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Abstract: The objective of this work is to present a closed-loop guidance algorithm for landing
a probe on an irregular shaped rotating asteroid. The main assumption is that the spacecraft is
orbiting close to the asteroid and has a continuous propulsion system enabling it to do a powered
descent. The goal is to minimize fuel consumption while avoiding collision with the asteroid
during the manoeuvre. This non-convex time-continuous optimal control problem is transformed
to a convex static program by relaxing some constraints, discretizing and using an iterative
method to handle with the asteroid gravity field non-linearities. Then, a guidance algorithm
based on Model Predictive Control is applied with the purpose of coping with unmodelled
dynamics and disturbances. Numerical results are showed and discussed.
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1. INTRODUCTION

Soft landing on small bodies is one of the benchmark prob-
lems of the guidance, navigation and control discipline.
Recent examples include NEAR, Hayabusa and Rosetta
missions, see Dunham et al. (2002); Kubota et al. (2006);
Canalias et al. (2014). Nowadays, NASA’s OSIRIS REX
mission is on-going and will collect and return samples of
Bennu asteroid, see NASA (2016).

However, missions with the purpose of landing on small
body objects face several challenges from a control point
of view. The irregular shape, density or rotation of these
bodies induce severe non-linearities in the equations of
motions, see Werner and Scheeres (1996) or Scheeres et al.
(1998). Moreover, the model parameters are not exactly
known until the orbiter reaches the asteroid or comet.
This is the reason why many missions spend long times
orbiting the body with the purpose of characterizing it.
Additionally, the distance from Earth creates a time delay
which makes impossible ground control during the descent
phase. Therefore, autonomous on-board algorithms are
required to cope with uncertain parameters and possible
disturbances. This consideration makes Model Predictive
Control (MPC) techniques suitable to be employed when
designing guidance methods for descent trajectories.

Looking at past landing missions, different techniques
(from a propulsive point of view) have been employed.
NEAR landed on Eros with four pre-planned open-loop
braking impulses, see Dunham et al. (2002). Hayabusa
landed on Itokawa with a powered descent trajectory based
on state feedback, see Kubota et al. (2006). However,
Philae achieved touchdown with Churyumov-Gerasimenko
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following a pure ballistic trajectory, see Canalias et al.
(2014). On the other hand, powered descent trajectories
shall be considered for landers with limited-thrust capa-
bilities.

MPC schemes require fast trajectory computation. Loss-
less convexification techniques, which have been applied
for designing Mars landing in Acikmese and Ploen (2007),
rendezvous operations in Lu and Liu (2013) and asteroid
landing in Pinson and Lu (2015), seem promising to be
applied for close-loop guidance. These techniques combine
a relaxation approach to convexify non-convex constraints
and an iterative method to tackle the non-linearities of the
gravity field by solving a second-order cone programming
problem (SOCP) at each iteration.

The main contribution of this paper is an algorithm that
optimizes fuel consumption while providing a safe landing
trajectory in the presence of disturbances. Additionally,
a two-phase descent trajectory is considered by splitting
the manoeuvre in a circumnavigation phase followed by a
landing phase as in Dunham et al. (2016), thus increasing
flexibility when choosing the departure point.

The structure of this paper is as follows. Section 2 de-
scribes the asteroid model. Next, Section 3 presents the
landing problem with its constraints and the objective
function. Section 4 describes the techniques used to solve
the optimal control problem. Section 5 describes the de-
signed MPC scheme which allow close-loop guidance. Sec-
tion 6 shows results for cases of interest. Finally, Section
7 closes this paper with some additional considerations.

2. ASTEROID MODELLING

Consider a spacecraft in the vicinity of an asteroid, the
relative position r=[x, y, z]T and mass m of the lander in
an asteroid fixed frame coincident with its principal inertia
axes (where z has the largest moment of inertia and x the
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lowest) and whose origin is the asteroid center of mass, are
governed by

r̈=−ω̇ωω × r− 2ωωω × ṙ−ωωω × (ωωω × r) + (F+T)/m, (1)

ṁ=−‖T‖2/vex, (2)

where ωωω is the asteroid rotation rate, F the external
forces acting on the lander, T the thrust control action
and vex the associated escape gases velocity. The most
relevant force term in the vicinity of a small body is its
central gravity field which can be modelled with several
approaches, in terms of potential. Asteroid gravity force
can be easily computed from gravitational potential as
Fg = m∇Ug.

