
Journal of Electrostatics 112 (2021) 103601

A
0
(

Contents lists available at ScienceDirect

Journal of Electrostatics

journal homepage: www.elsevier.com/locate/elstat

Electric force between a dielectric sphere and a dielectric plane
Alberto T. Pérez ∗, Raúl Fernández-Mateo1

Departamento de Electrónica y Electromagnetismo, Facultad de Física, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012, Sevilla, Spain

A B S T R A C T

We compute the electric force between a dielectric sphere and a dielectric plane in the presence of an external electric field. Laplace’s equation is solved
in bispherical coordinates and Maxwell’s stress tensor is used to calculate the force. The result is given as a series expansion that is evaluated numerically.
Asymptotic expressions for the case of large and small distances are obtained and compared with well-known analytical solutions. We use COMSOL commercial
software to validate the semi-analytical results.
1. Introduction

The computation of the electric force between particles is a matter
of interest in many areas. A non-comprehensive list of these areas is:
colloidal suspension [1], electrokinetics [2], powder technology [3],
electrostatic precipitators [4], drop manipulation [5], chemical engi-
neering [6], etc. For example, the electrostatic force between colloidal
particles may determine their collective behavior [7].

Recently, we have proposed the use of an electric field to control
the dynamics of the so-called walking-droplets [8]: under certain con-
ditions, a liquid droplet bouncing over a surface of the same fluid
subjected to a vertical oscillation executes an horizontal displacement
propelled by the waves its bounces have produced. A good estimation of
the electric force is needed to better understand and predict the effects
of the application of such electric field to this system.

The electric force between charged and/or conducting particles has
attracted special attention, and is the object of many studies [9,10].
Also, the interaction between a charged particle and an external field
has been analyzed [11].

Davis [9] used bispherical coordinates to solve the case of two con-
ducing spheres of different sizes in an external field. The case of dielec-
tric particles has also been considered. Nakajima and Sato computed
the force between two charged dielectric spheres [12]. Khachatourian
et al. [13] computed the force between a charged dielectric sphere and
a planar dielectric surface. They made use of bispherical coordinates
and a direct integration of the Coulomb force. Keh and Chen also
used bispherical coordinates to obtain the electrophoretic mobility of a
particle close to a dielectric wall [14].

Love [15] used bispherical coordinates to compute the electric
field due to two equal dielectric spheres or a single dielectric sphere
and a plane, when an external electric field is applied. In his paper,
Love did not compute the electric force between the spheres and the
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sphere and the plane. In a subsequent paper [16] he applied the same
mathematical formalism to obtain the van der Waals forces between
two spheres and a sphere and a plane.

The electric potential and field between two different spheres was
calculated by Chaumet and Dufour using bispherical coordinates and
following the same procedure as Love [17]. Munirov and Filippov
obtained the force between two charged dielectric spheres using bi-
spherical coordinates and integrating Maxwell’s stress tensor [18].

In this work we compute the electric force between a dielectric
sphere and a plane subjected to an external electric field perpendicular
to the plane. In order to obtain the electric field we have followed the
procedure used by Love. For completeness we recall in Section 3 this
procedure. Then, we integrate Maxwell’s stress tensor to calculate the
force, a procedure similar to the one used by Munirov and Filippov.
This is described in Section 4. The limits of small and large distances be-
tween the sphere and the plane are analyzed in Section 5. The influence
of the dielectric constant of the materials is the subject of Section 6. We
have also solved the problem using COMSOL, a commercial software
that implements the finite element method. The comparison between
both approaches is reported in Section 7.

2. Position of the problem

We consider a dielectric sphere of electric permittivity 𝜀1 of radius
𝑅 whose center is at a distance ℎ from a plane. The plane separates the
vacuum from another dielectric of permittivity 𝜀2 which fills the half-
space (see Fig. 1). An external electric field 𝐸0 is applied such that, far
from the sphere, the field is uniform and perpendicular to the plane.
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Fig. 1. Geometrical configuration of the problem showing the droplet of radius 𝑅, the
dielectric bulk and the separation between the center of the droplet and the surface ℎ.
The numbers label the different regions.

