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Abstract

Let G ×τ G′ be the principal twisted Cartesian product with fibre G, base G and
twisting function τ : G′∗ → G∗−1 where G and G′ are simplicial groups as well as G×τG′;
and CN(G)⊗t CN(G′) be the twisted tensor product associated to CN(G×τ G′) by the
twisted Eilenberg-Zilber theorem. Here we prove that the pair (CN(G) ⊗t CN(G′), µ)
is a multiplicative Cartan’s construction where µ is the standard product on CN(G)⊗
CN(G′). Furthermore, assuming that a contraction from CN(G′) to HG′ exists and
using techniques from homological perturbation theory, we extend the former result to
other “twisted” tensor products of the form CN(G)⊗HG′.
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1 Introduction

The twisted Eilenberg-Zilber theorem [Bro67, Shi62] establishes a contraction (a special
chain homotopy equivalence) from the normalized canonical chain complex CN(F ×τ B) of
the twisted cartesian product F ×τ B to the twisted tensor product (in the sense of [B59])
CN(F )⊗t CN(B). As a module, CN(F )⊗t CN(B) is the ordinary tensor product of CN(F )
with CN(B); both of which are DGA-algebras, when F and B are simplicial groups. In
a recent paper [AAFR07], the authors proved that if F, B and F ×τ B are groups, then
CN(F )⊗t CN(B) is a DGA-algebra with respect to the module map

µ : CN(F )⊗t CN(B) ⊗ CN(F )⊗t CN(B)→ CN(F )⊗t CN(B)

by µ = (µCN (F ) ⊗ µCN (B))(1 ⊗ T ⊗ 1) where µCN (F ) and µCN (B) are the products in CN(F )
and CN(B) respectively, and T (x⊗ y) = (−1)|x| |y|y ⊗ x.

Cartan introduces in [Car56] the notion of construction as an important tool for ho-
mology computations and to the study of cohomology operations (for further details, see
[Moo76]). It is well-known that if F is a group then CN(F ) ⊗t CN(B) is a Cartan’s con-
struction. Furthermore, Proute [Pro84] proved that if G is an abelian simplicial group then
CN(G) ⊗t CN(W (G)), associated to normalized chain complex of the universal G-bundle
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G ×τ W (G) (see [May67, p.88]) by the twisted Eilenberg-Zilber theorem, is a multiplica-
tive Cartan’s construction. Here we extend this result to a wider class of principal twisted
cartesian product of simplicial groups (TCP). Before stating this result we recall the notion
of TCP. Consider two simplicial sets F , B and a simplicial group G which operates on F
from the left. A Twisted Cartesian Product E with fibre F , base B and structural group G
consists of a simplicial set En = Fn ×Bn and

∂0(f, b) = (τb ∗ ∂0f, ∂0b)
∂i(f, b) = (∂if, ∂ib), for i > 0
si(f, b) = (sif, sib), for i ≥ 0;

as face and degeneracy operators. Here ∗ : G × F → F is the action of G on F and τ is a
twisting function, i.e., τn : Bn → Gn−1, n ≥ 1 satisfies

∂0τ(b) = [τ(∂0b)]−1 · τ(∂1b)
∂iτ(b) = τ(∂i+1b), for i > 0
siτ(b) = τ(si+1b), for i ≥ 0
τ(s0b) = en,

where en denotes the identity element of the corresponding group Gn. We write E = F×τB.
If F = G then we say that this PCT is principal. Here are our main results.

Theorem 1.1. Let F and B be simplicial groups and τ : B → F be a twisting function,
such that, the principal twisted Cartesian product (PTCP), F ×τ B, with fibre F and base
B is a simplicial group. Then, the pair

(CN(F )⊗t CN(B), µ)

associated to CN(F×τB) by the twisted Eilenberg-Zilber theorem, is a multiplicative Cartan’s
construction.

If we also suppose that F is reduced and there exist a contraction c from CN(B) to a
DGA-module HB,

c : φ:CN(B)
f
⇀↽
g
H(B).