2.1 Polyhedron model

The exterior gravitational potential of a constant-density
polyhedron was derived analytically by Werner and
Scheeres (1996),

Ug =
Gρ

2


 ∑

e∈edges

rTe EereLe −
∑

f∈faces

rTf Ffrfwf


 , (3)

where G is the universal gravitation constant, ρ is the
asteroid bulk density, re is a vector from the field point
to an arbitrary point on each edge, Ee is a dyad defined
in terms of the face and edge normal vectors associated
to each edge, Le is a logarithmic term expressing the
potential of a 1D straight line, rf is a vector from the field
point to an arbitrary point on each face, Ff is the outer
product of face normal vectors and wf is the solid angle
subtended by a face when viewed from the field point. The
main advantage of this model is its capability of giving
the exact exterior potential of the polyhedron anywhere.
However, its main drawback is the computational effort
required to cover all edges and faces of the polyhedron.

2.2 Mass-concentrations model

The gravitational potential of n point masses is

Ug =

n∑
i=1

Gmi

‖r− ri‖2
, (4)

where mi is the point mass value and ri the point mass
position. This model provides a good enough accuracy
when the number of point masses is adequate and are
placed within the limits of the small body. Additionally,
its main advantages are the possibility of modelling non-
uniform density bodies and the lower computational effort
when compared with the polyhedron model. This model
was used for Hayabusa mission, see Kubota et al. (2006).

The mass-concentrations model is used for the optimal
control computation whereas the most accurate polyhe-
dron potential is used in simulations to consider gravity
model uncertainties (although the asteroid shape is as-
sumed to be known). The well-known spherical harmonic
expansion is not considered for landing operations because
it might diverge close to the asteroid surface.

3. LANDING PROBLEM FORMULATION

This section introduces the objective function and con-
straints.

3.1 Constraints of the problem

Thruster constraints

Once the engine is turned on, it is assumed to be throt-
tleable between a maximum and a minimum magnitude
(Tmax and Tmin>0) as it cannot be turned off for safety
until the descent is completed, see Pinson and Lu (2015)

Tmin ≤ ‖T‖2 ≤ Tmax. (5)

Note that the lower bound of this constraint is non-convex.

Surface avoidance constraint

Avoiding collision with the asteroid when descending is
a non-convex constraint also. However, this constraint can
be convexified considering two consecutive phases (circum-
navigation and landing) as in Dunham et al. (2016).

Circumnavigation phase

When the spacecraft is far from the landing point, rF
which is known, it must circumnavigate the asteroid with-
out colliding with it. This non-convex constraint can be
convexified by using a rotating tangent plane to the as-
teroid surface. Since the asteroid has an irregular shape,
the minimum volume ellipsoid circumscribing the object
is considered to be avoided

(r(t)− rt(t))
Tnt(t) ≥ 0, t ∈ [t0, t0 + tcirc], (6)

where rt is a point on the ellipsoid surface, nt is the
normal vector to the ellipsoid at rt and tcirc is the
circumnavigation phase duration.

The tangent plane rotation must be imposed beforehand.
A spherical linear interpolation to move the plane between
the departure point, r0, and the landing point, rF , has
been considered, see Fig.1 for a 2D example.

Landing phase

Once the spacecraft has finished the circumnavigation
phase and is near the landing point, a line of sight
area (LOS) composed by five planes emanating from
the landing point is considered for sensing purposes. In
local axes centered at the landing point, this region is
defined as y′≥cx(x

′−x′
0), y′≥−cx(x

′+x′
0), y′≥cz(z

′−z′0),
y′≥−cz(z

′+z′0) and y′≥0, where y′ is assumed to be the
approach axis. This is expressed as

AL(r(t)− rF ) ≤ bL, t ∈ [t0 + tcirc, tf ], (7)

where AL∈IR5×3 and bL∈IR5 summarize the equations of
the LOS region planes algebraically.

Fuel consumption constraint

The probe has a limited amount of fuel to spend. At any
time the spacecraft mass is greater than its dry mass

m(t) ≥ mdry. (8)

Terminal constraints

The spacecraft has to reach the desired landing point rF
with null relative velocity at the specified final time, tf

r(tf ) = rF , v(tf ) = 0. (9)

3.2 Objective function

The chosen objective function, J , minimizes fuel consump-
tion or equivalently maximizes the final mass value
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Fig. 1. Surface avoidance constraint.