We will make use of bispherical coordinates (𝜂, 𝜏, 𝜙)[15,19]. They
are related to the cylindrical coordinates (𝜌, 𝑧, 𝜙) by the equations:

𝑧 =
𝑑 sinh 𝜂

cosh 𝜂 − cos 𝜏
, 𝜌 = 𝑑 sin 𝜏

cosh 𝜂 − cos 𝜏
(1)

being the azimuthal coordinate 𝜙 common to both systems.
The 𝜂-constant surfaces are spheres of radius 𝑑∕ sinh 𝜂 centered at

𝑧 = ± tanh 𝜂. The surfaces 𝜏-constant are tori (see Fig. 2). The dielectric
sphere corresponds to 𝜂 = 𝜂0 = cosh−1(ℎ∕𝑅). The parameter 𝑑 is given
by 𝑑 =

√

ℎ2 − 𝑅2. The scale factors are:

ℎ𝜂 = ℎ𝜏 = 𝑑
cosh 𝜂 − cos 𝜏

(2)

3. Solution by separable coordinates

The electric potential 𝛷 is solution of Laplace’s equation. Laplace’s
equation is separable in bispherical coordinates and its solution is found
as a series expansion in Legendre’s polynomials. We introduce different
coefficients for every spatial region [15,19]:

𝜂0 ≤ 𝜂 −𝛷(1) = (cosh 𝜂 − cos 𝜏)(1∕2)
∞
∑

𝑛=0
𝐴𝑛𝑒

−(𝑛+1∕2)𝜂𝑃𝑛(cos 𝜏) (3)

0 ≤ 𝜂 < 𝜂0 −𝛷(2) = 𝐸0𝑧 + (cosh 𝜂 − cos 𝜏)(1∕2) ×

×
∞
∑

𝑛=0
(𝐵𝑛𝑒

−(𝑛+1∕2)𝜂 + 𝐶𝑛𝑒
(𝑛+1∕2)𝜂)𝑃𝑛(cos 𝜏) (4)

𝜂 < 0 −𝛷(3) =
𝜀0𝐸0𝑧
𝜀2

+ (cosh 𝜂 − cos 𝜏)(1∕2) ×

×
∞
∑

𝑛=0
𝐷𝑛𝑒

(𝑛+1∕2)𝜂𝑃𝑛(cos 𝜏) (5)

Region (1) (𝜂0 ≤ 𝜂) refers to the sphere (with permittivity 𝜀1),
region (2) is the vacuum region (0 ≤ 𝜂 ≤ 𝜂0), and region (3) (𝜂 < 0)
refers to the half-space below the plane (with permittivity 𝜀2). In these
expressions we have introduced the electric potential at infinity in the
vacuum (−𝐸0𝑧) and in the dielectric (region 3) (𝜀0𝐸0𝑧∕𝜀2). In order to
apply the orthogonality properties we need to expand 𝑧 in Legendre’s
polynomials. The generating function for Legendre polynomials is [19]:

1
√

1 + 𝑡2 − 2𝑡 cos 𝜏
=

∞
∑

𝑛=0
𝑡𝑛𝑃𝑛(cos 𝜏) (6)
2

Introducing 𝑡 = 𝑒−𝜂 :

1
√

cosh 𝜂 − cos 𝜏
=
√

2
∞
∑

𝑛=0
𝑒−(𝑛+1∕2)𝜂𝑃𝑛(cos 𝜏) (7)

and taking the derivative, we obtain:

𝑧 =
𝑑 sinh 𝜂

√

cosh 𝜂 − cos 𝜏
=

√

2𝑑(cosh 𝜂 − cos 𝜏)(1∕2)
∞
∑

𝑛=0
(2𝑛 + 1)𝑒−(𝑛+1∕2)𝜂𝑃𝑛(cos 𝜏) (8)

This expansion is to be included in Eqs. (4)–(5).

