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Cocyclic construction has been successfully used for Hadamard 
matrices of order n. These  (−1, 1)-matrices satisfy that HHT = HT 

H = nI and give the solution to the maximal determinant problem 
whenn = 1, 2oramultipleof4.Inthispaper,weapproachthemaximal 
determinant problem using cocyclic matrices when n ≡ 2 (mod 4). 
More concretely, we give a reformulation of the criterion to decide 
whether or not  the 2t × 2t determinant with entries ±1 attains 
the Ehlich–Wojtas’boundintheD2t -
cocyclicframework.Wealsoprovide some algorithms for 
constructing D2t -cocyclic matrices with large determinants and 
some explicit calculations up to t=19.

1. Motivation of the problem – introduction

A D-optimal design of order n is a n × n (1,−1)-matrix having maximal determinant. Here and

throughout this paper, for convenience, when we say determinant of a matrix we mean the absolute

value of the determinant. The question of finding the determinant of a D-optimal design of order n is

an old one which remains unanswered in general.

In 1893 Hadamard proved in [15] that for every (−1, 1)-matrix M,

det(M) � n
n
2 . (1)

Furthermore, Hadamard proved that equality holds if and only ifMMT = nI. Matrices satisfying this

condition are termed Hadamard matrices, and must have order 1, 2 or a multiple of 4. It is conjectured
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that Hadamard matrices exist for every n ≡ 0 (mod 4). Although no proof of this fact is known, there

is much evidence about its validity (see [19] and the references there cited).

Tighter bounds for the maximal determinant for all (−1, 1)-matrices of order n �= 0 (mod 4) are
known (see [5,11,12,35,23], for instance). For n ≡ 1 (mod 4), Ehlich proved in [11] that

det(M) � (2n− 1)
1
2 (n− 1)

n−1
2 . (2)

Moreover, equality holds if and only if there exists a (−1, 1)-matrix M of order n such that MMT =
(n − 1)In + Jn (see [5]). Here, as usual, In denotes the identity matrix of order n, and Jn denotes the

n× nmatrix all of whose entries entries are equal to one. If equality holds, 2n− 1 is a perfect square

(2k+ 1)2 (or equivalently, n is the summation of two consecutive squares, n = k2 + (k+ 1)2). It has
been conjectured that a matrix attaining the bound exists whenever this is the case. However, order

85 = 62 + 72 is the smallest for which this has not been proven.

For n ≡ 2 (mod 4), Ehlich in [11] and independently Wojtas in [35] proved that

det(M) � (2n− 2)(n− 2)
n−2
2 . (3)

In order for equality to hold, it is required that there exists a (−1, 1)-matrix M of order n such that

MMT =
⎛
⎝ L 0

0 L

⎞
⎠, where L = (n − 2)I n

2
+ 2J n

2
. In these circumstances, it may be proved that, in

addition, 2n− 2 is the sum of two squares, a condition which is believed to be sufficient (order 138 is

the lowest for which the question has not been settled yet [13]). To be more precise, Ehlich proved in

[11] that 2n−2 = ( n
2
−2r)2+( n

2
−2s)2, where r (resp. s) is the number of rows inM from1 to n

2
(resp.

n
2
+ 1 to n) for which the first entry is positive. Alternatively, Cohn proved in [7] thatM can be chosen

of the type M =
⎛
⎝ X Y

Z W

⎞
⎠ , so that L = XXT + YYT = ZZT +WWT = XTX + ZTZ = YTY +WTW ,

0 = XZT + YWT = XTY + ZTW , and 2n − 2 = x2 + y2, for x � y � 0, where every row sum and

column sum of each of X and W is x, each row sum and each column sum of Y is y and each row sum

and column sum of Z is−y.
The case n ≡ 3 (mod 4) appears to be the most difficult one. In spite of the fact that the bound (2)

also holds for these matrices, Ehlich derived a tighter one in [12],

(n− 3)
n−s
2 (n− 3+ 4r)

u
2 (n+ 1+ 4r)

v
2

√
1− ur

n− 3+ 4r
− v(r + 1)

n+ 1+ 4r
, (4)

where s = 3 for n = 3, s = 5 for n = 7, s = 5 or 6 for n = 11, s = 6 for n = 15, 19, . . . , 59, and s = 7

for n � 63, r = � n
s
�, n = rs + v and u = s − v. Cohn showed in [9] that this number is an integer

only when n = 112t2 ± 28t + 7 for some integer t. Nevertheless, many orders allowed by Cohn’s

criterion are ruled out by the Hasse–Minkowski theorem on rational equivalence of quadratic forms

(see [34]). In particular, Ehlich’s bound is not achievable for order 91. The smallest order for which it

is potencially attainable is 511.

It is well known that the Hadamard bound (1) is attained infinitely often, and has to be considered

sharp in this sense. In [23] this questionwas studied for the remainingbounds, (2), (3) and (4), and some

lower bounds were described which were attained infinitely often. Today we know that the bounds

(1), (2) and (3) are sharp, in the above sense. Nevertheless, it is not known whether the bound (4) is

sharp in the same sense, or even if it is achievable beyond n = 3. It is conceivable that it is not sharp.

When an×ndeterminant is found that attains the relevant one of the above bounds, it is immediate

that the maximal determinant for that order is just the bound itself. Nevertheless when the upper

bound is not attained, finding themaximal n×n determinant can be exceedingly difficult. For n � 30,

orders 19, 22, 23, 27 and 29 are unresolved. The interested reader is addressed to [20] and the website

[30] for further information on what is known about maximal determinants.



Table 1

Proportion of inequivalent Hadamard matrices (cocyclic/general framework).

n 4 8 12 16 20 24 28 32 36

#[CH] 1 1 1 5 3 16 6 100 35

#[H] 1 1 1 5 3 60 487 � 13.7×106 � 3·106
#[CH]
#[H] 1 1 1 1 1 2.67 ·10−1 1.23 ·10−2 � 7.29 · 10−6 � 1.16 ·10−5

Traditionally, matrices meeting the bound (1) are classified attending to Hadamard equivalence,

so that two Hadamard matrices are equivalent if and only if one can be converted into the other by a

sequence of permutations of rows and columns, and negations of rows and columns. This classification

problemtranslatesnaturally to thecaseof the remainingbounds. Theclassificationof (−1, 1)-matrices

achieving the maximal determinant remains as an unanswered question in general. What is known

(see [19,29,21] for details), is that there is only one equivalence class of D-optimal designs for each of

the orders up to n = 15, except for n = 11. And there are 3 equivalence classes for n = 11, 5 for n = 16,

3 for n = 17, 18, 20, 7 for n = 21, 60 for n = 24, 78 for n = 25 and 487 for n = 28. For updates on

the lower bounds for the number of equivalence classes for other orders, visit these websites [22,30].

