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Abstract: The use of stainless steel rebars to reinforce masonry structures has become established
as an eminently efficient methodology. From among the numerous techniques available, bed-joint
structural repointing and superficial reinforcement with rebars or meshes attached to surfaces have
become widespread, thanks to the excellent results they have produced in recent decades. Both
techniques imply the use of diameters less than 6 mm and thin coverings. This article deals with the
characterization of the bonding behavior of the rebar under these special circumstances. To this end,
several finite element analyses have been carried out to identify the possible relationships between
pull-out forces in various situations. These models allow certain conclusions to be drawn regarding
the influence of the thickness of covering, boundary conditions, and geometrical aspects of the rebars
in bonding. Certain mathematical expressions that relate the various conclusions from this research
are finally laid out.

Keywords: masonry reinforcement; stainless rebar; finite element analysis; bonding behavior; bound-
ary conditions

1. Introduction

The repair of masonry structures concerns society. Historical towns not only form part
of the historical and cultural heritage but also constitute a major source of income for the
economy of many countries worldwide. Historical towns are usually composed of mainly
humble dwellings with a few impressive and magnificent buildings, such as cathedrals
and palaces. The origin of all these buildings commonly dates back to the XVIIIth century
or even earlier. This fact leads to the conclusion that the constructive system in most of
these buildings is that of masonry. On the other hand, the suburbs generally accommodate
the majority of the population in large cities, a number of which are ancient neighborhoods
without any historical or artistic value, but have also been built with masonry. In this last
case, the repair of masonry becomes a social problem for administrations since the repair
must be carried out on a reduced budget while preventing the reallocation of residents as
far as possible. The development of repair and consolidation techniques for all types of
masonry has therefore awakened the interest of many administrations.

Historical masonry is usually composed of three layers: two external layers of stone
units infilled with rubble masonry, all pointed with poor lime mortar. In more recent
masonries, brick pieces are commonly joined with cement mortars. Many of the repair and
consolidation techniques usually applied to masonry structures include the introduction
of connectors and/or reinforcements. These have traditionally been steel pieces located
either in parallel or perpendicular to the wall faces [1,2]. This reinforcement is frequently
introduced into the bed-joints, thereby preventing damage to the masonry units [3–5].
This repair and consolidation methodology, particularly known as bed-joint structural
repointing, is especially suitable for historic masonries since it almost totally respects
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the original materials that compose the structural elements. This technique is currently
applied by substituting the steel rebars with fibers, thus attaining a more respectful way to
repair walls since smaller sections of reinforcements are required than when steel pieces
are used [6]. The main disadvantage of this technique is, obviously, its cost. The cost of
this technique makes it unaffordable in many cases, not only due to the cost of the fibers
but also to the execution of the work itself. The use of steel rebars instead of fiber plates
contributes significantly towards reducing the cost of the application of the technique.
Even if stainless steel is chosen, the cost can be reduced by approximately 500% when
compared with fibers. The use of stainless steel is almost compulsory when repairing
historical masonries since traditional dwellings are usually affected by rising damp [7].
Furthermore, if masonry without any historical or artistic value is being repaired, then
there is no issue with introducing the reinforcement into drills and grooves or placing them
superficially inside renders.

These reinforcements, whose effectiveness is widely demonstrated, constitute one
of the most financially feasible techniques of repair and consolidation available today.
Steel rebars with diameters up to 6 mm normally provide the reinforcements. A particular
feature shared by these reinforcements is the mortar thicknesses that cover the rebars, which
are usually thinner than those existing in reinforced concrete. The reason is obviously
linked to the small cavity in which the rebar is usually introduced, as well as the thin
layer of mortar that embeds the rebars when they are superficially placed [8,9]. This fact
has traditionally been disregarded, however, since there are no special standardized tests
to determine the bonding behavior of rebars placed as described. Furthermore, the fact
that only bars with small diameters are used in these repairs also modifies their bonding
behavior since no linear relationship has been identified between the diameter and load
transfer of bars [10]. Lastly, the shape of the bars exerts a strong influence on bonding, but
this is poorly documented regarding bars with diameters of up to 10 mm embedded in a
medium different from concrete [11,12].

The beam test, as the standard bonding test collected in codes [13] aims to determine
the force needed to extract a rebar with diameter of up to 16 mm from a prism of concrete
that has effective coverings of 50 mm in three of the faces. The lack of codes for the
particular situation of bars reinforcing masonries leads to the necessity for the adaptation of
them from similar fields. The bonding of anchors can be regulated by the British Standard
BS EN 1881:2006 [14], while BS EN 846-2:2001 [15] can be applicable to bed-joint structural
repointing. The codes establish the measurement of the axial force to pull out the rebar
from 30-mm grouted drills or from its position in the brick joint, respectively. On the
other hand, RILEM-TC RC6 [16] opens the door to a simpler test from the point of view
of the development of the samples. The aim of this test is to determine the pull-out force
necessary to pull out a bar embedded in a cube whose edge measures 10 times the diameter
of the bar and is fixed in the face in which the bar is inserted. A similar test is proposed
for fibers when used to reinforce masonry structures [17]. The variety of codes available
drives undoubtedly to the fact that results from various studies are incomparable, since
they depend on the criteria followed when obtained [18–20].

