comparison 
with the general case. We try to develop new methods for reducing the high exponential nature 
of the general algorithm.

In this sense, an interesting challenge is to obtain a universal “twisting cochain” t in the 
sense of Prouté [34] such that there exists a contraction

C(W (G) × τW (G′)) ⇒ B(C(G))© t B(C(G′)).

This result can be regarded as an extension of Brown’s theorem in the special case where we 
start from a TCP of classifying spaces.

§5. The third algorithm: a new method for computing the Steenrod squares

The third example is provided by a combinatorial method for computing Steenrod squares 
of a simplicial set.

Different constructions of Steenrod squares. There are several well-known methods for 
constructing the Steenrod squares [47].

One of them is via the cohomology of the Eilenberg–MacLane spaces (see, e.g., [31], p. 107). 
Another method involves a family of morphisms {Di} measuring the lack of commutativity 

of the cup product on the cochain level. This sequence of morphisms is called a higher diagonal 
approximation, and its existence is always guaranteed by the method of acyclic models [13]. In 
this way, we can derive a recursive procedure to obtain the formula for any Di (see [12] and 
[32, Sec. 7]).

This latter method can be improved by using some simplicial objects [21]. (In this way, new 
explicit formulas expressing the component morphisms of a higher diagonal approximation in 
terms of the face operators are finally established.) This leads to a new and powerful algebro-
topological tool.

We start from a higher diagonal approximation determined in [37], where the following 
formula for Di is obtained in terms of the component morphisms of an Eilenberg–Zilber con-
traction

C?(X × X) ⇒ C?(X)© C?(X),



where C?(X) denotes the normalized chain complex of a given simplicial set X:

Di = AW ◦ (t ◦ SHI)i ◦∆,

where the morphisms ∆ and t are defined by the formulas

∆: C?(X) → C?(X ×X), ∆(x) = (x, x),

t : C?(X ×X) → C?(X ×X), t(x1, x2) = (x2, x1).

On the one hand, the component morphisms of the contraction above are defined in terms
of the face operators (∂i) and the degeneracy operators (si) of the simplicial set X. On the
other hand, the formula for any morphism Di always involves the homotopy operator of the
Eilenberg–Zilber contraction mentioned above, and the explicit formula for this morphism is
determined by shuffles (some special types of permutations) of degeneracy operators. Conse-
quently, if we directly express the morphisms Di in terms of the face and degeneracy operators
of X, then the number of summands appearing in the formulas of any morphism D i evaluated
for an element of degree n is at least 2n, in general. Therefore, any algorithm designed to start
from these formulas is too slow and actually useless for practical implementation.

In spite of this, the idea of simplifying these formulas arises in a natural way. This simplifi-
cation (or normalization) is based on the fact that any composition of the face and degeneracy
operators of every simplicial set can be factorized in a “canonical way” (see [31, p. 4]). More
precisely, any composition of this type can be uniquely expressed in the form

sjt · · · sj1∂i1 · · ·∂is , (6)

where jt > · · · > j1 ≥ 0, is > · · · > i1 ≥ 0 and all indices exceed the degree of the elements
over which such a morphism is defined to act.

Moreover, since the image of a morphism Di lies in the tensor product C?(X) ⊗ C?(X),
we see that the summands of the simplified formula for Di that include factors involving
any degeneracy operators in their expressions must be eliminated, because they vanish at the
normalized chain complex associated with X. Thus, the formulas for the morphisms Di can
be represented as follows.

Theorem 5.1. Let Z2 = Z/2Z be the ground ring. Then, the morphism

hn = AW ◦ (t ◦ SHI)n : Cm(X ×X) → (C?(X) ⊗ C?(X))m+n

has the following form:
• If n is odd, then

AW (t SHI)n =
m∑

in=n

in−1∑
in−1=n−1

· · ·
i1−1∑
i0=0

∂i0+1 · · ·∂i1−1∂i2+1 · · ·∂in−2−1∂in−1+1 · · ·∂in−1

⊗ ∂0 · · ·∂i0−1∂i1+1 · · ·∂in−1−1∂in+1 · · ·∂m.