In the early 90s, a surprising link between homological algebra and Hadamard matrices [17] led to

the study of cocyclic Hadamard matrices [18]. As was introduced before, a Hadamard matrix of order

4t is a (−1, 1) square 4t × 4t matrix such that its distinct row (resp. column) vectors are pairwise

orthogonal. A Hadamard matrix is said to be normalized if it has its first row and column all of 1’s (see

[19] for more details and constructions methods).

Hadamard matrices of many types are revealed to be (equivalent to) cocyclic matrices [10,19].

Among them, Sylvester Hadamard matrices, Williamson Hadamard matrices, Ito Hadamard matrices

andPaleyHadamardmatrices. Furthermore, the cocyclic construction is themostuniformconstruction

technique forHadamardmatrices currentlyknown, andcocyclicHadamardmatricesmayconsequently

provide a uniform approach to the famous Hadamard conjecture.

Themainadvantagesof thecocyclic frameworkconcerningHadamardmatricesmaybesummarized

in the following facts:

• The test to decide whether a cocyclic matrix is Hadamard runs in O(t2) time, better than the O(t3)
algorithm for usual (not necessarily cocyclic) matrices.
• The search space is reduced to the set of cocyclic matrices over a given group (that is, 2s matrices,

provided that a basis for cocycles over G consists of s generators), instead of the whole set of 216t
2

matrices of order 4t with entries in {−1, 1}.
Now an interesting question arises, is it better to look for Hadamardmatrices in the general frame-

work or in the cocyclic context instead?

A recent work of Ó Catháin and Röder (see [27] for details) has permitted the calculation of the

exact number #[CH] of inequivalent cocyclic Hadamard matrices, for orders less than 40. This way, a

comparison in terms of the total number #[H] of inequivalent Hadamard matrices is feasible, up to

order 36 (see Table 1). Here we have taken into account the work of Kharaghani and Tayfeh-Rezaie in

[21], about the number of equivalence classes of Hadamard matrices of order 32.

Notice that a cocyclic Hadamard matrix may be Hadamard equivalent to a matrix which is not

cocyclic at all. The cocyclic character is not preserved by Hadamard equivalence, in general.

From Table 1, it seems that whereas t increases the quotient
#[CH]
#[H] between the number of in-

equivalent cocyclic Hadamardmatrices and the number of inequivalent Hadamardmatrices decreases

drastically. Nevertheless, this comparison is somehow biassed, since the set of Hadamard matrices is

not uniformly distributed among the equivalence classes. If we attend to the summation of the num-

ber of Hadamard matrices equivalent to a matrix of [H] and [CH] in Table 1, denoted by #H and #CH

respectively (the required information may be extracted from [27] and [32]), we obtain Table 2.

Notice that the number #H of Hadamardmatrices of a given order, and the number #[H] of equiva-
lence classes inwhich they distribute, are linked by the notion ofmass. Themass of Hadamardmatrices

of a given order is defined to be the sumof the reciprocals of the sizes of the automorphismgroups over



Table 2

Proportion of Hadamard matrices belonging to equivalence classes [CH] and [H].
n 4 8 12 16 20 24 28

#CH 192 21,504 190,080 10,838,016 16,440 790,224 64,488

#H 192 21,504 190,080 10,838,016 16,440 823,616 74,306
#CH
#H

1 1 1 1 1 0.9594 0.8678

Table 3

Density of D4t-Hadamard matrices versus that of usual Hadamard matrices.

n 4 8 12 16 20 24 28

%H(D4t) 3.75 · 10−1 1.25 · 10−1 1.76 · 10−2 1.17 · 10−2 2.1 · 10−3 4.46 · 10−4 4.23 · 10−5
%H 2.99 · 10−3 1.17 · 10−15 8.52 · 10−39 9.36 · 10−71 6.37 · 10−117 3.33 · 10−168 7.30 · 10−232

the equivalence classes of Hadamard matrices of this order. This gives another measure of how many

distinct Hadamard matrices there are, without regard to equivalence. See [33, A048615,A048616] for

details.

In fact, searching for Hadamard matrices, no matter the context (cocyclic or general), is computa-

tionally a very hard task, as difficult as looking for a needle in a haystack. Nevertheless, one should

compare the sizes of the needle and the haystack to get an objective impression about the difficulty

of finding such a needle in such a haystack. Thus what can be said about the proportion of Hadamard

matrices in the general framework and in the cocyclic context? Unfortunately, we have no information

about the total number of cocyclic matrices, even for small values of t. The work in [27] could shed

light on this problem.

Anyway, we can compare the framework of the usual Hadamardmatrices with a concrete family of

cocyclic matrices. Among them, the most prolific case seems to be dihedral groups D4t (see [19,3] for

instance). Since a basis for normalized cocycles over D4t consists of 4t cocycles (see [3], for instance),

then a full basis for cocycles over D4t consists of 4t + 1 elements, and hence the size of the search

space for D4t-cocyclic Hadamard matrices is 24t+1. The search space for the usual Hadamard matrices

is the complete set of (−1, 1)-matrices square matrices of order 4t, which consists of 216t
2

matrices.

The number of D4t-cocyclic Hadamard matrices for small values of t may be calculated progressing

from thework in [2]. Nowwe can compare the density %H(D4t) ofD4t-Hadamardmatrices amongD4t-

cocyclic matrices, and the density %H of usual Hadamard matrices among the set of (−1, 1)-matrices

of order 4t.

Undoubtedly, the information in Table 3 is once again biassed, since we should be comparing with

the full set of cocyclic matrices of order 4t. Anyway, there is some evidence that searching for cocyclic

Hadamard matrices, and in particular for D4t-cocyclic Hadamard matrices, makes sense.

Despite the fact that cocyclic construction provides a successful approach for Hadamard matrices,

and hence for (−1, 1)-matrices meeting the bound (1), as far as the authors know this technique has

not yet been used to tackle the maximal determinant problem when n �= 0 (mod 4).
The main purpose of this paper is to show that the cocyclic technique can certainly be extended

to handle the maximal determinant problem at least when n ≡ 2 (mod 4). More concretely, we will

focus on cocyclic matrices over the dihedral group D2t , with t odd, so that we give:

• A reformulation of the criterion to decide whether or not a D2t-cocyclic matrix has a determinant

attaining Ehlich–Wojtas’ bound.
• Some algorithms for constructingD2t-cocyclicmatrices with large determinants, based on exhaus-

tive and heuristic searches. Unfortunately, although the largest determinants obtained by these

methods so far (up to n = 2t = 38) meet the optimal bound (3) when n − 1 is the sum of two

squares, no D2t-cocyclic matrix has been found neither meeting nor improving the already known

lower bounds when n = 22, 34.