The bonding of bars to reinforce masonry is barely documented. The aim of this paper
is to research the influence that the different requirements of codes have on the final bond
behavior of the bar. Since this research is oriented towards the reinforcement of masonry,
stainless steel rebars embedded in prisms of hydraulic materials are analyzed under a
variety conditions: (i) effective covering; (ii) boundary conditions; (iii) Young’s modulus
value of covering; and (iv) ribs of bar geometry.

The finite element (FE) method has been chosen for the analysis of the bonding behav-
ior in the aforementioned specific circumstances. In this research, a complete 3D analysis
of the ribbed bars was carried out in order to attain a more precise reproduction of the
behavior of the rebars in terms of bonding than those achieved using macro models [21,22].
Finally, several conclusions are drawn regarding the influence of these different parameters
on bonding.
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2. Materials and Methods

Rebars were modelled by means of the software CAD Rhinoceros 3D. This software,
together with its plug-in Grasshopper 3D, eases the parameterization and model generation
for their later finite element analysis. In all cases, rebars with 30 mm length and 5 mm
diameter have been analyzed. The bar shape adopted for these analyses is based on the
standard stainless-steel bar, of which the transverse section is composed of the filleted
intersection of three arcs (Figures 1 and 2a).
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Figure 2. Finite element model for the rebar embedded in a prism of mortar whose base measures 12 mm × 12 mm:
(a) model of the rebar; (b) model of the prism of mortar that surrounds the rebar.

Altogether, 280 3D solid finite element analyses have been carried out by means of
the software ANSYS R19.3 for the development of this research. All the models consist
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of a rebar embedded in a prism of hydraulic material, reproducing the media in which
rebar are inserted. Since rebars are usually surrounded by mortar or grout made with
hydraulic binders (mainly lime, cement or mixtures of both), the properties assigned to
the prisms are those of a generic repairing mortar. The contact between rebars and the
mortar joints was defined through a cohesive model zone. In all these samples, geometrical
and mechanical parameters were changed iteratively, measuring, this way, the influence of
each of them in the final results in terms of bonding. Thus, (i) 16 samples were analyzed
in order to calibrate the influence of the resistant properties in the cohesive model zone;
(ii) in 96 samples, effective covering values ranging from 6 to 25 mm were combined with
four different values of Young’s modulus of the mortar joints that embedded the bars and
four different boundary conditions; and finally, (iii) 168 analyses were carried out based on
42 different rib shapes, which were analyzed effectively, covered with 6 and 25 mm, as well
as under two different boundary conditions.

In all the analyses, the failure of masonry by pull-out forces has been dismissed since it
falls outside the scope of this research. The failure of the samples can be therefore deduced
as being due to (i) excessive tensile stresses in reinforcements, which is highly improbable;
(ii) cone failure of the mortar embedment, which occurs when a small part of the covering
around the bar fails; (iii) sliding of the set rebar–medium along the interface between
the masonry and the mortar; and (iv) sliding along the steel–mortar interface. Failure
mode (ii) is taken into account when modelling the mortar joints through the microplane
model by finite element analysis (Section 2.2). Regarding sliding failures, this research
only considers (iv), since (iii) is considered negligible in comparison with (iv), especially
regarding rebars with thin coverings [10,23]. Figure 2 depicts one of the finite element
samples. As a final result, the number of nodes and elements of models ranges from
22,159 nodes to 29,223 nodes, and 98,010 elements to 124,890 elements. The descriptions of
the numerical models of both the failure modes considered are addressed in the following
subsections.

2.1. Modelling Rebars by Finite Elements

When rebars are employed to reinforce masonry structural elements, they are always
expected to be generously less than the proportional limit of steel. For this reason, steel has
been defined as an isotropic elastic linear material with E = 210 GPa and Poisson modulus
ν = 0.3. Elements type 3D Solid have been employed to model the rebars and the mortar
joints that surrounds them. Specifically, a tetrahedral 8-node solid element with three
degrees of freedom at each node, i.e., Solid 185, was used [24]. This element has properties
such as plasticity, stress-stiffening, large deflection, and large strain capabilities, which
make it suitable for modelling rebars (Figure 2a).