J = −m(tf ). (10)

4. OPTIMAL CONTROL COMPUTATION

In this section, the solution method to the optimal control
problem governed by (1)-(2), the constraints given by (5)-
(9) and the objective function defined in (10) is presented.
The asteroid is assumed to be rotating uniformly around
its major inertia axis, z. However, the presented formula-
tion can be extended to time-varying rotating bodies.

4.1 Change of variables

Following Acikmese and Ploen (2007), a variable change
is used to deal with the non-convex thrust constraint

at =T/m, atm = ‖T‖2/m, (11)

and the mass variable is also changed to

q = ln(m). (12)

which combined with (11) leads to a linear fuel consump-
tion equation, q̇=−atm/vex. Equations (11)-(12) relax the
non-convex constraint (5) as

Tmine
−q ≤ atm ≤ Tmaxe

−q, (13)

‖at‖2 ≤ atm, (14)

where (13) can be posed as a linear constraint if the
mass term is linearized around a reference value, qr, as;
e−q≈e−qr (1−(q−qr)). Equation (14) constitutes a second-
order cone constraint which is convex. It can be shown that
relaxation does not alter the original problem (details can
be found in Acikmese and Ploen (2007)). Using the new
variables, the time-continuous optimization problem is

min
at,atm

−q(tf ),

s.t. ṙ(t) = v,
v̇(t) = −2ωωω × v −ωωω × (ωωω × r) + at

+∇Ug(r),
q̇(t) = −atm/vex,
q(t) ≥ qdry,

atm(t) ≥ Tmine
−qr(t)[1− (q(t)− qr(t))],

atm(t) ≤ Tmaxe
−qr(t)[1− (q(t)− qr(t))],

‖at(t)‖2 ≤ atm(t),
rTt (t)nt(t) ≤ rT (t)nt(t), t ∈ [t0, t0 + tcirc],

ALr(t) ≤ bL −ALrF , t ∈ (t0 + tcirc, tf ],
r(tf ) = rF ,
v(tf ) = 0,

where time dependencies at the right-hand side of the
dynamics equations have been omitted for clarity.

4.2 Problem discretization

The most challenging aspect of the optimization problem
are the non-linearities induced by the asteroid gravitation
force. This issue is solved using an iterative method where
the gravity gradient is evaluated with data from previous
computations. The states equations can be rearranged as

ẋ[j] = Ax[j] +Bu[j] + c(r[j−1]), (15)

where j is an iteration counter (which will be omitted
from now on for clarity, non-linear terms are supposed to
be known beforehand), x=[rT ,vT , q]T represents the full
state, u=[aTt , atm]T groups the control terms, the matrices
A and B are expressed as

A =




0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
ω2 0 0 0 2ω 0 0
0 ω2 0 −2ω 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0



, B =




0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −v−1

ex



,

and the vector of non-linear terms c is given by

c = −
n∑

i=1

Gmi

‖r− ri‖32




0
0
0

(x− xi)
(y − yi)
(z − zi)

0



. (16)

Discretizing the manoeuvre time into N intervals of du-
ration ∆T=(tf−t0)/N , a trapezoidal rule can be used to
integrate the states equations between nodes

xk = xk−1 +∆T [A(xk + xk−1)
+B(uk + uk−1) + ck + ck−1]/2,

(17)

and solving for xk

xk = (I−∆TA/2)−1[(I+∆TA/2)xk−1

+(B(uk + uk−1) + ck + ck−1)∆T/2],
(18)

where I is the identity matrix. Defining the following
constant matrices

C= (I−∆TA/2)−1(I+∆TA/2), (19)

D= (I−∆TA/2)−1∆TB/2, (20)

E= (I−∆TA/2)−1∆T/2, (21)

a more clear expression of xk is found

xk = Cxk−1 +D(uk + uk−1) +E(ck + ck−1). (22)

4.3 Compact formulation

For simplicity, following Vazquez et al. (2017), a compact
formulation is employed using (22) recursively. Defining

the following stack vectors xS∈IR7N and uS∈IR4(N+1) as

xS =
[
xT
1 , . . . , x

T
N

]T
, uS =

[
uT
0 , . . . , u

T
N

]T
, (23)

and the following stack matrices
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F =




C
C2

...
CN


 , H =




E(c1 + c0)
E(c2 + c1) +CE(c1 + c0)

...
N∑
j=1

CN−jE(cj + cj−1)



, (24)

G=




D D Θ7×4 . . . Θ7×4

CD (I+C)D D . . . Θ7×4

...
...