Then, using, the techniques of homological perturbation theory, it is able to construct (see
[LS87, AAFR09]) a contraction

φ:CN(F ×τ B)
f
⇀↽
g

(CN(F )⊗HB, D)

where D denotes the differential of the complex on the left and has the form d⊗1+1⊗d+dt∩
(“terms of higher order”).

In the case that HB is small enough so that the computation of its homology can
actually be carried out, we say that the pair (c,HB) is a homological model for B. Let us
observe that, in this situation, (CN(F ) ⊗HB, D) is similar to the dual of Hirsch complex
[Hir53].
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Theorem 1.2. Under the hypotheses of the theorem 1.1 and assuming that F is reduced,
HB is a DGA-algebra and c is a semi-full algebra contraction (a notion of contraction
between algebras weaker than algebra contraction). It is able to state that

CN(F )⊗H(B), D

is a multiplicative Cartan’s construction as well.

2 The proof of the theorem 1.1

Firstly, we will quickly review basic notions of Homological Algebra, and introduce the
notation and terminology that we use throughout the remainder of this article. More details
can be found in [McL95]. Let Λ be a commutative ring with non zero unit, taken henceforth
as ground ring and fixed throughout, and A be an augmented differential graded algebra
over Λ, briefly a DGA-algebra. The differential, product, augmentation and coaugmentation
of A will be denoted respectively by dA, µA, εA and ηA. Nevertheless, we will sometimes
write them simply as d, µ, ε and η when no confusion can arise. In what follows, the
Koszul sign conventions will be used. A morphism ρ : A∗ → A∗−1 is called derivation if it
is compatible with the algebra structures on A. The degree of an element a ∈ A is denoted
by |a|. In addition, we recall that if B is also a DGA-algebra, then A⊗ B has canonically
associated an algebra structure by means of the morphism µA⊗B = (µA⊗µB)(1A⊗T ⊗ 1B),
where T (b ⊗ a) = (−1)|b| |a|a ⊗ b. If the DG-algebra A is connected, that is A0 = Λ and
d1 : A1 → A0 is zero, then there is a canonical augmentation εA = 1Λ : A0 → Λ. If A
is a DG-algebra,then A] will denote the graded algebra obtained from A by setting the
differential of A equal to zero (i.e. forgetting the differential), and if M is an A-module,
then M ] will denote A]-module obtained by setting the differential equal to zero.

We will use here the twisted tensor product structure. Let A be a DG-algebra and C
be a DG-coalgebra (we denote by ∆C its coproduct). A twisting cochain is a morphism of
graded modules t : C∗ → A∗−1 such that

dAt+ tdC + t ∪ t = 0, εAt = 0, tηC = 0;

where t∪ t = −µA(t⊗ t)∆C . It is well-known that dt = dA⊗ 1 + 1⊗ dC + t∩ is a differential
on A⊗ C, where the morphism t∩ is defined by:

t∩ = (µA ⊗ 1)(1⊗ t⊗ 1)(1⊗∆C). (1)

The DG-module (A ⊗ C, dt) is called the twisted tensor product (or TTP) of A and C
along t. We will also use the notation A⊗t C for such a DG-module.

A construction is a triple (A,N,M) where

1. A is a DGA-algebra.

2. M is an augmented A-module.
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3. N is a DGA-module such that N = M = Λ ⊗A M = M/I(A)M where I(A) is the
augmentation ideal of A.

satisfying that M ] = A] ⊗N ].

Example 2.1. The twisted tensor product A⊗tC gives rise to a construction (A,C,A⊗tC).

A multiplicative construction is a construction (A,N,M) together with the structure of
an algebra on M and also on N such that A] ⊗N ] →M ] is an isomorphism of algebras.

Hence, the proof of Theorem 1.1 follows at once from the fact that the morphism

µ = (µCN (F ) ⊗ µCN (B))(1⊗ T ⊗ 1)

endows to CN(F )⊗t CN(B) of a DGA-algebra structure (see [AAFR07, Theorem 3.9.]).

3 The proof of the theorem 1.2

We assume throughout this section that M and N denote two DGA-modules such that a
contraction from N to M exists.