2.2. Modelling Mortar Joints by Finite Elements

Mortars present non-linear behavior as well as differences in their responses under
tensile and compressive stresses. Regarding tensile strength (ft), sudden softening occurs
accompanied by a reduction in stiffness. On the other hand, in compressive strength
(fc), stress–strain behavior will first involve ductile hardening followed by softening and
reduction in the stiffness. This behavior, defined as quasi-brittle, cannot be represented by
the slip theory of plasticity, since the inelastic behavior in the microscale does not physically
represent a slip. The microplane model is suitable for quasi-brittle materials, since it has
provided good results in similar previous experiences [12,25].

The microplane model was first enunciated by Taylor [26,27] and later developed and
settled by the authors [28–33]. Microplane theory discretizes materials into 42 symmetri-
cally located planes that define a 42-faced polyhedron (tetracontadihedron). By applying a
simple constitutive law to each plane, the theory extrapolates the initial plane model to a
consistent three-dimensional model. Microplane theory analyzes the physical phenomena
occurring in the microstructure of the material by analyzing the physical phenomena
occurring on each plane, thus reproducing the anisotropic damage.
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The microplane model establishes for each of the 42 microplanes the value of equiva-
lent strain energy (ηmic) as obtained by [34]:

ηmic = k0 I1 +
√

k2
1 I2

1 + k2 J2 (1)

where I1 and J2 are the first invariant of the strain tensor and the second invariant of the
deviatoric part of the strain tensor ε, respectively:

I1 = ε1 + ε2 + ε3 (2)

J2 =
1
6

[
(ε1 + ε2)

2 + (ε2 + ε3)
2 + (ε1 + ε3)

2
]

(3)

and k0, k1, and k2 are constants whose values are set as follows [35–37]:

k0 = k1 = (k − 1)/(2k(1 − 2υ)) (4)

k2 = 3/(k(1 + υ)2) (5)

where υ is Poisson’s ratio and k is the ratio between the compressive and tensile strength
of the material k = fc/ ft.

When the material is working under its proportional limit, the strain tensor ε can be
easily obtained through Young’s modulus and Poison’s ratio. This elastic behavior ceases
when in any of the 42 microplanes ηmic reaches a certain value γmic

0 . Then, the material
damage is considered to be initiated, and the material response is affected by the damage
parameter dmic:

dmic = 1 −
γmic

0
ηmic

[
1 − αmic + αmic·exp

(
βmic

(
γmic

0 − ηmic
))]

(6)

where αmic is the maximum degradation coefficient; βmic is the rate of damage evolution
(shape of the softening curve), and γmic

0 is the equivalent strain energy when the material
damage starts. When the damage starts, the material response is reduced by the factor
(1 − dmic), with dmic ranging from 0 to 1, where 0 is an undamaged material and 1 a totally
damaged material where the stiffness is lost.

The microplane model with damage is implemented in ANSYS R19.3 through the
element Solid 185, described in Section 2.1. The microplane model in ANSYS R19.3 is
defined through Young’s modulus and Poisson’s ratio as well as via the six constants C1,
C2, C3, C4, C5, and C6. The values of these constants were set as k0, k1, k2, γmic

0 , αmic,
and βmic, respectively. In this research, in accordance with the mechanical properties of a
hydraulic mortar, previous experiences [34,38] and by comparison with results obtained
from laboratory tests [39], the C constants were set to 0.729, 0.729, 0. 26, 6 × 10−5, 0.75,
and 100. These values provide quality results since the behavior of the sample predicted
by finite element analysis is compatible with that published in literature for mortars
specially designed to be used in repairing and retrofitting tasks (Figure 3). Young’s modulus
iteratively takes the values 5.6, 10, 20, and 50 GPa, thereby considering several possibilities
of hydraulic mortars usually employed in repairing masonries, from poor-quality lime
mortars to the high-performance grouts based on micro fine hydraulic binders. Poisson’s
ratio was set to 0.2 [40–44].
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2.3. Modelling Contacts

The correct reproduction of the bonding behavior of the samples by the FE models
depends on the definition of contact parameters. Three phenomena occur in the inter-
face [45–48]: (i) friction, due to the joint action of dilation slip and shear failure of the grout;
(ii) mechanical interlock, mainly dependent on rib shape and rib separation; and (iii) chem-
ical adhesion between the rebar and the media in which it is inserted. The cohesive zone
model with mixed debonding interface (henceforth, CZM) reflects the behavior of the con-
junct in terms of points (i) and (ii), since (iii) is usually disregarded due to its low influence
in bonding [46]. CZM is modelled through elements CONTA174 and TARGE170. Elements
type CONTA are used to represent contact and sliding between surfaces. The contact is
pair based, with the target surface defined by the 3D target element type [24].