Apart fromthis introductory section,weorganize thepaperas follows. The secondsection isdevoted

to explain the theoretical results about how to determine D2t-matrices meeting Ehlich and Wojtas’

bound (3). The algorithms and some executions are described in the third section. The last section is

devoted to conclusions and future work.



2. Main results

From now on, we assume that n ≡ 2 (mod 4). When necessary, we will use n = 2t, for some odd

integer t � 1.

Our goal in this section is to characterize the formofD2t-cocyclicmatriceswhichmightmeet Ehlich

andWojtas’ bound (3). Thefirst part of the section is devoted to introduce somenotations and technical

results. Afterwards, the main statements of the paper are described and proved.

As introduced in Section 1, equality in (3) holds if and only if there exists a (1,−1)-matrix B of

order n, such that

BBT = BTB =
⎛
⎝ L 0

0 L

⎞
⎠ , (5)

with Lt = (n−2)It+2Jt . Moreover, in these circumstances n−1 is necessarily the sumof two squares.

Condition (5) implies some combinatorial properties, regarding the number of positive entries of

the rows (resp. columns) of B. The rows of any (−1, 1)-matrix of size n can be classified as of even or

odd type, depending on the parity of the number of 1s that they contain. It is apparent that the inner

product of two rows of the same type is congruent to 2modulo 4, while the inner product of two rows

of opposite type is congruent to 0 modulo 4. In these circumstances, the block structure of the matrix

in (5) implies that rows from 1 to t of B share a common type, whereas rows from t+ 1 to 2t share the

opposite type. The same argument translates to the columns of B. This is a main difference with usual

Hadamard matrices of order a multiple of 4, in which rows of different type cannot occur.

Notice that this balanced structure of even and odd type rows does not need to be attained anymore

when n − 1 is not the sum of two squares. In particular, record-determinant matrices are known in

sizes 22, 34, 70 and 106 for which the number of even type rows is greater than the number of odd

type rows (see [30] for details).

How do these conditions translate to the cocyclic framework? In order to answer this question

properly, it seems reasonable to give in advance a brief introduction to cocyclic matrices.

Assume throughout that G = {g1 = 1, g2, . . . , gn} is a multiplicative group, not necessarily

abelian. Functionsψ : G × G→ 〈−1〉 ∼= Z2 which satisfy

ψ(gi, gj)ψ(gigj, gk) = ψ(gj, gk)ψ(gi, gjgk), ∀gi, gj, gk ∈ G (6)

are called (binary) cocycles (over G) [24]. A cocycle is a coboundary ∂φ if it is derived from a set

mapping φ : G→ 〈−1〉 by ∂φ(a, b) = φ(a)φ(b)φ(ab)−1.
A cocycle ψ is naturally displayed as a cocyclic matrix (or G-matrix) Mψ ; that is, the entry in the

(i, j)th position of the cocyclic matrix isψ(gi, gj), for all 1 � i, j � n.

A cocycleψ is normalized ifψ(1, gj) = ψ(gi, 1) = 1 for all gi, gj ∈ G. The cocyclic matrix coming

from a normalized cocycle is called normalized as well. Each unnormalized cocycle ψ determines a

normalized one−ψ , and vice versa. Therefore, we may reduce, without loss of generality, to the case

of normalized cocycles.

The set of cocycles forms an abelian group Z(G) under pointwise multiplication, and the cobound-

aries form a subgroup B(G). A basis B for cocycles over G consists of some elementary coboundaries

∂i and some representative cocycles, so that every cocyclic matrix admits a unique representation as

a Hadamard (pointwise) product M = M∂i1 ◦ · · · ◦ M∂iw ◦ R, in terms of some coboundary matrices

M∂ij
and a matrix R formed from representative cocycles.

Recall that every elementary coboundary ∂d is constructed from the characteristic set map δd : G→{−1, 1} associated with an element gd ∈ G, so that

∂d(gi, gj) = δd(gi)δd(gj)δd(gigj) for δd(gi) =
⎧⎨
⎩−1 gd = gi,

1 gd �= gi.



Remark 1 [2, Lemma 1]. In particular, for d �= 1, every row s /∈ {1, d} in M∂d contains precisely two

−1s, which are located at the positions (s, d) and (s, e), for ge = g−1s gd. Furthermore, the first row is

always formed by 1s, while the dth row is formed all by−1s, excepting the positions (d, 1) and (d, d).

Although the elementary coboundaries generate the set of all coboundaries, they might not be

linearly independent (see [3] for details).

At this point, it is worthwhile to notice that every row (resp. column) in M∂d consists of an even

number of 1s (see Remark 1). Consequently, for a cocyclic matrix M = M∂i1 ◦ · · · ◦ M∂iw ◦ R to be

a candidate B for meeting (5), a necessary (in general, not sufficient) condition is that half the rows

(resp. columns) of R are of even type, whereas the remaining t rows (resp. columns) are of odd type.

Let Gr(M) (resp. Gc(M)) be the Gram matrix of the rows (resp. columns) of M,

Gr(M) = MMT (resp. Gc(M) = MTM).

The Gram matrices of a cocyclic matrix can be calculated as follows.

Proposition 1. [19, lemma 6.6]

Let Mψ be a cocyclic matrix,

[Gr(Mψ)]ij = ψ(gig−1j , gj)
∑
g∈G

ψ(gig
−1
j , g), (7)

[Gc(Mψ)]ij = ψ(gi, g−1i gj)
∑
g∈G

ψ(g, g−1i gj). (8)

If a cocyclic matrix Mψ is Hadamard, we say that the cocycle involved, ψ , is orthogonal and Mψ is

a cocyclic Hadamard matrix. The cocyclic Hadamard test asserts that a normalized cocyclic matrix is

Hadamard if and only if every row sum (apart from thefirst) is zero [18]. In fact, this is a straightforward

consequence of Proposition 1.

Analyzing this relation from a new perspective, one could think of normalized cocyclic matrices

meeting the bound (1) as normalized cocyclic matrices for which every row sum is zero. Could it be

possible that such a relation translates somehow to the case n ≡ 2 (mod 4)? We now prove that, in

fact, the answer to this question is affirmative.

A natural way to measure if the rows of a normalized cocyclic matrix M = [mij] are close to sum

zero, is to define an absolute row excess function RE, such that

RE(M) =
n∑

i=2

∣∣∣∣∣∣
n∑

j=1
mij

∣∣∣∣∣∣ .
This is a natural extension of the usual notion of excess of a Hadamard matrix, E(H), which consists in

the summation of the entries of H.