• If n is even, then

AW (t SHI)n =
m∑

in=n

in−1∑
in−1=n−1

· · ·
i1−1∑
i0=0

∂i0+1 · · ·∂i1−1∂i2+1 · · ·∂in−1−1∂in+1 · · ·∂m

⊗ ∂0 · · · ∂i0−1∂i1+1 · · ·∂in−2−1∂in−1+1 · · · ∂in−1.

Thus, the classical definition of Steenrod squares,

Sqi(c) =
{

(c⊗ c)Dj−i, i ≤ j,

0, i > j,

where c ∈ Hom(Cj(X), Z2), is complemented by a manageable combinatorial definition of the
higher diagonal approximation.

Theorem 5.2. Let the ground ring be Z2. If c ∈ Hom(Cj(X), Z2) and x ∈ Cj+i(X), then the

Steenrod squares Sqi : Hj(X; Z2) → Hj+i(X; Z2) are defined by the following formulas:
• If i ≤ j and j ≡ i (mod 2), then

Sqi(c)(x)

=
m∑

in=S(n)

in−1∑
in−1=S(n−1)

· · ·
i2−1∑

i1=S(1)

c ∂i0+1 · · ·∂i1−1∂i2+1 · · ·∂in−1−1∂in+1 · · ·∂m(x)

⊗ c ∂0 · · · ∂i0−1∂i1+1 · · · ∂in−2−1∂in−1+1 · · · ∂in−1(x).

• If i ≤ j and j + 1 ≡ i (mod 2), then

Sqi(c)(x)

=
m∑

in=S(n)

in−1∑
in−1=S(n−1)

· · ·
i2−1∑

i1=S(1)

c ∂i0+1 · · ·∂i1−1∂i2+1 · · ·∂in−2−1∂in−1+1 · · ·∂in−1(x)

⊗ c ∂0 · · · ∂i0−1∂i1+1 · · · ∂in−1−1∂in+1 · · · ∂m(x).

• If i > j, then Sqi(c)(x) = 0. In the formulas above, n = j − i, m = j + i, and

S(k) = ik+1 − ik+2 + · · ·+ (−1)k+n−1in + (−1)k+n

⌊
m + 1

2

⌋
+

⌊
k

2

⌋
,

for all 0 ≤ k ≤ n, where i0 = S(0).

It is clear that, at least in the case where X has a finite number of nondegenerate simplices 
in each dimension, the explicit formulas above constitute an actual algorithm for calculating 
the Steenrod squares.

If we assume that the face operators are evaluated in constant time, then the computational 
complexity of these formulas is measured by the number of face operators involved in the 
de
nition of Sqi(c), which is O((i + j)3).



It is necessary to discuss several facts on the computation of these formulas. First of all,
if X presents a finite number of nondegenerate simplices at each degree, our method can be
regarded as an actual algorithm. For instance, if the number of nondegenerate simplices in
every X` is O(`2), then, assuming that each face operator of X is an elementary operation, we
see that the complexity of our algorithm is O((i + j)5).

Nevertheless, the most interesting examples appearing in algebraic topology show, in gen-
eral, a high complexity in the number of nondegenerate simplices at each degree, so that our
method is only useful in low dimensions. Perhaps, appropriately combining these combinato-
rial formulas with classical properties of Steenrod squares (see [11, 14]) and well-known studies
for calculating cocycles, we could substantially improve the method.

The general strategy in our research is as follows: we start from some algorithms in algebraic
topology and homological algebra and improve them by applying refined perturbation tech-
niques. Although the complexity of these algorithms often bears exponential costs, in many
cases we are able to reduce this exponential nature by considering some particular properties.

A complementary work to be performed is the real implementation of the algorithms de-
signed.
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