A CZM is defined though maximum values of bonding stress that, when exceeded,
lead to the failure of the contact by slippage and/or separation between surfaces. This fail-
ure can be due to normal stress or shear stress, both being limited by the values of the
maximum bond tensile stress and maximum bond shear stress. Many studies use macro
models or simplified axisymmetric models for ribbed bars [21,49,50]. These works involve
modeling plain bars where bond tensile stress does not influence the final results, and ficti-
tious values of bond shear stress supply the absence of the rib. Since this research involves
the consideration of real rib shapes to evaluate their influence on bonding, a sensitivity
analysis was previously carried out to calibrate the values for maximum bond shear stress
and maximum bond tensile stress given to the CZM. This analysis consisted of the finite
element analysis of a rebar embedded in a cube with 100 mm edge, simulating a pull-out
test. A longitudinal displacement of 5 × 10−5 mm was imposed on the rebar while the
face of the cube in which the rebar was inserted was maintained as fixed. In this study,
maximum bond shear and bond tensile stresses were fixed at 0.10, 0.25, 0.50, and 1.00 MPa.
The results were analyzed in terms of the reaction force (F) transferred from the rebar to
the cube of the mortar. The results are depicted in Figure 4 and can be found in greater
detail in Appendix A.
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These 16 calculations confirm that maximum bond tensile stress has effects on the
bonding behavior of the rebar. This thesis was previously enunciated for plain bars [23].
It is hereby confirmed that changing the limit of the bond tensile stress, which appears
only in one of the rib faces, fails to significantly modify the bonding behavior of rebars.
Thus, bonding behavior depends on the value of the maximum bond shear stress that is
set, as well as on the compression strength of the mortar joints opposed to the compressed
face of the ribs. When high values of bond shear stress are set, a homogeneous distribution
of frictional stresses is obtained: this distribution is obviously unfeasible. In contrast,
setting the maximum bond shear stress at lower values involves a stress distribution that is
perfectly feasible (Figure 5). Therefore, maximum values were set to 0.10 MPa for bond
shear stress and 1 MPa for bond tensile stress.
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(b) 0.10/1.00; (c) 1.00/0.10; (d) 1.00/1.00.
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3. Results

The results obtained from all the analyses are presented in this section and are sub-
sequently discussed in Section 4. As in the previous sections, the results are presented
in terms of the reaction force (F) induced in the medium when the rebar was longitudi-
nally displaced 5 × 10−5 mm from its initial position. Ninety-six samples were analyzed
taking into account several values of the thickness of the covering and Young’s modulus
of the mortar in which the rebar is embedded as well as different boundary conditions
(Section 3.1). On the other hand, 42 samples were obtained for different rib shapes and were
analyzed under different boundary conditions and with two values of effective covering
(Section 3.2).

3.1. Thickness of Covering, Boundary Conditions, and Material

The results of the effect of the thickness of covering, boundary conditions, and Young’s
modulus of material in which the rebar is embedded are shown in Table 1. In these analyses,
different values for the parameters were combined while the fixed values of 30 mm and
5 mm were taken for the rebar length and rebar diameter, respectively.

Table 1. Reaction force F (N) needed to longitudinally displace a rebar 5 × 10−5 mm from a prism of
mortar under various geometrical and mechanical conditions.

Boundary
Conditions

Effective Covering
(mm)

F (N)

* E1 * E2 * E3 * E4

Fixed base (1)

6 4.846 8.07 13.769 26.074
7.5 6.479 10.779 18.287 34.375
10 8.636 14.384 24.432 44.732

12.5 10.251 17.075 28.89 49.997
15 10.539 17.648 30.021 50.605
25 12.633 20.941 34.734 49.328

Two fixed
lateral faces (2, 3)

6 12.91 22.275 35.564 50.379
7.5 12.67 21.987 37.243 50.698
10 10.33 18.066 33.671 50.172

12.5 8.91 15.637 29.947 50.406
15 6.82 12.021 23.319 47.906
25 5.512 9.741 19.029 42.943

Three fixed
lateral faces (2, 3, 4)

6 17.899 30.457 43.622 49.251
7.5 17.358 29.775 44.931 50.366
10 13.916 24.158 42.513 50.126

12.5 11.894 20.745 38.599 50.094
15 9.024 15.834 30.348 48.786
25 7.446 13.112 25.371 49.535

Four fixed lateral
faces (2, 3, 4, 5)

6 20.502 34.492 43.613 50.869
7.5 19.552 33.238 44.414 51.268
10 15.441 26.706 44.889 50.568

12.5 13.089 22.768 41.415 50.317
15 9.858 17.262 32.917 48.821
25 8.124 14.287 27.546 48.663

* Values of Young’s modulus (GPa): E1 = 5.6, E2 = 10, E3 = 20, E4 = 50.