3.1. Boundary conditions

The coefficients 𝐴𝑛, 𝐵𝑛, 𝐶𝑛, and 𝐷𝑛 in (4) are determined by the
corresponding boundary conditions. These are the continuity of the
electric potential at every interface:

𝛷(1)(𝜂 = 𝜂0) = 𝛷(2)(𝜂 = 𝜂0) (9)

𝛷(2)(𝜂 = 0) = 𝛷(3)(𝜂 = 0) (10)

and the continuity of the normal component of the displacement vector:

𝜀1
𝜕𝛷(1)

𝜕𝜂
|

|

|

|𝜂=𝜂0
= 𝜀0

𝜕𝛷(2)

𝜕𝜂
|

|

|

|𝜂=𝜂0
(11)

𝜀0
𝜕𝛷(2)

𝜕𝜂
|

|

|

|𝜂=0
= 𝜀2

𝜕𝛷(3)

𝜕𝜂
|

|

|

|𝜂=0
(12)

The application of three of them is straightforward:

Continuity of the electric potential at the surface of the sphere

𝜂 = 𝜂0 𝐴𝑛 = 𝐵𝑛 + 𝐶𝑛𝑒
(2𝑛+1)𝜂0 +

√

2(2𝑛 + 1)𝐸0𝑑 (13)
Continuity of the electric potential at the plane

𝜂 = 0 𝐷𝑛 = 𝐵𝑛 + 𝐶𝑛 (14)
Continuity of the normal component of the
displacement vector at the plane

𝜂 = 0 𝜀2𝐷𝑛 = 𝜀0(−𝐵𝑛 + 𝐶𝑛) (15)

These three conditions allow us to express the four coefficients in terms
of one of them, let us use 𝐶𝑛:

𝐴𝑛 = 𝐶𝑛(𝑒(2𝑛+1)𝜂0 − 𝛥2) +
√

2(2𝑛 + 1)𝐸0𝑑 (16)

𝐵𝑛 = −𝛥2𝐶𝑛 (17)

𝐷𝑛 = (1 − 𝛥2)𝐶𝑛 (18)

where we have defined:

𝛥1 =
𝜀1 − 𝜀0
𝜀1 + 𝜀0

, 𝛥2 =
𝜀2 − 𝜀0
𝜀2 + 𝜀0

. (19)

The continuity of the normal component of the displacement vector
at the sphere surface is more demanding. After some algebra we obtain:

𝜀1
∞
∑

𝑛=0
𝐴𝑛𝑒

−(𝑛+1∕2)𝜂0
[

sinh 𝜂0 − (2𝑛 + 1)(cosh 𝜂0 − cos 𝜏)
]

𝑃𝑛(cos 𝜏) =

𝜀0
∞
∑

𝑛=0

[

𝐵𝑛𝑒
(𝑛+1∕2)𝜂0 + 𝐶𝑛𝑒

−(𝑛+1∕2)𝜂0
]

sinh 𝜂0𝑃𝑛(cos 𝜏)

+ (2𝑛 + 1)𝜀0
∞
∑

𝑛=0

[

𝐵𝑛𝑒
(𝑛+1∕2)𝜂0 − 𝐶𝑛𝑒

−(𝑛+1∕2)𝜂0
]

(cosh 𝜂0 − cos 𝜏)×

𝑃𝑛(cos 𝜏) + 𝜀0
∞
∑

𝑛=0
𝐸0

√

2𝑑(2𝑛 + 1)×

[

(− sinh 𝜂 + (2𝑛 + 1)(cosh 𝜂 − cos 𝜏))𝑒−(𝑛+1∕2)𝜂0
]

𝑃 (cos 𝜏) (20)
0 0 𝑛
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Fig. 2. Section of 𝜂 and 𝜏 coordinate surfaces. For our purposes, the fluid surface corresponds to the 𝜂 = 0 coordinate surface and the sphere enclosed in the 𝜂 = 𝜂0 = cosh−1(ℎ∕𝑅)
surface.
s

Multiplying by 𝑃𝑚(𝜏), taking into account the integrals:

∫

1

−1
𝑃𝑛(𝑥)2 𝑑𝑥 = 2

2𝑛 + 1
(21)