With this definition at hand, it is evident that a cocyclic matrix M is Hadamard if and only if

RE(M) = 0. That is, a cocyclic matrix M meets (1) if and only if RE(M) is minimum. This condition

may be generalized to the case n ≡ 2 (mod 4).

Proposition 2. Let M be a normalized cocyclic matrix over G. Then RE(M) � 2t − 2.

Proof. Let M be a cocyclic matrix over G. Let M have e rows of even type (precisely, those whose

summations are congruent to 2 modulo 4), and consequently 2t − e rows of odd type (those whose

summationsarecongruent to0modulo4) In thesecircumstances, inorder toprove thatRE(M) � 2t−2
it suffices to prove that e � t (notice that the first row of M is always of even type).

As we commented before, since n ≡ 2 (mod 4), the inner product of two rows of the same type

is congruent to 2 modulo 4, while the inner product of two rows of opposite type is congruent to 0



modulo 4. This way, the number of inner products ≡ 0 (mod 4) is 2e(2t − e), the total number of

ordered pairs of rows of different type. An upper bound of this value is 2e(2t− e) � 2t2, and equality

holds if and only if e = t since 2e(2t − e) � 2t2 ⇔ 2t2 − 4et + 2e2 � 0⇔ 2(t − e)2 � 0.

Since each of the 2t− e group elements gr corresponding to rows of odd type can be represented as

gsg
−1
j , where gj = g−1r gs, Proposition 1 implies that row s of the Grammatrix Gr(M) = MMT contains

2t − e elements ≡ 0 (mod 4) for each 1 � s � 2t, and therefore that the Gram matrix Gr contains

2t(2t − e) elements≡ 0 (mod 4). Hence 2t(2t − e) � 2t2 ⇔ 2t − e � t ⇔ e � t. �

But we may go even further. Having the minimum possible value 2t − 2 is a necessary condition

for a cocyclic matrixM to meet the bound (3).

Proposition 3. If a cocyclic matrix M meets the bound (3), then RE(M) = 2t − 2.

Proof. Let M be a cocyclic matrix meeting (3). By means of rows and columns permutations and row

negations (no column negations are needed),M can be transformed in a Hadamard equivalent matrix

B satisfying (5). From (5), it is evident that RE(B) = 2t−2. Since no column negations have been used,

RE(M) = RE(B). �

Unfortunately, although having minimum absolute row excess is a necessary and sufficient condi-

tion formeeting the bound (1), it is just a necessary (but not sufficient, in general, see Table 5) condition

for meeting the bound (3).

From now on, we fix G = D2t , the dihedral group with presentation 〈a, b : at = b2 = (ab)2 = 1〉,
with ordering {1, a, . . . , at−1, b, ab, . . . , at−1b} and indexed as {1, . . . , 2t}where t is an odd positive

integer.

From the results in [2] and [1], it may be proved that a basis for cocycles over D2t consists in 2t− 1

generators, B = {∂2, . . . , ∂2t−1, β}. Here ∂i denotes the coboundary associated with the ith-element

of the dihedral group D2t , that is a
i−1 (mod t)b� i−1t �. And β is the representative cocycle in cohomology,

i.e. Mβ =
⎛
⎝ Jt Jt

Jt −Jt

⎞
⎠.

Remark 2. Since half the rows of Mβ are of even type (those from 1st to 2tth), it is apparent that a

cocyclicmatrixM overD2t can attain the bound (3) only ifM decomposes as a combination of the form

M∂i1 ◦ · · ·◦M∂iw ◦Mβ . If, on the contrary,Mβ is not used, then all the rows of the cocyclicmatrixwould

be of even type, and the condition (5) could not be satisfied. Notice that for every D2t-cocyclic matrix

of the form M∂i1 ◦ · · · ◦ M∂iw ◦ Mβ , rows (resp. columns) from 1st to 2tth are of even type, whereas

the remaining rows (resp. columns) are of odd type.

The following technical result will be used throughout the paper.

Lemma 4. Let M be a cocyclic matrix over D2t .

• MMT has the form

⎛
⎝ X 0

0 Y

⎞
⎠ , for some symmetric square matrices X and Y of order t, if and only if it

admits a decomposition of the form M = M∂i1 ◦ · · · ◦ M∂iw ◦ Mβ .• If it is the case, in addition, then MMT = MTM.

Proof. The argument described in [2, Proposition 11] may be adapted to the case of dihedral groups

D2t , so that the summation of any row s, t + 1 � s � 2t, is 0.

Actually, consider a matrix N = M∂i1 ◦ · · · ◦ M∂iw . Attending to the presentation of D2t , it may be

readily checked that (akb)−1 = akb. In these circumstances, Remark 1 implies that the (necessarily

even) number 2fs of−1s located at row s, t + 1 � s � 2t, are distributed in such a way that precisely



fs of them occur through columns 1 to t, whereas the remaining fs occur through columns t + 1 to 2t.

Furthermore, fixed a row s, t+1 � s � 2t, any two coboundarymatricesM∂i andM∂j either share their

two−1s entries at row s, or do not share any of them at row s. Consequently, attending to the form of

Mβ , the summation of row s, t + 1 � s � 2t, of any cocyclic matrixM∂i1 ◦ · · · ◦M∂iw ◦Mβ is zero.

Now the first part of the Lemma becomes apparent, from Proposition 1 and Remark 2.

The proof of the second part of this lemma follows from the study of the distribution of−1 by rows

and by columns in the elementary coboundary (see [2,4]). This study leads to the notion of called (row)

n-paths in [2], analogously the notion for columns can be defined. The distribution of−1 by rows and

columns in M = [mi,j] can be found by means of n-path. As a consequence, we have the following

properties of M:

1. If t + 1 � j � 2t, then jth column sum is zero andmj,j = 1.

2. Assume 1 � i � t. Then, any sequence of coboundariesmaking up a i-path for rows, alsomakes

upa i-path for columns. (Unfortunately, this situationdoesnotholdwhen t+1 � i � 2t.)Hence:
• The ith row sum is equal to the ith column sum.
• If 1 � j � t then the inner product of rows ith and jth is equal to the inner product of columns

ith and jth.

Let us distinguish three cases:

1. If 1 � i � t and t + 1 � j � 2t (or vice versa) then by (8), we have:

[MTM]i,j = ±
2t∑
l=1

ml,k

with t + 1 � k � 2t. Using the properties above, we have that this column sum is zero.