Regarding the thickness of covering, rebars were embedded in mortar prisms with
base A × A, where A was changed iteratively: 12, 15, 20, 25, 30, and 50 mm. This assumes
effective coverings of 6, 7.5, 12.5, 15, and 25 mm, respectively, which always remain below
the minimum values established by codes, as was presented in Section 1. On the other
hand, Young’s modulus of hydraulic material that composes prisms surrounding the rebars
had values of 5.6, 10, 20, and 50 GPa. Finally, prisms that surround rebars were fixed in
their base (face number 1), two lateral faces (face numbers 2 and 3), three lateral faces (face
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numbers 2, 3, and 4), and four lateral faces (face numbers 2, 3, 4, and 5) iteratively in each
analysis (Figure 6).
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To better understand load transference from rebar to mortar joints, as well as the
failure mechanisms of rebars with small diameters thinly covered, an analysis of the
slippage failure was carried out. This analysis consisted of augmenting the value of the
displacement imposed up to failure of the interface. It was carried out twice. In both
analyses, mortar with Young’s modulus of 5.6 MPa and rebar effectively covered with
7.5 mm were set. These samples were analysed when (i) the base (face number 1) was fixed
and when (ii) three lateral faces were fixed (face numbers 2, 3, 4). Figure 7 represents the
force transferred to the mortar in the function of the longitudinal displacement of the rebar
for every load step-up to failure in cases (i) and (ii). The maximum force in (ii) assumes a
90.2% increment with respect to (i). Stress distribution for (i) for 40%, 60%, and 100% of the
force transferred from the rebar to the mortar when failure occurs is presented in Figure 8,
while Figure 9 depicts similar load steps for (ii).

Figure 8a–c show bonding shear stress distribution for 40%, 60%, and 100% of the
failure load, respectively, when the rebar is embedded in a prism fixed in the base (face
number 1). In the first steps of the simulation (Figure 8a), the load is mainly transferred
to the area of the rebar close to the application of the displacement. Despite the fact that
only 40% of the maximum force was transferred, the maximum value of bonding shear
stress (0.1 MPa) was reached in some points. Later in the simulation, the area of the rebar
close to the application of the displacement (Figure 8b,c) fails due to slippage and does not
transfer any force. Figure 8d–f show bonding normal stresses for 40%, 60%, and 100% of
the failure load, respectively. These three pictures show clearly how only the compressed
area of the ribs closest to the area where the displacement was applied contributed to the
force transference.
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Figure 9a–c depict bonding shear stress distribution when the rebar transferred 40%,
60%, and 100% of the force transferred in failure, respectively, and the rebar was embedded
in a mortar prism fixed in three of the four longitudinal faces (faces number 2, 3, and 4).
From the beginning of the simulation, these pictures show that the whole rebar contributes
to the load transfer mechanism. Figure 9d–f represent bonding normal stress distribution
for the load steps previously described. Although only in the last load steps did the ribs
work under compression, it is remarkable that all ribs contributed to the force transference
mechanism. As a consequence, compressive values were significantly lower than those at-
tained when only the base face (face number 1) was fixed: 1.6459 MPa (Figure 8f) compared
to 0.61233 MPa (Figure 9f).

3.2. Rib Shape

Rib shape is one of the key values regarding bonding in rebars. Various rebar shapes
were analyzed in order to check their performance in terms of bonding behavior. Rebar
geometry was parameterized as depicted in Figure 10, and the values of the parameters
ranged as follows between those recommended in the codes [51–53]: (i) central width, Wc,
from 1.0 to 3.5 mm; (ii) extreme width, We, from 1.0 to 3.5 mm; (iii) angle between the rib
and rebar axes, B, from 35◦ to 75◦; (iv) rib-face angles, Bf, from 45◦ to 90◦; (v) rib height in
the central transversal section of the rib, hr, from 0.15 to 0.75 mm; (vi) rib spacing; s, from
3 to 6 mm.
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Figure 8. Bonding stresses (MPa) in the interface of a rebar embedded in a prism of mortar with Young’s modulus of 5.6 GPa
and 7.5 mm of effective covering when the base face (face number 1) was fixed. Bonding shear stress distribution when
the force transferred from the rebar to the mortar was (a) 40% of that transferred under failure; (b) 60% of that transferred
under failure; and (c) 100% of that transferred under failure. Bonding normal stress distribution when the force transferred
from the rebar to the mortar was (d) 40% of that transferred under failure; (e) 60% of that transferred under failure; and (f)
100% of that transferred under failure.
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Figure 9. Bonding stresses (MPa) in the interface for a rebar embedded in a prism of mortar with Young’s modulus of
5.6 GPa and 7.5 mm of effective covering when three lateral faces (faces number 2, 3, and 4) were fixed. Bonding shear stress
distribution when the force transferred from the rebar to the mortar was (a) 40% of that transferred under failure; (b) 60%
of that transferred under failure; and (c) 100% of that transferred under failure. Bonding normal stress distribution when
the force transferred from the rebar to the mortar was (d) 40% of that transferred under failure; (e) 60% of that transferred
under failure; and (f) 100% of that transferred under failure.
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Figure 10. Geometrical parameters of the rebar that ranged in iterative analyses.