∫

1

−1
𝑥𝑃𝑛(𝑥)𝑃𝑚(𝑥) 𝑑𝑥 = 2𝑛

4𝑛2 − 1
𝛿𝑛−1,𝑚 +

2(𝑛 + 1)
(2𝑛 + 1)(2𝑛 + 3)

𝛿𝑛+1,𝑚 (22)

nd using (16)–(18), this boundary condition produces a coupling
etween 𝐶𝑛, 𝐶𝑛+1 and 𝐶𝑛−1 that results in the following difference
quation:

𝑛𝐶𝑛−1 − 𝛽𝑛𝐶𝑛 + 𝛾𝑛𝐶𝑛+1 = 𝜆𝑛 𝑛 = 0, 1,… (23)

ith

𝛼𝑛 = 𝑛(𝑒−𝜂0 − 𝛥1𝛥2𝑒
−2𝑛𝜂0 ) (24)

𝛽𝑛 = (2𝑛 + 1) cosh 𝜂0 − 𝛥1 sinh 𝜂0 − 𝛥1𝛥2𝑒
−2𝑛𝜂0 (𝑛 + (𝑛 + 1)𝑒−2𝜂0 ) (25)

𝛾𝑛 = (𝑛 + 1)(𝑒𝜂0 − 𝛥1𝛥2𝑒
−2(𝑛+1)𝜂0 ) (26)

𝜆𝑛 = 23∕2𝐸0𝑑𝛥1(𝑛 − (𝑛 + 1)𝑒−2𝜂0 )𝑒−2𝑛𝜂0 (27)

Eq. (23) is a linear inhomogeneous second order difference equation
with variable coefficients. It can be solved by a method described by
Milne-Thomson [20] and outlined by Love [15]. Following this method
we have developed a Matlab script to efficiently solve this equation.

Fig. 3 is a plot of the equipotential lines so-obtained for a typical
configuration.
3

i

4. Integration of Maxwell’s stress tensor

In order to compute the electric force between the sphere and the
plane, we integrate Maxwell’s stress tensor ̄̄𝑇 on a surface surrounding
the sphere. For convenience, we use the plane 𝑧 = 0 (on the vacuum
side) and a semi-sphere of infinite radius (see Fig. 4).

The electric field is given by:

𝐄 = −
cosh 𝜂 − cos 𝜏

𝑑

(

𝜕𝛷
𝜕𝜂

, 𝜕𝛷
𝜕𝜏

, 1
sin 𝜏

𝜕𝛷
𝜕𝜙

)

(28)

and it can be thought as composed by two contributions: the external
electric field 𝐸0 and the electric field due to the polarization charges
induced on the dielectric surfaces. The last one goes to zero at infinity
and its contribution to the integral on the semi-sphere is zero. In the
absence of any sphere the force is zero, and the integral of Maxwell’s
tensor should be zero, that is:

∫plane
̄̄𝑇0 ⋅ 𝑑𝐚 + ∫semi-sphere

̄̄𝑇0 ⋅ 𝑑𝐚 = 0 (29)

where ̄̄𝑇0 is Maxwell’s tensor for the electric field 𝐸0 alone.
The force on the sphere is:

𝐅 = ∫plane
̄̄𝑇 ⋅ 𝑑𝐚 + ∫semi-sphere

̄̄𝑇 ⋅ 𝑑𝐚 = ∫plane
̄̄𝑇 ⋅ 𝑑𝐚

+ ∫semi-sphere
̄̄𝑇0 ⋅ 𝑑𝐚 (30)

ince the perturbation due to the sphere does not contribute to the
ntegral over the semi-sphere. Making use of (29), we can restrict the
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Fig. 3. Contour plot of the electric potential for 𝜀1 = 𝜀2 = 2𝜀0. Numbers indicate the non-dimensional potential.
T

𝐶

𝐶

I
a

integration to the plane 𝑧 = 0(𝜂 = 0).