We recall that a contraction (see [EM53], [HK91]) is a data set c : {N,M, f, g, φ} where
f : N →M and g : M → N are morphisms of DGA-modules (respectively, called the pro-
jection and the inclusion) and φ : N → N is a morphism of graded modules of degree +1
(called the homotopy operator). These data are required to satisfy the rules: (c1) fg = 1M ,
(c2) φdN + dNφ+ gf = 1N (c3) φφ = 0, (c4) φg = 0 and (c5) fφ = 0. The last three are
called the side conditions [LS87]. In fact, these may always be assumed to hold, since the
homotopy φ can be altered to satisfy these conditions [GL89]. These formulas imply that
both chain complexes N and M have the same homology. We will also denote a contraction

c by φ:N
f
⇀↽
g
M . The Eilenberg-Zilber theorem [EZ53] provides the most classic example of

a contraction of chain complexes.
Now we add an additional structure: N is a DGA-A-module with product µN : A⊗N →

N . No such assumption is made on M (M is a DGA-module) but the question will arise
if (M,µM ) where µM = φµN(1 ⊗ g) : A ⊗M → M becomes a DGA-A-module. Under the
hypothesis that φµN(1⊗ g) = 0 we give an affirmative answer. Moreover, the injection g is
A-lineal. The proof of this result is a simple inspection.

Now, we recall the concept of a perturbation datum. let f : N → N be a morphism
of graded modules. The morphism f is pointwise nilpotent if for all x ∈ N (x 6= 0), a
positive integer n exists (in general, the number n depends on the element x) such that
fn(x) = 0. A perturbation of a DGA-module N is a morphism of graded modules δ : N → N
of degree −1, such that (dN +δ)2 = 0 and εAδ1 = 0. A perturbation datum of the contraction
c : {N,M, f, g, φ} is a perturbation δ of the DGA-module N verifying that the composition
φδ is pointwise nilpotent.
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A Transference Problem consists of a contraction c : {M, N, f, g, φ} together with a per-
turbation δ of the DGA-module N . The problem is to determine new morphisms dδ, fδ, gδ
and φδ such that cδ : {(N, dN + δ), (M,dM + dδ), fδ, gδ, φδ} is a contraction.

The Basic Perturbation Lemma ([Bro67, GL89, GLS91, Rea00]) gives an explicit solution
to the Transference Problem, assuming that δ is a perturbation datum of c.

Theorem 3.1. (BPL)
Let c : {N,M, f, g, φ} be a contraction and δ : N → N a perturbation datum of c. Then,

a new contraction

cδ : {(N, dN + δ), (M,dM + dδ), fδ, gδ, φδ}
is defined by the formulas: dδ = fδΣδ

cg; fδ = f(1− δΣδ
cφ); gδ = Σδ

cg; φδ = Σδ
cφ; where

Σδ
c =

∑
i≥0

(−1)i (φδ)i = 1− φδ + φδφδ − · · ·+ (−1)i(φδ)i + · · · .

Let us note that Σδ
c(x) is a finite sum for each x ∈ N , because of the pointwise nilpotency

of the composition φδ. Moreover, it is obvious that the morphism dδ is a perturbation of
the DG-module (M,dM).

The twisted Eilenberg-Zilber theorem can be seen as an important example of the use-
fulness of this lemma (see [Shi62]). It solves the Transference Problem for twisted cartesian
products.

In the theorem below we assume that N is a DGA-A-module. This theorem gives
conditions under which the BPL works preserving the DGA-A-module category.

Theorem 3.2. Let δ : N → N be a perturbation datum of φ:N
f
⇀↽
g
M such that δ is compatible

with the A-module structure on N (i.e., µN(1⊗ δ) = δµN). If

φµN(1⊗ g) = 0 and φµN(1⊗ φ) = 0,

then the DGA-module Mδ = (M,d+dδ), obtained by applying BPL, is a DGA-A-module with
regards to the module map µMδ = fµN(1⊗ g) and the injection of the perturbed contraction,
gδ, is A-lineal.

Proof. This is again seen by inspection.