In all these analyses, Young’s modulus of mortar was set to 5.6 GPa. Boundary
conditions of fixation along three and four of the longitudinal faces (faces 3, 4, and 5) of
the prism were considered, as well as effective covering for rebars of 6 mm and 25 mm.
Results are laid out in Table 2. In order to avoid noise in subsequent calculations, the rebar
geometrical parameters were not changed simultaneously.

Table 2. Reaction force F (N) needed to displace a 5 × 10−5 mm rebar with different shapes, with effective covering (eff.cov.)
6 mm/ 25 mm and Young´s modulus 5.6 GPa; as boundary conditions, fixation in three or four of the longitudinal faces of
the prism.

Wc (mm) We (mm)
B
(◦)

Bf
(◦)

hr
(mm)

s
(mm)

* F3LF ** F4LF * F3LF ** F4LF

eff.cov. = 6 mm eff.cov. = 25 mm

1

2.5 55 67.5 0.45 4

17.685 20.23 6.494 7.046
1.5 17.77 20.339 6.506 7.059
2 17.861 20.454 6.518 7.074

2.5 17.949 20.567 6.517 7.073
3 18.029 20.66 6.527 7.084

3.5 18.085 20.737 6.536 7.094

2.5

1

55 67.5 0.45 4

17.9 21.122 6.573 7.136
1.5 17.911 20.72 6.53 7.088
2 17.935 20.724 6.534 7.092

2.5 17.949 20.723 6.53 7.088
3 17.948 20.726 6.532 7.092

3.5 17.972 20.742 6.532 7.09
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Table 2. Cont.

Wc (mm) We (mm)
B
(◦)

Bf
(◦)

hr
(mm)

s
(mm)

* F3LF ** F4LF * F3LF ** F4LF

eff.cov. = 6 mm eff.cov. = 25 mm

2.5 2.5

15

67.5 0.45 4

18.393 20.756 6.528 7.086
20 18.071 20.546 6.518 7.073
25 18.075 20.567 6.517 7.073
30 18.074 19.958 6.457 7.002
35 18.078 20.13 6.474 7.022
40 18.093 20.327 6.494 7.045
45 18.1 20.567 6.517 7.072
50 17.934 20.817 6.545 7.105
55 17.949 21.085 6.574 7.14

2.5 2.5 55

45

0.45 4

17.981 21.363 6.606 7.177
50 17.907 20.604 6.569 7.132
55 17.931 20.513 6.519 7.074
60 17.935 20.544 6.52 7.075
65 17.95 20.546 6.518 7.074
70 17.951 20.568 6.519 7.074
75 17.95 20.567 6.516 7.071
80 17.943 20.564 6.522 7.078
85 17.952 20.557 6.526 7.083
90 17.954 20.567 6.525 7.063

2.5 2.5 55 67.5

0.15

4

17.464 20.571 6.525 7.082
0.25 17.604 20.503 6.514 7.069
0.35 17.761 20.517 6.514 7.069
0.45 17.949 20.548 6.517 7.072
0.55 18.15 20.567 6.517 7.073
0.65 18.358 20.563 6.525 7.082
0.75 18.58 20.597 6.52 7.076

2.5 2.5 55 67.5 0.45

3 18.203 20.888 6.551 7.112
4 17.949 20.567 6.517 7.073
5 17.793 20.367 6.503 7.056
6 17.632 20.166 6.489 7.039

* Reaction force F (N) with three fixed longitudinal faces ** Reaction force F (N) with four fixed longitudinal faces.

4. Discussion

In this section, the results presented in Section 3 are analyzed and discussed. To better
evaluate the influence that the aspects taken into account exert on the final results, several
graphical depictions of the results are provided. Thus, Figure 11, which depicts data in
Table 1, shows that the Young’s modulus of the material that surrounds the rebar clearly
influences the final value of F.