𝐅 = ∫plane
̄̄𝑇 ⋅ 𝑑𝐚 − ∫plane

̄̄𝑇0 ⋅ 𝑑𝐚 (31)

For symmetry reasons, the force has only 𝑧-component. Therefore, at
the plane 𝑧 = 0 (𝜂 = 0):

𝐹𝑧 = ∫plane

[ 1
2
𝜀0(𝐸2

𝜂 − 𝐸2
𝜏 ) −

1
2
𝜀0𝐸

2
0

]

𝑑𝑎 (32)

Using (4) after some algebra, one obtains:

𝑑𝐹
𝑑𝑠

= 1
2
𝜀0

(

2𝐸0
(1 − cos 𝜏)3∕2

𝑑

∞
∑

𝑛=0
(𝑛 + 1∕2)(1 + 𝛥2)𝐶𝑛𝑃𝑛(cos 𝜏)+

+
(1 − cos 𝜏)3

𝑑2

[ ∞
∑

𝑛=0
(𝑛 + 1∕2)(1 + 𝛥2)𝐶𝑛𝑃𝑛(cos 𝜏)

]2

−

−

[

sin 𝜏
2𝑑

(1 − cos 𝜏)1∕2
∞
∑

𝑛=0
(1 − 𝛥2)𝐶𝑛𝑃𝑛(cos 𝜏)−

− sin 𝜏
𝑑

(1 − cos 𝜏)3∕2
∞
∑

𝑛=0
(1 − 𝛥2)𝐶𝑛𝑃

′
𝑛(cos 𝜏)

]2
⎞

⎟

⎟

⎠

(33)

and

𝐹 = ∫
𝑑𝐹
𝑑𝑠

ℎ𝜏ℎ𝜙 𝑑𝜏 𝑑𝜙 = 2𝜋𝑑2 ∫

𝜋

0

𝑑𝐹
𝑑𝑠

sin 𝜏
(1 − cos 𝜏)2

𝑑𝜏 (34)

This integral is a function of the coefficients 𝐶𝑛 only and it is ready
to be evaluated numerically, and it has been implemented in a Matlab
script for that purpose.

We have checked that these expressions in the case 𝛥 → 1 (conduct-
ing limit) produce the same values obtained by Davis [9] for two equal
spheres, which is equivalent to one sphere and a plane. The results
4

are also identical to those obtained by Pérez [11] in the case of an
uncharged sphere and a plane.

5. Asymptotic behaviors

When the sphere is far from the plane, as compared to its radius,
the parameter 𝜂0 is much greater than 1:

ℎ ≫ 𝑅 ⟹
ℎ
𝑅

= cosh 𝜂0 →
𝑒𝜂0
2

≫ 1 (35)

Looking at Eqs. (24)–(27) we see that:

𝛼𝑛 ∼ 𝑛𝑒−𝜂0 (36)

𝛽𝑛 ∼ 𝑒𝜂0 (37)

𝛾𝑛 ∼ 𝑒𝜂0 (38)

Regarding parameters 𝜆𝑛, 𝜆0 and 𝜆1 are of the same order of magnitude,
and much greater than 𝜆𝑛 for 𝑛 = 2, 3,…. Therefore, the only relevant
equations in (23) are:

−𝛽0𝐶0 + 𝛾0𝐶1 = 𝜆0 (39)

𝛼1𝐶0 − 𝛽1𝐶1 = 𝜆1 (40)

he solution of these equations, to leading order in 𝑒−𝜂0 , is:

0 =
2

3 − 𝛥1
23∕2𝐸0𝑑𝛥1𝑒

−3𝜂0 (41)

1 = −𝐶0 (42)

ntroducing these values in the expression of the force and taking into
ccount that in this limit 𝑒−𝜂0 = 𝑅

2ℎ , one obtains:

𝐹 = 6𝜋𝜀0𝐸2
0

𝛥2𝛥2
1 𝑅6

(43)

(3 − 𝛥1)2 ℎ4
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Fig. 4. Integration surface for the computation of the force.
This expression agrees with the one obtained by Lekner [10] for two
equal conducting spheres, which is equivalent to a conducting sphere
and a plane.