2. Assuming 1 � i, j,� t, and taking into account the last property stated above. It follows that

[MTM]i,j = [MMT ]i,j.
3. Let us show that [MTM]i,j = [MMT ]i,j when t + 1 � i, j � 2t.

Firstly, let us observe that i = j the result is trivial. For the remaindering of the proof, we

suppose that i �= j. Using (7) and (8), we have:

[MMT ]i,j = mk,j

2t∑
l=1

mk,l,

and

[MTM]i,j = mi,k

2t∑
l=1

ml,k.

where 2 � k � t since g
−1
i = gi and gig

−1
j = g

−1
i gj = gk . In this situation, the kth row sum

is equal to the kth column sum. Now, using that the entries of M satisfying (6) and mi,i = 1, it

follows thatmk,j = mi,k , and this concludes the proof. �

In this paper, not only do we pursue a characterization of the D2t-cocyclic matrices whose deter-

minant is equal to (4t − 2)(2t − 2)t−1, but we will also develop some methods for finding them.

If M is a D2t-cocyclic matrix whose determinant is equal to (4t − 2)(2t − 2)t−1 then Gr(M) is
equivalent to

C =
⎛
⎝ L 0

0 L

⎞
⎠ ,

with L = (2t − 2)It + 2 Jt .



Starting from C one may construct S the full set of equivalent matrices UTCUT , such that UT is the

negation of the diagonal entries with indices in T ⊂ {1, . . . , 2t} = Q of the identity matrix I2t .

S = {UTCUT : T ⊂ Q}. (9)

This list has cardinality 22t−1 since UTCUT = UQ\TCUQ\T . It is a remarkable fact that S constitutes

the complete list of candidate Gram matrices (i.e., symmetric, have diagonal elements equal to 2t and

positive definite and determinant equal to (4t − 2)2(2t − 2)2t−2 in our cocyclic context. In the gen-

eral framework, simultaneous permutation of rows and the corresponding columns in the candidate

Gram matrices is also allowed. Because of the assumed ordering of the group elements, and the re-

lation of elements of the form ajb with rows of odd type, arbitrary permutation is not allowed in our

context.

Given a candidate Grammatrix, not onlywouldwe like to determinewhether it admits a decompo-

sition UTCUT = MMT ,M being a D2t-cocyclic matrix, but we also aim to compute such decomposition

whenever possible. The next result will play an essential role in the design of the algorithm solving

this problem.

Theorem 5. Let M be a normalized cocyclic matrix over D2t and Gr(M) =
⎛
⎝ X 0

0 Y

⎞
⎠ be the Gram matrix

of M. If X and Y are square matrices of order t, then the entries of M = [mi,j] are given by the formulas:

1. 1 � i, j � 2t

m1,j = 1 = mi,1 (M normalized)

2. 2 � i � t

2.1. 2 � j � t

mi,j = x[j+i−1],j
xi,1

, where [n] = 1 + (n− 1) mod t

2.2. t + 1 � j � 2t

mi,j = y[j+i−1−t],j−t
xi,1

3. i = t+ 1 (By lemma 4, MMT = MTM. Hence we have uniqueness of the entries and these are the

values given below.)

3.1. 2 � j � t

mt+1,j = y1,t+2−j
x1,j

3.2. j = t + 1

mt+1,t+1 = −
t∑

j=1
mt+1,j

/ ⎛
⎝1+

2t∑
j=t+2

mj−t,t+1 mt+1,j−t m2t+2−j,t+1

⎞
⎠ .

3.3. t + 2 � j � 2t

mt+1,j = mj−t,t+1 mt+1,j−t m2t+2−j,t+1 mt+1,t+1
4. t + 2 � i � 2t

4.1. 2 � j � t

mi,j = mi−t,2t−j+2 mi−t,t+1 mt+1,j



4.2. j = t + 1

mi,t+1 = mi−t,t+1 · mt+1,t+1
4.3. t + 2 � j � 2t

mi,j = mi−t,2t−j+2 mi−t,t+1 mt+1,j

Proof. The statement of the theorem follows by direct inspection. �

In what follows, we rewritten the criterion to decide whether or not the determinant of a 2t × 2t

(−1, 1)-matrix attains the Ehlich–Wojtas’ bound in the cocyclic framework.

Theorem 6. Let M = [mi,j] be a cocyclic matrix over D2t , then

detM � (4t − 2)(2t − 2)t−1. (10)

Moreover, the equality in (10) holds if and only if

• Each row of M from (t + 1)th to 2tth has row sum zero.

• The blockmatrix

⎛
⎝ X 0

0 Y

⎞
⎠ is a candidate a Grammatrix, where X = [xi,j] and Y = [yi,j] are symmetric

square matrices of order t with entries:

xi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mj−i+1,i
2t∑

k=1
mj−i+1,k i < j

2t i = j

xj,i i > j

and

yi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mj−i+1,t+i
∑2t

k=1 mj−i+1,k i < j

2t i = j

yj,i i > j

Proof. The inequality (10) is just Ehlich–Wojtas’ bound. Using the identity (7) for computing MMT ,

we obtain

MMT =
⎛
⎝ X 0

0 Y

⎞
⎠⇐⇒ the ith row sum is 0, for all i with t + 1 � i � 2t.

Furthermore, if MMT is a candidate Gram matrix then detM = (4t − 2)(2t − 2)t−1. �

Remark 3. Two further necessary conditions for equality in (10) to hold are:

• 2t − 1 = α2 + β2, where α and β are integers.
• Each row from 2nd to tth has row sum either 2 or−2.

3. Explicit calculations

All the calculations of this section have been worked out in Mathematica 4zx.0, running on a

Pentium IV 2.400 Mhz DIMM DDR266 512 MB.



Table 4

Maximum determinant of D2t-matrices.

t R # # [ ] Mψ
3 1 6 1 3

5 1 25 1 35

7 1 196 1 151

9 1 972 1 1611

11 0.900972 9680 47271

We have performed three different searches:

• An exhaustive search running over the full set of D2t-matrices.
• An exhaustive search running on the full set of candidate Gram matrices (Algorithm 2).
• A heuristic search, in terms of a genetic algorithm, where the population are D2t-matrices and

the fitness function depends on the ratio between the determinant value of an individual and the

corresponding bound.

Next these approaches are explained in detail.

3.1. Exhaustive search

We have performed an exhaustive search looking for the set of D2t-matrices with maximum deter-

minant, for 3 � t � 11 odd.

Recall that every cocycleψ over D2t is expressed with regards to the basis B = {∂2, . . . , ∂2t−1, β}.
Here∂i denotes thecoboundaryassociated to the i

th-elementof thedihedralgroupD2t ,a
i−1 (mod t)b� i−1t �.