Regarding the relationships between values of F, the improvement rate of this pa-
rameter using mortars with Young’s modulus of either 5.6 or 10 GPa is almost linear,
and this improvement is also independent of boundary conditions and the thickness of
effective coverings. That is, while Young’s modulus increases by 178.6%, the median of
the values of F assumes 173.2% with a standard deviation of 0.03. With higher values of
the Young´s modulus, the correlation becomes less clear, since it is much more dependent
on the effective covering and boundary conditions. When this increases by 297% (that is,
it takes a value of 20 GPa), there is almost a linear relationship between this value and F
only when Face 1 is fixed, since this value assumes 283% with a standard deviation of 0.01,
while the respective values for two, three and four fixed lateral faces (Faces 2, 3, 4, and 5)
are 331% and 0.40; 315% and 0.84; 304% and 1.48, respectively. This undoubtedly leads to
the fact that the results from the pull-out test cannot be extrapolated to the usual situation
of rebars in which the boundary conditions are different to those of the test. When Young’s
modulus of mortars is 50 GPa, this correlation is impossible since the standard deviation
reaches inadmissible values. On the other hand, a certain proportionality between values
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is found in the results for 20 GPa. When effective coverings are either 6 mm or 7.5 mm,
no relevant difference can be found between values obtained from prisms with three or four
fixed faces. In contrast, when effective coverings are 10, 12.5, 15 or 25 mm, differences of
2.38%, 2.82%, 2.57% and 2.18%, respectively, are found. Regarding global results in terms of
Young’s modulus and effective coverings, the higher these results, the more homogeneous
F becomes. Figure 11d depicts this fact clearly, where fixation of Face 1 and 6 mm of
effective covering assumes approximate values of F less than 50% of those attained with an
effective covering of 12.5 mm or higher.
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Figure 11. Chart depicting the reaction force F (N) produced by a 5 × 10−5 mm displacement of a rebar embedded in
mortar prisms with different edges, different Young’s modulus and different boundary conditions: (a) Mortar with Young’s
modulus of 5.6 GPa; (b) mortar with Young’s modulus of 10 GPa; (c) mortar with Young’s modulus of 20 GPa; (d) mortar
with Young’s modulus of 50 GPa.

Figure 11 also demonstrates that boundary conditions constitute key data for the
definition of the value of F. It is easy to observe that, while lateral fixations assume a
decrease when the effective covering is thicker, fixation in Face 1 produces the opposite
effect. This fact has a clear implication in the quantification of bonding by pull-out tests in
rebars subjected to these conditions, since the bonding behavior is not correctly reproduced
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in this test. The number of faces that are fixed also affects the value of F: the more fixed
faces there are, the higher F becomes. This fact is linked to the equivalent strain energy
(ηmic) in the microplane model (Equation (1)).

When only Face 1 is fixed and the rebar is embedded in a 12 × 12 mm2 section prism,
the highest values of equivalent strain energy are concentrated close to the bounded face
(Figure 12 right). Ribs transfer load to the medium, but, under these circumstances, the
ribs placed in positions that are far from the fixation hardly make any contribution to this
transfer. As the effective covering increases, a higher number of ribs contribute to this
mechanism and, consequently, the value of F increases (Figure 12 left).
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When lateral faces of the prism are fixed, bonding shear stress decreases while effec-
tive covering increases. The value of F, as the integral of the stresses, obviously also de-
creases. Fixation in lateral faces produces a confinement effect in the bar (especially in the 
case of reduced coverings) that notably improves its bonding behavior. Since this effect 
does not exist when only the base face of the prism (Face 1) is fixed, the bonding behavior 
of rebars is completely different (Figure 13). Bond shear stress is higher in the case of re-
duced covering (Figure 13a). This justifies the reduction of F observed in Figure 11 when 
the covering increases in the cases of lateral restraint (Figure 13b). 

Figure 12. Equivalent strain energy distribution in the mortar joints (E = 5.6 GPa) when face 1 of the prism is fixed and
5 × 10−5 mm displacement is applied to the base of the rebar: (left) base section of 50 x 50 mm2; (right) base section of
12 × 12 mm2.

When lateral faces of the prism are fixed, bonding shear stress decreases while effective
covering increases. The value of F, as the integral of the stresses, obviously also decreases.
Fixation in lateral faces produces a confinement effect in the bar (especially in the case
of reduced coverings) that notably improves its bonding behavior. Since this effect does
not exist when only the base face of the prism (Face 1) is fixed, the bonding behavior of
rebars is completely different (Figure 13). Bond shear stress is higher in the case of reduced
covering (Figure 13a). This justifies the reduction of F observed in Figure 11 when the
covering increases in the cases of lateral restraint (Figure 13b).

Regarding the rib shape, the Pearson product moment correlation matrix based on
data presented in Table 2 is obtained, thus obtaining the influence for each one of the six
geometrical parameters of the rib (Wc, We, B, Bf, hr, s). This matrix is non-dependent on the
number of faces that are fixed. In contrast, it is strongly dependent on the thickness of the
effective covering (Table 3).
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Figure 13. Distribution of bond shear stress (MPa) in the interface in a prism of mortar (E = 5.6 MPa) for a displacement
equal to 5 × 10−5 mm when Faces 2, 3, and 4 are fixed, for a prism with dimensions: (a) 12 × 12 mm2; (b) 50 × 50 mm2.

Table 3. Pearson correlation coefficient of each geometrical parameter of the rib in bonding behavior.