Let us recall that the DGA-module A ⊗ N has a trivial structure of A-module with
regards to the module map

µA⊗N : A⊗ (A⊗N) → A⊗N
a1 ⊗ (a2 ⊗ n) → µA(a1 ⊗ a2)⊗ n.

From φ:N
f
⇀↽
g
M , it is well-known that we can establish this new contraction

1⊗φ:A⊗N
(1⊗f)
⇀↽

(1⊗g)
A⊗M. (2)
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It may be readily verified that the following identities hold:

(1⊗ φ)µA⊗N(1⊗ (1⊗ g)) = 0, (1⊗ φ)µA⊗N(1⊗ (1⊗ φ)) = 0.

µA⊗M = (1⊗ f)µA⊗N(1⊗ (1⊗ g)).

With these identities at hand, we can write the following consequence of Theorem 3.2.

Corollary 3.3. If δ : A ⊗ N → A ⊗ N is a perturbation datum for (2) such that it is
compatible with the A-module structure on A ⊗ N , then the DGA-module (A ⊗ M)δ =
(A⊗M,d+ dδ), obtained by applying BPL, is a DGA-A-module with regards to the module
map µA⊗M and the injection of the perturbed contraction, (1⊗ g)δ, is A-lineal.

In the sequel, we focus on the case A = CN(F ) and N = CN(B) where F and B are
simplicial groups. If we assume that a contraction, c,

φ:CN(B)
f
⇀↽
g
H(B) (3)

exists, then we can establish the following contraction

CN(F )⊗ CN(B) ⇀↽ CN(F )⊗HB. (4)

Let τ : B → F be a twisting function, such that, the principal twisted Cartesian product
(PTCP), F ×τ B, with fibre F and base B is a simplicial group. The complex CN(F ) ⊗t
CN(B) denotes the TTP associated to CN(F×τB) by the twisted Eilenberg-Zilber theorem.

Lemma 3.4. The morphism t∩ = (µCN (F )⊗ 1)(1⊗ t⊗ 1)(1⊗∆CN (B)) (see (1)) satisfies the
following properties:

1. If F is reduced, then t∩ is a perturbation datum of the contraction (4).

2. t∩ is compatible with the CN(F )-module structure on CN(F )⊗tCN(B) (i.e., µF⊗B(1⊗
t∩) = t ∩ µF⊗B).

Proof.

1. See [LS87, Lemma 3.4] or [AAFR09, proposition 5.3].

2. This is again seen by inspection.

Hence, if F is reduced, we can perturb the contraction (4) using t∩ as a perturbation
datum. With these inputs, the BPL gives as output the following contraction:

CN(F )⊗t CN(B) ⇀↽ (CN(F )⊗HB, D). (5)

where D denotes its differential.
Now, we can state:
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Proposition 3.5. If F is reduced, then (CN(F )⊗HB, D) becomes a DGA-CN(F )-module
with regards to the trivial module structure on CN(F )⊗HB.

Proof.
The proof follows from Corollary 3.3 and lemma 3.4.

Focusing only on the underlying graded module structure. We have the following iden-
tity:

I(CN(F ))(CN(F )⊗HB) = I(CN(F ))⊗HB.

It may be readily verified that the following properties hold:

1. t ∩ (I(CN(F ))⊗ CN(B)) ⊆ I(CN(F ))⊗ CN(B).

2. The correspondent restrictions of the morphisms composing the contraction (5) form
the following contraction:

I(CN(F ))⊗ CN(B) ⇀↽ I(CN(F ))⊗HB.

The formula for the differential of the complex (CN(F )⊗HB, D), given by the BPL, is
D = d⊗ 1 + 1⊗ d+ dt∩ where

dt∩ = (1⊗ f)t ∩ (1⊗ g)− (1⊗ f)t ∩ (1⊗ φ)t ∩ (1⊗ g) + · · · (6)

As immediate consequence of this formula and the properties above, we have

D(I(CN(F ))⊗HB) ⊆ I(CN(F ))⊗HB.

Hence, (I(CN(F ))⊗HB,D) is a DGA-CN(F )-submodule of (I(CN(F ))⊗HB,D).