...
. . .

...
CN−1D CN−2(I+C)D CN−3(I+C)D . . . D




where Θ is a matrix full of zeros. The states propagation
equation is posed in a compact form as

xS = Fx0 +GuS +H. (25)

The optimization problem compactly expressed is

min
uS

−qN ,

s.t. ATminuS ≥ bTmin,
ATmaxuS ≤ bTmax,

‖at,k‖2 ≤ atm,k, k = 1 . . . N,
ACSxS ≤ bCS ,
ALSxS ≤ bLS ,
AMxS ≤ bM ,

rN = rF ,
vN = 0,

(26)

where ATmin, ATmax∈IRN+1×4(N+1) and bTmin, bTmax∈
IRN+1 stack the lower and upper thrust bounds respec-
tively, see (13). The matrix ACS∈IRNC×7N and vector

bCS∈IRNC , where NC is the number of intervals for which
the constraint is active, stack the circumnavigation con-

straint (6), whereas the matrix ALS∈IR5(N−NC)×7N and

vector bLS∈IR5(N−NC) stack the landing phase constraint
(7). Finally, the matrix AM∈IRN×7N and vector bM∈IRN

stack the fuel consumption constraint (8). Note that there
is a one-to-one relation between xS and uS given by (25),
hence the compact formulation reduces the problem size
from 11N+4 to 4(N+1) decision variables. The optimiza-
tion problem (26) constitutes a SOCP which is equivalent
to a convex quadratically constrained linear program.

4.4 Optimal control computation

A states propagation linearized model is used to propagate
the trajectory, thus an iterative process where the non-
linear asteroid force term is evaluated with the previ-
ous computed trajectory, until a desired convergence is
reached, has to be developed:

Step 1: Evaluate the asteroid gravity force at all nodes
with the initial spacecraft position, r0. Consider
the vehicle flying at minimum thrust to have an
initial mass reference,mr,k=m0− k∆T (Tmin/vex).

Step 2: Compute a solution of the SOCP problem (26).
Step 3: Update the iterations counter j by one. Go to

Step 2, using r
[j−1]
k and m

[j−1]
k , until max(r

[j−1]
k −

r
[j−2]
k ) <Tol or j>jmax.

5. MPC GUIDANCE

Autonomous landing guidance requires a closed-loop
method to cope with model uncertainties and distur-
bances. A MPC scheme with a receding horizon (to ease

the computational load when approaching landing) is pro-
posed. The terminal constraints (9) are relaxed considering
them in the objective function, as quadratic costs, to avoid
infeasibility issues when the planning horizon decreases

JMPC = −qN+γr(rN−rF )
T I(rN−rF )+γvv

T
NIvN , (27)

where γr and γv are positive scalars measuring the relative
weight between fuel consumption, landing accuracy and
touchdown velocity respectively. The MPC algorithm is

Step 1: Obtain the solution of the SOCP problem (26)
applying the algorithm of section 4.4.

Step 2: Apply the commanded thrust for the current inter-
val k. Decrease the planning horizon, N , by one.

Step 3: The disturbances will perturb the planned path,
so the trajectory is recomputed with the objective
function (27) and without terminal constraints.
Go to Step 2 until the planning horizon ends..

The previous interval planned trajectory and mass are
employed to evaluate the asteroid gravity and the thruster
constraints when using the algorithm of section 4.4 to
recompute. This reduces the number of required iterations.

6. SIMULATION RESULTS

6.1 Simulation parameters

It is important to remark that although a translational
linear model, derived from the mass-concentrations model
(4), has been used for the optimal control computation,
the simulations showed in this section have been performed
with the non-linear polyhedral gravity model (3).

The chosen asteroid is 433 Eros since its shape and
parameters, ρ=2.67 g/cm3 and Trot=5.27 h, are well
known from the NEAR mission, see Gaskell (2008) and
Yeomans et al. (2000). The mass-concentrations gravity
model uses a grid of n=4841 equidistant point-masses
within the limits of the asteroid. The point-masses values
are taken all equal to mi=ρV/n, where V is the asteroid
volume computed from its polyhedron shape model.