5.1. Comparison with known solutions

The asymptotic value (43) can be compared with two well known
solutions: a conducting sphere versus a conducting plane, and a dielec-
tric sphere in front of a conducting plane, both cases in the limit of
ℎ ≫ 𝑅.

A conducting sphere in a homogeneous electric field 𝐸0 acquires an
electric dipole of value [21]:

𝑝 = 4𝜋𝜀0𝑅3𝐸0 (44)

Therefore, for ℎ ≫ 𝑅 we can neglect the extension of the sphere and
consider it as a point dipole. This dipole induces an image dipole on
the conductor of the same magnitude and orientation at a distance ℎ
from the surface. The force between both dipoles is:

𝐹 =
6𝑝2

4𝜋𝜀0𝑟4
(45)

Since the image dipole is at 𝑟 = 2ℎ:

𝐹 = 6𝜋
4
𝜀0𝐸

2
0
𝑅6

ℎ4
(46)

This the limit of expression (43) for 𝛥1 = 𝛥2 → 1
In the case of a dielectric sphere the induced dipole is [21]:

𝑝 = 4𝜋𝜀0
𝜀1 − 𝜀0
𝜀1 + 2𝜀0

𝑅3𝐸0 (47)

The force is:

𝐹 = 6𝜋
4
𝜀0

(

𝜀1 − 𝜀0
𝜀1 + 2𝜀0

)2
𝐸2
0
𝑅6

ℎ4
(48)

This the limit of expression (43) for 𝛥2 → 1.
Fig. 5 is a plot of the force computed from Eq. (34) as a function

of distance for 𝜀2 = 𝜀1 = 2.68𝜀0. The force is presented in non-
dimensional form, using 𝜀0𝐸2

0𝑅
2 as the reference force. Distances are

also non-dimensional, being 𝑅 the scale for distances.
The asymptotic expressions (48) and (49) are also plotted (solid

lines). The agreement in the two limits is satisfactory.
5

5.2. Asymptotic behavior for ℎ − 𝑅 ≪ 𝑅

When the sphere is very close to the plane its curvature can be
neglected. The electric pressure is approximately uniform and of order
𝜀0𝐸2

0 . The resulting force may be estimated as this pressure times a
contact area proportional to 𝑅2. The result is:

𝐹 = 𝐴𝜀0𝐸
2
0𝑅

2 (49)

where 𝐴 is a constant that depends on the dielectric constants. Fig. 5
confirms this estimation.

6. Dependency on the dielectric constant

Fig. 6 is a plot of the computed force as a function of the dielectric
constant for a given distance (we chose ℎ−𝑅 = 0.01𝑅). The force is an
increasing function of 𝜀𝑟, which is taken to be the same for the sphere
and the lower half space. For 𝜀𝑟 → 1 the force vanishes, as it is expected
since in that case no polarization charges exist. On the other hand the
force tends to saturate for 𝜀𝑟 → ∞, the conducting limit.

The behavior of the force as a function of the distance as the sphere
approaches the plane changes with the dielectric constant (see Fig. 7).
In the conducting limit (for 𝜀𝑟 ≫ 1) the forces clearly diverges as
the distance goes to zero. This is consistent with the results obtained
in other works [9–11]. A potential fit gives 𝐹 ∼ ((ℎ − 𝑅)∕𝑅)𝑚, with
𝑚 = −0.8.

However, as we have shown in the previous section, the force is
almost constant for 𝜀𝑟 = 2.68, although looking in detail at the curve
a very small increment is observed when the distance decreases (a
potential fit gives an exponent 𝑚 = −0.02).

As a general observation one can say that 𝐹 ∼ ((ℎ − 𝑅)∕𝑅)𝑚, with
𝑚 < 0, for ℎ close to 𝑅. The exponent 𝑚 approaches 0 for 𝜀𝑟 → 1 and
-1 for 𝜀𝑟 → ∞, taking intermediate values for other values of 𝜀𝑟. For
example, for 𝜀𝑟 = 40 the best fit gives 𝐹 ∼ ((ℎ − 𝑅)∕𝑅)−0.3. But we
must say that this potential fit works better for high values of 𝜀𝑟. For
example, for 𝜀𝑟 = 2.68 a linear fit, resulting in no divergency, works
better than the potential one. The actual functional dependence must
be more complicated than a linear or a potential one, in the line of the
type of expression found by Lekner for the conducting case [10].