And β is the representative cocycle in cohomology, i.e.Mβ =
⎛
⎝ Jt Jt

Jt −Jt

⎞
⎠.

Due to obvious size limitations, in Table 4 we prefer to include the ratio R = det(M)
(4t−2)(2t−2)t−1 (which

is called efficiency of the design in [31]) instead of the value det(M) of the determinant itself. The

second column of the table shows the total number # of D2t-matrices found which meet the maximal

determinant value, whereas the third column informs about the number #[ ] of different Hadamard

equivalence classes in which these D-optimal designs are organized. We also include an explicit D2t-

matrixMψ meeting the corresponding maximum determinant value, in terms of the coordinates ofψ
with regards to B. For brevity, a binary vector of coordinates (f1, . . . , f2t−1)B will simply be denoted

as its decimal number representation.

It is known that there is only one equivalence class for t = 3, 5, 7 (see [30]) and three equivalence

classes for t = 9 (see [8]). The one that corresponds to optimal D2t-cocyclic matrices for t = 9 is

the first as listed in [30]. We did not check the number of equivalence classes for t = 11, since these

matrices do not attain the maximal determinant value already known (see [30]).

Notice that the optimal D2t-cocyclic matrices enumerated in Table 4 are not the only ones with

minimum absolute row excess. Table 5 shows, for each 3 � t � 11 odd, the number # of D2t-

matrices with minimum absolute row excess, and how they are distributed with regards to their ratio

R = det(M)
(4t−2)(2t−2)t−1 , as well as the required computing time.

3.2. Exhaustive search revisited

The search methods usually employed in the literature [14,26,6,28] for finding (−1, 1)-matrices

with large determinant are based on two steps. Firstly, in generating a set of candidate Grammatrices

having determinant greater than or equal to the square of a known lower bound on the maximum.

Secondly, in attempting to decompose each candidate as the product of a (−1, 1)-matrix and its

transpose. Bearing this in mind, in what follows, we have designed another algorithm (Algorithm 2)

searching exhaustively for D2t-matrices with maximum determinant, in case that 2t − 1 = α2 + β2.



Table 5

Determinants of D2t-matrices with minimum absolute row excess.

t #
#i Time
Ri

3 15
9 6

0.016”
0.75 1

5 175
50 100 25

0.484”
0.5625 0.868056 1

7 1568
196 294 882 196

17.456”
0.432204 0.79867 0.886884 1

9 13122
972 972 1944 1944 4374 972 972 972

9’24.8”
0.350616 0.72928 0.756409 0.819419 0.853128 0.895782 0.900735 1

11 82764
2904 13310 8470 24200 12100 12100 9680

4h31’6.3”
0.294845 0.72806 0.774513 0.803574 0.844079 0.876751 0.900972

Instead of working with the set of D2t-matrices, we prefer to construct the cocyclic matrices related

to candidate Gram matrices.

Let us recall that S (see (9)) constitutes the complete list of candidate Grammatrices with determi-

nant equal to (4t−2)2(2t−2)2t−2. For eachof theseGrammatricesUTCUT inS , onemay reconstruct the

uniquely determined cocyclic matrix M, which is the candidate to satisfy the relation MMT = UTCUT .

Notice that this relation will fail only if no cocyclic matrix N exists such that NNT = UTCUT , since if

equality holds then N = M necessarily (see Theorem 5).

Given A ∈ S , we now outline a method to determine whether it admits a decomposition A = MMT

where M is a cocyclic (−1, 1)-matrix over D2t .

Algorithm 1. Cocyclic test to decompose a candidate Gram matrix.

Input: a candidate Gram matrix A.

Output: a cocyclic matrixM in the case that A admits to be decomposed as A = MMT .

Step 1. Calculate M using the formulas given Theorem 5 and assuming Gr(M) = A.

Step 2. Calculate MMT .

Step 3. If A = MMT then A admits the decomposition. Otherwise, such decomposition does not

exist for A.

Verification: By construction, M is a cocyclic matrix over D2t , the entry mt+1,t+1 = −1 and every

row sum from the t + 1th to 2tth is zero, but MMT might be different from A. Theorem 5 guarantees

the uniqueness of M.

Algorithm 2. Search for cocyclic matrices with determinant equal to (4t − 2)(2t − 2)t−1.
Input: an integer n such that n ≡ 2mod 4 and n− 1 is the sum of two squares.

Output: a cocyclic matrix M with determinant equal to (4t − 2)(2t − 2)t−1, in the case that such

matrix exists.

�← ∅
S ← The complete list of candidate Gram matrices

while S is not empty {
1. Choose a matrix A in S.
2. S ← S \ {A}.
3. CheckwhetherA admits to be decomposed asA = MMT for a cocycleM. If not, go to 1; otherwise

�← M.

4. End while.

}
�



Table 6

Exhaustive search from Gram matrices.

t 3 5 7 9 13 15

R 4 1,6 1,8,9,11 1,2,10,12,15 1,2,5,14,15,16,18,21,23 1,2,4,11,16,17,18,20,23,27

Remark 4. These constraints

t∑
i=1

a[i+j],i + at+[i+j],t+i = a21+j,1 = 4, ∀ j = 1, . . . ,
t − 3

2
,

on the entries of a candidate Gram matrix A = [aij] are a necessary condition in order Algorithm 1 to

have a successful output. Concretely, these constraints guarantee that every row sum from 2nd to tth

is either 2 or−2. Obviously, they reduce the size of the search in Algorithm 2.

In Table 6 we show, for each 3 � t � 15 odd, an example of subset T ⊂ {1, . . . , 2t} such that the

cocycle associated to the Gram matrix UTCUT has maximum determinant (with regards to Table 4).

3.3. Heuristic search

Genetic algorithms (more briefly, GAs in the sequel) are appropriate for searching through large

spaces, where exhaustive methods cannot be employed.

The father of the original Genetic Algorithm was John Holland who invented it in the early 1970’s

[16]. We next include a brief introduction to the subject. The interested reader is referred to [25] for

more extensive background on GAs.

The aimofGAs is tomimic the principle of evolution in order to find anoptimumsolution for solving

a given optimization problem. More concretely, starting from an initial “population” of potential solu-

tions to the problem (traditionally termed chromosomes), some transformations are applied (may be

just to some individuals or even to thewhole population), as images of the “mutation” and “crossover”

mechanisms in natural evolution.Mutation consists ofmodifying a “gene” of a chromosome. Crossover

interchanges the information of some genes of two chromosomes.

Only some of these individuals will move on to the next generation (the more fit individuals,

according to the optimization problem, in terms of the measure of an “evaluation function”). Here

“generation” is synonymous to iteration. Themutation and crossover transformations are applied from

generation to generation, and individuals go on striving for survival. After some number of iterations,

the evaluation function is expected to measure an optimum solution, which solves the given problem.