Effective Covering Wc We B Bf hr s

6 mm 0.30 0.06 0.38 0.01 0.78 −0.35
25 mm 0.22 0.07 0.28 −0.11 0.80 −0.29

The most influential geometrical parameter is, undoubtedly, hr, while both B and s
exert only a medium influence. Rib height in the center (hr) has also medium influence in
bonding, but this influence is reduced to 27% as the effective covering increases. The effect
of Bf and We in bonding is irrelevant. Regarding s, although it is demonstrated that high
values of this parameter positively influence bonding [45,54], a negative value in the
coefficient (Table 3) implies the opposite. Spacing between ribs is also linked to the number
of ribs that fit into a fixed length of bar: the greater the rib spacing, the fewer ribs in the
30-mm-length bar. In this research, the lowest number of ribs that involves high rib spacing,
and the subsequent negative influence on bonding, carry more weight than the positive
effect of higher values of this parameter.

A regression analysis with the values obtained in this research (Table 2) reveals the
relationship between the geometrical parameter of the ribs and the value of F for the case
of the rebar embedded in the prism with three and four lateral faces (F3LF- F4LF) fixed in
prisms of 12 × 12 and 50 × 50 mm2.
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F3LF(12X12) = 17.0659 + 0.1693Wc + 0.0316We + 0.0067B + 0.0002B f + 1.8732hr − 0.176s (7)

F4LF(12X12) = 19.4548 + 0.2138Wc + 0.0405We + 0.0083B + 0.0002B f + 2.3625hr − 0.2224s (8)

F3LF(50X50) = 6.4397 + 0.0162Wc + 0.0048We + 0.0067B + 0.0004B f + 0.2493hr − 0.0191s (9)

F4LF(50X50) = 6.9887 + 0.0186Wc + 0.0054We + 0.0007B + 0.0006B f + 0.2932hr − 0.0224s (10)

Equations (7)–(10) are highly reliable since (i) R-square coefficients are 94.64%, 94.64%,
86.83%, and 87.50%; (ii) the residual standard deviations are 0.0497, 0.0627, 0.0101, and 0.0115;
(iii) the mean absolute errors (MAEs) are 0.0298, 0.0377, 0.0064, and 0.0073, and (iv) the
Durbin Watson (DB) statistic is 2.1857, 2.1717, 1.9809, and 2.1285. These equations, together
with Figure 10, allow us to relate the results from this research to different shapes of ribs.

5. Conclusions

This paper deals with the bonding behavior of rebars under the special circumstances
that occur when masonry is reinforced. Thicknesses of coverings that are lower than usual,
together with variable boundary conditions, involve different behavior of rebars in terms
of bonding.

This research covers the cases of stainless steel rebars with 5 mm diameter, embedded
in mortar joints with Young’s modulus of 5.6, 10, 20, and 50 GPa, and effective coverings
of 6, 7.5, 10, 12.5, 15, and 25 mm. Furthermore, the variability of the boundary conditions
is taken into account by the fixation of two, three or four longitudinal faces of the prisms
into which the bars are embedded, as well as their bases. In this way, several of the most
frequent performances of this reinforcement are reproduced: bed joint structural repointing,
transversal anchors in walls, meshes attached to wall surfaces, and the conditions of the
standard pull-out test. By changing Young’s modulus, the use of standard poor mortars to
high-strength binders is encompassed.

A pull-out test with no embracement of the samples does not reproduce the behavior
of the bars under these conditions. When the prisms that surround the rebars are not
embraced, maximum reaction force increases with effective covering, decreasing in the
opposite case.

Regarding values of this, when the Young’s modulus of the mortar reaches 10 GPa,
the relationship between both parameters is linear. In this way, the results can be extrapo-
lated for various materials. This fact only occurs in high-performance mortars when only
the base of the prism is fixed. These facts lead to the conclusion that rebars must be tested
under the boundary conditions in which they will work.

Regarding the shape of the rebars, the most influential geometrical aspects of the ribs
are identified. Although rib height is obviously the key value in bonding, the contribution
of the other aspects, such as central width, angle between rib and rebar axes, and rib
spacing, depends on boundary conditions and effective coverings. The rib central width is
of major importance when effective covering is low and the bar is highly confined, but this
importance decreases when effective covering increases. For a fixed length of bar, as used
in this research, the spacing between ribs has a negative influence on bonding. As a result,
several relationships between the rebar shape and the results obtained in terms of bonding
are attained.
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Appendix A

Table summarizing the values of reaction force F (N) needed to pull a 5-mm rebar out
a distance of 5 × 10−5 mm from its initial position embedded in a 100-mm edge cube of
mortar, when different combinations of bond shear stress and bond tensile stress in the
CZM are set and the frontal face of the cube is fixed.

Maximum Bond Shear Stress
(MPa)

Maximum Bond Tensile Stress
(MPa)

Reaction Force F (N)

0.10

0.10 14.333

0.25 14.346

0.50 14.348

1.00 14.349

0.25

0.10 17.825

0.25 17.859

0.50 17.864

1.00 17.866

0.50

0.10 21.362

0.25 21.432

0.50 21.444

1.00 21.446

1.00

0.10 26.654

0.25 27.003

0.50 27.074

1.00 27.092
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