If the sphere and the plane are made of different materials we have
an additional parameter, and things become more cumbersome. In any
case, the numerical evaluation of the integral (34) does not present
special difficulties. As an example, the force in the case 𝜀1 = 2𝜀0,
𝜀2 = 4𝜀0 follows a linear dependence on the distance for close approach:
𝐹∕(𝜀0𝐸2

0𝑅
2) = 0.221 − 1.161(ℎ − 𝑅)∕𝑅, which gives a finite value when

the sphere touches the plane.
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Fig. 5. Computed force as a function of distance. The force is non-dimensionalized with 𝜀0𝐸2
0𝑅

2 and the distance with 𝑅. (𝜀2 = 𝜀1 = 2.68𝜀0). The solid lines represent the asymptotic
behavior for small and large distances.
Fig. 6. Computed force as a function of the dielectric constant. The force is non-dimensionalized with 𝜀0𝐸2
0𝑅

2. The non dimensional distance between the sphere and the plane
is (ℎ − 𝑅)∕𝑅 = 0.01. The solid line corresponds to Eq. (34). The circles are the result of COMSOL finite element method (see below).
. Comparison with COMSOL numerical solution

.1. Definition of the domain and boundary conditions

In order to verify and compare the analytical solutions found in the
revious sections, we have implemented the equations and boundary
onditions described in COMSOL finite element method.

For this purpose, we will use the axial symmetry of the problem to
un 2-dimensional simulations reproducing the 3D results needed. This
ill improve the accuracy of the problem while reducing its compu-

ational cost because of the number of mesh nodes the 2D geometry
equires with respect to the 3D one.
6

Therefore, the integral we need to evaluate to compare the simula-
tions with the analytical estimations, represented in Eq. (32), turns into

𝐹𝑧 = ∫

2𝜋

𝜙=0
𝑑𝜙∫

𝑅𝐷

𝜌=0
𝜌𝑑𝜌

[ 1
2
𝜀0(𝐸2

𝑧 − 𝐸2
𝜌 ) −

1
2
𝜀0𝐸

2
0

]

, (50)

where 𝐸𝑧 and 𝐸𝜌 are functions only dependent on the radial and
vertical variables.

With this in mind, the resulting geometry, bulk equations and
boundary conditions are as represented in Fig. 8. That is, we are
imposing the conditions of unperturbed field E = 𝐸0𝑧̂ in the outer
boundaries of the domain.

In order to do so, we have to make an estimation of the domain

height 𝐻𝐷 and width 𝑅𝐷 (see Fig. 8) so that the perturbed field
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Fig. 7. Computed force as a function of distance for three dielectric constants. The force is non-dimensionalized with 𝜀0𝐸2
0𝑅

2. The symbols are: 𝜀𝑟 = 2 × 106 (conducting case) (*);
𝜀 = 40 (+); 𝜀 = 2.68 (o).
𝑟 𝑟
Fig. 8. Domain, bulk equations and boundary conditions imposed in the simulations.

generated by the sphere does not make any significant contribution
with respect to the field in absence of sphere, which will ultimately
allow us to make use of Eq. (31).

Far from the sphere, if 𝐻𝐷 ≫ ℎ, the sphere may be described as
point dipole, as described in Section 5, so the magnitude of the field
created by the sphere right above it is given by

𝐸 = 1 2𝑝
,

7

4𝜋𝜀0 (𝐻𝐷 − ℎ)3
which allow us to compare with the applied field magnitude 𝐸0, using
(47),

𝐸
𝐸0

= 2
𝜀1 − 𝜀0
𝜀1 + 2𝜀0

(

𝑅
𝐻𝐷 − ℎ

)3
. (51)

In Fig. 9(a) is represented the ratio 𝐸∕𝐸0 as a function of the
separation between the droplet and the top boundary normalized by the
particle radius. It can be observed that at 10 times the particle radius,
the field generated by the sphere is already three orders of magnitude
less than the applied field, so it is taken to be a reasonable limit for
𝐻𝐷.