Although no bounds are known on the number of iterations which are needed to produce the fittest

individual, it is a remarkable fact that GAs usually converge to an optimum solution significantly faster

than exhaustive methods do. Indeed, GAs need not to explore the whole space.

A genetic algorithm for finding D2t-matrices with maximum determinant may be designed as

follows.

The population consists of the whole space of D2t-matrices, Mψ = (ψ(gi, gj)), ψ being a cocycle

overD2t . Each of the individuals f of the population (i.e. potential solutions to the problem) is identified

to a binary (2t − 1)-tuple (f1, . . . , f2t−1)B , the coordinates of the cocycleψ with regards to the basis

B. This way, the coordinates fk are the genes of the individualψ = (f1, . . . , f2t−1)B .
The initial population P0 is formed by t2 binary (2t − 1)-tuples randomly generated.

The population is expected to evolve generation through generation until an optimum individ-

ual (i.e. a D2t-matrix with maximum determinant) is located. We now describe how to form a new

generation Pi+1 from an old Pi:

1. Firstly, we must evaluate the fitness of every individual (i.e. cocycle f ) of Pi. This function mea-

suring the adaptation of an individual f is calculated as the ratio R = det(Mψ)

(4t − 2)(2t − 2)t−1
.

2. Once the evaluation is finished, the crossover comes into play. All individuals are paired at

random, so that crossover combines the features of twoparent chromosomes to form two similar



Table 7

GA results.

t iter. time R Mψ
3 0 0.016′′ 1 25

5 1 0.093′′ 1 63

7 1 0.328′′ 1 4997

9 1 1.092′′ 1 12881

11 2 1.52′′ 0.900972 1385361

13 5 33.587′′ 1 13649489

15 11 2′31.976′′ 1 277029099

17 4 11.23′′ 0.908563 2982042693

19 14 3′05.24′′ 1 15847631679

offspring by swapping corresponding segments of the parents. Each time, the break point n is

chosen at random, so that two couples of different parents are swapped with possibly different

break points.

3. Next we apply the mutation operator. Mutation arbitrarily alters only one gene of a selected

individual (i.e. only one coordinate of the corresponding (2t − 1)-tuple, swapping 0 to 1 or 1

to 0, as it is the case), by a random change with a probability equal to the mutation rate (for

instance, 1%).

4. Now individuals strive for survival: a selection scheme, biased towards fitter individuals (ac-

cording to their ratio), selects the next generation. In the case that an optimum individual exists

(with ratio 1), the algorithmstops. Otherwise the population Pi+1 is constructed froma selection

of t2 of the fittest individuals.

The process goes on from generation to generation until an optimum is reached.

We have included a table showing some executions of the genetic algorithm (Table 7), for 3 �
t � 19 odd, including the number of iterations, the time required in the calculations, the best ratio

obtained so far, as well as a D2t-matrix meeting this ratio (expressed as the decimal representation of

the binary tuple of its coordinates with respect to B).
Notice that the matrices listed for t = 3, 5, 7, 9 necessarily define the correspondent unique

equivalence class listed in Table 4. The matrices obtained for t = 13, 17, 19 define equivalent classes

which are different from those listed in [30]. We had no oportunity to check whether these matrices

are equivalent to those described in [29].

4. Conclusions and further work

Firstly, not only have we characterized cocyclic matrices over D2t with maximal determinant but

we also indicated how to study the (cocyclic) decomposability of candidate Gram matrices with de-

terminant equal to (4t − 2)2(2t − 2)2(t−1). We point out that Algorithm 1 also works for other types

of candidate Gram matrices A which satisfy that A =
⎛
⎝ X 0

0 Y

⎞
⎠ where X and Y are matrices of order

t. In particular, the not optimal matrices listed in Table 5 which have minimum absolute row excess,

provide such Gram matrices, which differ from that of (5) just in some signs. For instance, for t = 3,

the matrixM = M∂3 ◦M∂5 ◦Mβ satisfies RE(M) = 4, det(M) = 128 < 160, and has Gram matrix

Gr(M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

6 −2 2 0 0 0

−2 6 2 0 0 0

2 2 6 0 0 0

0 0 0 6 2 −2
0 0 0 2 6 2

0 0 0 −2 2 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.



Secondly, algorithms for constructing cocyclic matrices with large determinants based on exhaus-

tive and heuristic searches have been presented. We observe that the size of the search space in the

cocyclic framework is much smaller than in the general one. Thus exhaustive search is feasible for

greater orders here. Unfortunately, the determinants obtained by these methods have not yet im-

proved the known lower bounds on the maximum possible value when n − 1 is not the sum of two

squares. For instance, the maximal determinant of D22-matrices is smaller than 223 · 511, which is the

maximum determinant value known so far for n = 22 (it was reported by Dowdeswell, Neubauer,

Solomon and Tumer, see [30]).

Our next goals are:

1. Specify which cocyclic Hadamard matrices of order 4t have a 2t× 2t matrix of largest determi-

nant embedded. A cocyclic HadamardmatrixH overD4t has always embedded a cocyclicmatrix

over D2t , M. This matrix M is obtained by eliminating from H the rows and columns indexed

with an even number.M satisfies that it is cocyclic and the row sum from t+ 1th to 2tth is zero.

Therefore,M might be a good candidate to have large determinant.

2. Design a GA with a fitness function dependent on the absolute row excess RE of a matrix, in

such a way that we will say that an individual is better adapted than another if its absolute row

excess is smaller.

3. Study the spectrum of the determinant function for cocyclic matrices over D2t .

4. Obtain analytical formulas for the determinant of a given cocyclic matrix over D2t and for its

minors.

5. Study the maximal determinant problem for cocyclic matrices over other families of groups.

We have in mind the group Zt ×Z2, since Zt ×Z
2
2 is another prolific group providing cocyclic

Hadamard matrices [2]. In fact, it may be checked that a basis for cocycles over Zt × Z2 is

B =
⎧⎨
⎩∂2, . . . , ∂2t−1,Mβ = Jt ⊗

⎛
⎝ 1 1

1 −1

⎞
⎠

⎫⎬
⎭, so that Mβ has t rows of even type and t rows of

odd type, and matrices of the form M∂i1 ◦ · · · ◦ M∂iw ◦ Mβ could also attain the optimal bound

(3).