Proposition 3.6. We have the following identity of DGA-modules

HB = (CN(F )⊗HB,D)/(I(CN(F ))(CN(F )⊗HB,D))

Proof.
On the one hand, it is easy to see that this two complexes are isomorphic as graded

module.
On the other hand, taking into account that t vanishes on one-simplices since F is

reduced (see [May67]) and the formula (6), we have

dt∩(f ⊗ b) =
{

0 |b| ≤ 1
0 mod I(CN(F ))⊗HB |b| > 1

Hence, we have that the differential of both complexes are the same.

Proposition 3.7. Under the hypotheses of the Preposition 3.5 and 3.6. We can state that
(CN(F )⊗HB, D) is a construction.
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Finally, If we assume that the contraction (3) is semi-full, we will get the desired result.
Now, we recall that c is a semi-full algebra contraction ([Rea00]) if the injection, g, is a
morphism of DGA-algebras and the projection, f , and the homotopy operator, φ, satisfy
the following properties:

fµC(B)(φ⊗ φ) = 0, fµC(B)(φ⊗ g) = 0, fµC(B)(g ⊗ φ) = 0,

φµC(B)(φ⊗ φ) = 0, φµC(B)(φ⊗ g) = 0, φµC(B)(φ⊗ φ) = 0.

Under these conditions we can say that these contractions (4) and (5) are semi-full (see
[Rea00, Theorem 4.18]). Moreover, (CN(F ) ⊗ HB, D) is a DGA-algebra with regards to
the standard product CN(F )⊗HB. From this fact, we conclude that (CN(F )⊗HB, D) is
a multiplicative construction.

4 Conclusions

In this paper we have faced the problem of transferring the multiplicative construction
structure up to contraction. The problem of transferring other structures (e.g. algebra,
coalgebra, TTP) up to contraction has been widely treated in the literature [GLS91, Rea00,
AAFR05]. In general, we have that (co)algebra and TTP become A∞-(co)algebra and A∞-
TTP via contraction, respectively.

We proved that the property of being a multiplicative construction on CN(F )⊗t CN(B)
has been transferred to (CN(F ) ⊗ HB, D) via contraction. However, if we focus on the
structure of TTP, we only have that (CN(F )⊗HB, D) is an A∞-twisted tensor product of
CN(F ) (algebra) and HB (A∞-coalgebra) along t̄ = tg (A∞-twisted cochain), see [AAFR05,
Theorem 2.1].
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(exposé 2 à 11). Ecole Normale Superière, Paris.

[EM53] Eilenberg, S., Mac Lane, S. (1953). On the groups H(π, n), I. Annals of Math.
58:55-106.

[EZ53] Eilenberg, S., Zilber, J.A. (1953). On products of complexes. Am. J. Math. 75:200-
204.

[GL89] Gugenheim, V.K.A.M., Lambe, L.A. (1989). Perturbation theory in Differential
Homological Algebra I, Illinois J. Math. 33 (4):566–582.

[GLS91] Gugenheim, V.K.A.M., Lambe, L.A., Stasheff, J.D. (1991). Perturbation theory
in Differential Homological Algebra II, Illinois J. Math. 35 (3):357–373.

[Hir53] Hirsch, G. (1953). Sur les groups d’homologies des espaces fibres. Bull. Soc. Math.
de Belg. 6:79–96.

[HK91] Huebschmann, J., Kadeishvili, T. (1991). Small models for chain algebras. Math.
Z., 209:245–280.

[LS87] Lambe, L.A., Stasheff, J.D. (1987). Applications of perturbation theory to iterated
fibrations. Manuscripta Math., 58:367–376.

[McL95] Mac Lane, S. (1995). Homology. Classics in Mathematics Springer-Verlag, Berlin.
Reprint of the 1975 edition.

[May67] May, J.P. (1967). Simplicial Objects in Algebraic Topology . Princenton: Van Nos-
trad.

[Moo76] Moore, J.C. (1976). Cartan’s constructions. Asterisque 32-33, 173-212.
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