For the case of the side boundary at 𝜌 = 𝑅𝐷, we choose it so that
including an extra distance 𝛥𝜌 makes a relative contribution to the
computed force which is less than a given amount 𝛿, that is
𝐹 (𝑅𝐷 + 𝛥𝜌) − 𝐹 (𝑅𝐷)

𝐹 (𝑅𝐷)
< 𝛿. (52)

If 𝛥𝜌 is small enough, 𝐹 (𝜌) can be expanded around 𝑅𝐷 which allows
us to rewrite the above expression as

1
𝐹 (𝑅𝐷)

𝑑𝐹
𝑑𝜌

|

|

|

|𝜌=𝑅𝐷

< 𝛿. (53)

Now, in order to make an estimation of the distance 𝑅𝐷, we suppose
again the sphere to be apart from the evaluating point so that the field
can be written as the superposition of the field created by the dipole
and the applied field. If we define 𝑑 as the distance from the center of
the sphere to the interface between the fluids at the lateral boundary
𝑑 =

√

ℎ2 + 𝑅2
𝐷, the components of the field at this curve are

𝐸𝜌 = 3𝐸0
𝜀1 − 𝜀0
𝜀1 + 2𝜀0

𝜌𝑅3

𝑑4
, 𝐸𝑧 = 𝐸0

[

3
𝜀1 − 𝜀0
𝜀1 + 2𝜀0

𝑅3(ℎ − 𝑑)
𝑑4

+ 1
]

, (54)

so that using Eq. (32) we will be able to compute such distance 𝑅𝐷 for
a given 𝛿. In Fig. 9(b) is represented (53) for ten logarithmically spaced
heights of the droplet with respect to the interface.

7.2. Results and comparison with analytical solutions

Using the domain dimensions described above for each height con-
figuration, we computed the force performing a surface integration
as indicated in (50) for the same ten logarithmically spaced droplet
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Fig. 9. Choice of boundary limits for the simulations. (a) Upper boundary 𝐻𝐷 following equation (51). (b) Lateral boundary 𝑅𝐷 using Eq. (53) for ten logarithmically spaced
values of ℎ from (ℎ − 𝑅)∕𝑅 = 10−3 (bluest curve) to (ℎ − 𝑅)∕𝑅 = 10 (reddest curve). In the inner chart it is represented the intersection of the curves with the selected threshold
𝛿 = 10−3, which is also given by the horizontal dark line in the main plot. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
Fig. 10. Force computed from the numerical integration of Eq. (34) (dashed line) in comparison with ten logarithmically spaced configurations simulated with COMSOL following
the procedure described in Section 7. As usual, 𝜀2 = 𝜀1 = 2.68𝜀0.
heights represented in Fig. 9(b). These results are presented in Fig. 10.
The analytic and numerical values differ in less than 0.06% .

In the same line, Fig. 6 compares the values of the force obtained,
with both methods, for a given distance as a function of the dielectric
constant. The agreement is, again, very satisfactory.

8. Concluding remarks

In this study we have explored in depth the force between a di-
electric sphere and a dielectric plane: we have first set the position of
this problem in the literature. Then, we have made a comprehensive
study extracting the force from Maxwell’s stress tensor and numerically
solving the resulting integrals.

We have compared these results with known solutions in two well-
known limiting scenarios, serving both as a generalization and a link
for them. This is of great interest since many studies that rely on
these special circumstances (see for example [8]) would benefit from a
deeper understanding in a wider range of separations.

The dielectric constant plays an important role in the magnitude and
the spatial dependence of the force. In the conducting limit the force
8

increases without limit when the separation between the sphere and
the plane decreases. This is not the case for small dielectric constants.

Finally, we have complemented these calculations with numerical
simulations of the system using the finite element method implemented
in COMSOL commercial software. This provides a more intuitive view
on the study which is also in good agreement with the initial analytic
approach.
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