Acknowledgements

We would like to express our gratitude to the referees for their many valuable suggestions, which

have significantly improved the readability and comprehensiveness of the paper. In particular, we are

in debt with them for the discussions about equivalence classes along the paper (including the tables

in Section 1 about proportions and densities of usual and cocyclic Hadamard matrices), as well as

the notion of parity type on rows/columns, which has helped to clarify many of the proofs included

in Section 2. A special mention should be given to Proposition 2, which was initially stated just for

D2t-matrices. Proposition 2 and its proof, as they are presented now, were kindly provided by one of

the referees.

Thisworkhas beenpartially supportedby the researchprojects FQM-016 andP07-FQM-02980 from

JJAA andMTM2008-06578 fromMICINN (Spain) and FEDER (European Union). The authorswould also

like to thank Kristeen Cheng for her reading of this article.

References

[1] V. Álvarez, J.A. Armario, M.D. Frau, P. Real, A Mathematica Notebook for Computing the Homology of Iterated Products of
Groups, in: A. Iglesias, N. Takayama (Eds.), ICMS 2006, LNCS, vol. 4151, Springer Verlag, Heidelberg, 2006, pp. 47–57.

[2] V. Álvarez, J.A. Armario, M.D. Frau, P. Real, A system of equations for describing cocyclic Hadamard matrices, J. Comb. Des. 16
(4) (2008) 276–290.

[3] V. Álvarez, J.A. Armario, M.D. Frau, P. Real, The homological reduction method for computing cocyclic Hadamard matrices, J.

Symb. Comput. 44 (2009) 558–570.
[4] J.A. Armario, On an inequivalence criterion for cocyclic Hadamard matrices, Cryptogr. Commun. 2 (2010) 247–259.

[5] G. Barba, Intorno al teorema di Hadamard sui determinanti a volre massimo, Giornale di Matematiche di Battaglini 71 (1933)
70–86.



[6] T. Chadjipantelis, S. Kounias, C. Moyssiadis, The maximum determinant of 21 × 21 (1,−1)-matrices and D-optimal designs,

J. Stat. Plann. Inference 16 (1987) 167–178.
[7] J.H.E. Cohn, On determinants with elements±1, II, Bull. London Math. Soc. 21 (1989) 36–42.

[8] J.H.E. Cohn, On the number of D-optimal designs, J. Combin. Theory Ser. A 66 (1994) 214–225.
[9] J.H.E. Cohn, Almost D-optimal designs, Util. Math. 57 (2000) 121–128.

[10] W. de Launey, K.J. Horadam, A weak difference set construction for higher dimensional designs, Des. Codes Cryptogr. 3 (1993)

75–87.
[11] H. Ehlich, Determiantenabschätzungen für binäre Matrizen, Math. Z. 83 (1964) 123–132.

[12] H. Ehlich, Determiantenabschätzung für binäre Matrizen mit n ≡ 3mod4), Math. Z. 84 (1964) 438–447.
[13] R.J. Fletcher, C. Koukouvinos, J. Seberry, New skew-Hadamard matrices of order 4 · 59 and new D-optimal designs of order

2 · 59, Discrete Matehmatics 286 (2004) 252–253.
[14] Z. Galil, J. Kiefer, D-optimum weighing designs, Ann. Stat. 8 (1980) 1293–1306.

[15] J. Hadamard, Résolution d’une question relative aux déterminants, Bull. Sci. Math. 2 (17) (1893) 240–246.
[16] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, 1975.

[17] K.J. Horadam,W. de Launey, Cocyclic development of designs, J. Algebraic Combin. 2 (3) (1993) 267–290 (Erratum: J. Algebraic

Combin. 3 (1) (1994) 129).
[18] K.J. Horadam, W. de Launey, Generation of Cocyclic Hadamard matrices, Computational Algebra and Number Theory, Math.

Appl., Kluwer Acad. Publ., Dordrecht, 1995, pp. 279–290.
[19] K.J. Horadam, Hadamard Matrices and Their Applications, Princeton University Press, Princeton, NJ, 2007.

[20] H. Kharaghani, W.P. Orrick, D-optimal designs, in: C. Colbourn, J. Dinitz (Eds.), The CRC Handbook of Combinatorial Designs,
Taylor and Francis, Boca Raton, 2006

[21] H. Kharaghani, B. Tayfeh-Rezaie, On the classification of Hadamard matrices of order 32, J. Comb. Des. 18 (2010) 328–336.

[22] C. Koukouvinos, <http://math.ntua.gr/ ckoukouv/>.
[23] C. Koukouvinos,M.Mitroulli, J. Seberry, Bounds on themaximumdeterminant for (−1, 1)matrices, Bull. ICA 29 (2000) 39–48.

[24] S. MacLane, Homology, Classics in Mathematics, Springer-Verlang, Berlin, 1995.. (Reprint of the 1975 edition).
[25] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, Springer-Verlag, 1992.

[26] C. Moyssiadis, S. Kounias, The exact D-optimal first order saturated design with 17 observations, J. Statist. Plann. Inference 7
(1982) 13–27.

[27] P. Ó Catháin, M. Röder, The Cocyclic Hadamard matrices of order less than 40, Des. Codes Cryptogr. 58 (1) (2011) 73–88.

[28] W.P. Orrick, The maximal {−1, 1}-determinant of order 15, Metrika 62 (2005) 195–219.
[29] W.P. Orrick, On the enumeration of some D-optimal designs, J. Statist. Plann. Inference 138 (2008) 286–293.

[30] W. Orrick, B. Solomon, The Hadamard Maximal Determinant Problem (website), <http://www.indiana.edu/maxdet/>.
[31] J. Seberry, T. Xia, C. Koukouvinos, M. Mitrouli, The maximal determinant and subdeterminants of±1 matrices, Linear Algebra

Appl. 373 (2003) 297–310.
[32] N.J.A. Sloane, A Library of Hadamard Matrices (website), <http://www2.research.att.com/ njas/hadamard/>.

[33] N.J.A. Sloane, The On-line Encyclopedia of Integer Sequences (website), <http://oeis.org/>.

[34] H. Tamura, D-optimal designs and group divisible designs, J. Comb. Des. 14 (2006) 451–462.
[35] W. Wojtas, On Hadamard’s inequallity for the determinants of order non-divisible by 4, Colloq. Math. 12 (1964) 73–83.

http://math.ntua.gr/~ckoukouv/
http://www.indiana.edu/maxdet/
http://www2.research.att.com/~njas/hadamard/
http://oeis.org/

	The maximal determinant of cocyclic (-1,1)-matrices over D2t
	1 Motivation of the problem -- introduction
	2 Main results
	3 Explicit calculations
	3.1 Exhaustive search
	3.2 Exhaustive search revisited
	3.3 Heuristic search

	4 Conclusions and further work
	Acknowledgements
	References