The lander characteristics are chosen to be similar to the
NEAR Shoemaker probe, m0=600 kg with mdry=487 kg,
whereas its hydrazine thrusters provide Tmax=80 N and
Tmin=20 N with vex=2000 m/s. LOS parameters are cho-
sen as x′

0=z′0=10 m and cx=cz=1/ tan(π/4). The landing
point is chosen to be one of the vertex of Eros shape
model, rF=[−0.5114,−2.836, 1.443]T km whereas initial
position and velocity assume a “circular” equatorial orbit
around Eros, r0=[0, 35, 0]T km and v0=[−3.5709, 0, 0]T

m/s. The manoeuvre time is taken as tf=2000 s with
N=100 sampling intervals which results in discretized pe-
riods of ∆T=20 s. The circumnavigation phase is chosen
to have a duration of 1500 s, which implies NC=75, hence
the landing phase will last the final 500 s.

6.2 Disturbances modelling

Following Gavilan et al. (2012), disturbances on each
thruster component are added to test the MPC scheme
of Section 5. This disturbance is modelled as

T = ΩΩΩ(δδδθθθ)[T̄(1 + δδδ) + δδδT], (28)
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where T̄ is the commanded output computed by the
control laws, ΩΩΩ is a rotation matrix, δδδθθθ∼N3(δ̄δδθθθ,ΣΣΣδθ) is
a vector of random small angles, δδδ∼N3(δ̄δδ,ΣΣΣδ) is a vec-
tor of multiplicative noises to the computed thrust and
δδδT∼N3( ¯δδδT,ΣΣΣδT ) is a vector of additive noises. These
disturbances model several physical aspects. First, the
attitude control of the chaser will not be perfect, so one
can expect some alignment errors, modeled by Ω(δθδθδθ) in a
simplified way. On the other hand, with δδδ and δδδT one can
model thrust level disturbances or even unmodelled forces
such as solar gravity force or solar radiation pressure.

The disturbance means are δ̄δδθθθ=0, δ̄δδ=[0.01, 0.01, 0.01]T

and ¯δδδT=[0.01, 0.01, 0.01]TTmax, and the covariances are
ΣΣΣδθ,ij=0.0436δij , ΣΣΣδ,ij=0.05δij and ΣΣΣδT,ij = 0.02Tmaxδij .

6.3 Results

Simulations have been done in MATLAB with Gurobi
optimization package as a second-order cone program-
ming solver. To ease the computational burden of the
polyhedron model, asteroid gravity force computation has
been coded in C as in Lantoine and Braun (2006). The
MPC cost function parameters are chosen as γr=γv=100
whereas the maximum number of iterations and stop toler-
ance are taken as jmax=6 and Tol=0.02‖rF ‖2 respectively.
As shown in Fig.2, Fig.3 and Fig.4, collision with the
asteroid is avoided and a soft landing on Eros is achieved.
The distance to the desired landing point is 8.4378 m
and touchdown velocity is 0.9356 m/s which is a good
enough result for soft landing (NEAR landed at 1.5-1.8
m/s, see Dunham et al. (2002)) considering the applied
disturbances on the thrust components, see Fig.6.

The thrust-norm profile is of the type bang-bang with
the switches happening at the start and end of each
phase (circumnavigation and landing). As a consequence,
the mass evolution maintains a linear decreasing profile
with five different zones that match with maximum and
minimum thrust-norm values, see Fig.5.

7. CONCLUSIONS

AMPC guidance algorithm to autonomously land powered
probes on small bodies while handling with unmodelled
dynamics and disturbances has been presented. Lossless
convexification, discretization and a successive solution
method were employed to solve the asteroid landing con-
trol problem. Future work may include comparisons with
other state of the art methods, a detailed sensitivity
analysis with model parameters as well as including the
circumnavigation and landing times as decision variables.
Additionally a six-degrees of freedom lander model with
attitude control (e.g. reaction wheels or a RCS) shall be
considered. This would provide an adequate orientation of
the spacecraft landing gear at the touchdown.
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Fig. 2. Lander path on the asteroid frame.

Fig. 3. Landing trajectory detail.
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Fig. 4. Lander velocities.
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Fig. 5. Lander mass evolution.
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Fig. 6. Computed thrust norm (blue) and applied thrust
components.
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