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Abstract: In this paper, we describe some necessary and sufficient conditions for a set of 
coboundaries to yield a cocyclic Hadamard matrix over the dihedral group D4t . Using this 
characterization, new classification results for certain cohomology classes of cocycles over D4t 
are obtained, extending existing exhaustive calculations for cocyclic Hadamard matrices over 
D4t from order 36 to order 44. We also define some transformations over coboundaries, which 
preserve orthogonality of D4t -cocycles. These transformations are shown to correspond to 
Horadam’s bundle equivalence operations enriched with duals of cocycles. 
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1. INTRODUCTION

A square matrix H of entries ±1 of order n is said to be Hadamard if HHT = nIn, that
is, its rows (equivalently, columns) are pairwise orthogonal. From this condition, it may
be easily derived that n must be 1, 2, or a multiple of 4. It is conjectured that Hadamard
matrices exist for every order n = 4t . Although no proof of this fact is known so far,
there is much evidence (such as asymptotic formulas for their existence, as well as many
different construction methods) that supports the idea that this conjecture might be true.
Actually, uncertainty of their existence remains only for 12 orders up to 2,000, just 3
up to 1,000. Interested readers are referred to [4, 9] and references therein for further
information about Hadamard matrices and their applications.

Most of the methods used for constructing Hadamard matrices are based on algebraic
properties or block structures. These include Sylvester, Paley, Williamson, Ito, 1,2-
circulant cores Hadamard matrices, for instance. Unfortunately, no matter what the



construction method is, the search space grows exponentially in the size of the matrices,
and new insights would be very appreciated.

Another difficult problem is that of classification. Hadamard matrices may be grouped
into Hadamard equivalence classes, as soon as two matrices are identified if they differ
in row/column permutations and/or row/column negations. Very recently, classification
of Hadamard matrices up to order 32 has been fulfilled [17, 18], counting more than
10 millions of inequivalent classes in order 32! A weaker notion of equivalence (Q-
equivalence, as termed in [20], which adjoins the switching operations), drastically
reduces the total number of equivalences classes as the size of the matrices grows, from
millions to just a few tens.

Cocyclic Hadamard matrices were introduced in the mid-1990s, derived from the
work of de Launey and Horadam concerning the problem of extending two-dimensional
combinatorial designs to higher dimensional designs [4, 9–11]. The internal structure of
cocyclic matrices could be of help in constructing Hadamard matrices in an easier way. To
start with, checking whether a cocyclic matrix is Hadamard is faster than the analogous
inspection on usual Hadamard matrices [11]. Furthermore, most classical constructions
(including those cited above, excepting the 1,2-circulant cores constructions) have been
identified as cocyclic [9].

Recall that a (normalized, binary, two-dimensional) cocycle ψ over G is a set map
ψ : G×G → 〈−1〉 satisfying ψ(1, 1) = 1 and the cocycle equation:

ψ(g, h)ψ(gh, k) = ψ(g, hk)ψ(h, k), ∀ g, h, k ∈ G. (1)

A cocycle ψ over G is naturally displayed as a G-cocyclic matrix Mψ = (ψ(g, h))
over G, once some ordering is fixed on the elements of G, which indexes rows and
columns (notice that these orderings might not coincide). When aG-cocyclic matrixMψ

is Hadamard, the cocycle ψ is said to be orthogonal.
The set of cocycles from G to 〈−1〉 forms an abelian group Z2(G,ZZ2) under point-

wise multiplication. The simplest cocycles are the coboundaries ∂f , defined for any
function f : G → 〈−1〉 by ∂f (g, h) = f (g)−1f (h)−1f (gh). The subgroup of cobound-
aries, B2(G,ZZ2), is naturally generated by the set of elementary coboundaries ∂i := ∂δi ,
where δi is the Kronecker delta function of the ith element in G in the given or-
dering. Cocycles may be grouped into cohomological classes, to form H 2(G; ZZ2) =
Z2(G,ZZ2)/B2(G,ZZ2), so that [ψ] = [ψ ′] ∈ H 2(G,ZZ2) ⇔ ψ ′ = ψ

∏|G|
i=1 ∂

ri
i , for ri ∈

{0, 1}.
In the past 20 years, different characterizations of cocyclic Hadamard matrices have 

been introduced and exploited. Actually, cocyclic Hadamard matrices, Hadamard groups, 
normal relative difference sets with parameters (4t,  2, 4t,  2t), and divisible (4t,  2, 4t,  2t)-
designs are known to be equivalent [4, 5, 7, 9].

Thus we have different descriptions of the same phenomena, all of which have been 
successfully used for studying cocyclic Hadamard matrices. This circumstance has been 
exploited in [21] to completely classify cocyclic Hadamard matrices of order less than 40, 
up to Hadamard equivalence. Notice that equivalent cocycles (from the cohomology point 
of view) may give rise to Hadamard inequivalent cocyclic matrices. Moreover, Mψ might 
be Hadamard, whereas Mψ ′ might not be Hadamard, no matter [ψ] = [ψ ′] ∈ H 2(G; ZZ2). 
In fact, cocycles in the same cohomological class may be split into independent orbits, by 
means of the shift action [9], which discriminates between orthogonal and nonorthogonal 
cocycles. Actually, for any a ∈ G, the shifts ψ · a and a · ψ of ψ are the cocycles



(ψ · a)(g, h) = ψ(ag, h)ψ(a, h)−1 and (a · ψ)(g, h) = ψ(g, ha)ψ(g, a)−1. Notice that
[ψ · a] = [a · ψ] = [ψ]. They are orthogonal ifψ is. For any automorphism θ ∈ Aut(G),
the cocycle ψ ◦ (θ × θ) is orthogonal if ψ is. The orbit of ψ (termed bundle) is given by
the combination of both actions:

B(ψ) = {(ψ · a) ◦ (θ × θ), (a · ψ) ◦ (θ × θ) : a ∈ G, θ ∈ Aut(G)}. (2)

Ito introduced and studied Hadamard groups in a series of papers [13–16]. Of special
interest for us are type Q Hadamard matrices introduced in [12], which are related
to type Q Hadamard groups Q8t = 〈a, b : a4t = b4 = 1, a2t = b2, b−1ab = a−1〉 [15],
obtained as the extension of 〈b2〉 ∼= ZZ2 by the dihedral group D4t = 〈a, b : a2t = b2 =
1, ab = ba−1〉. Assume the ordering {1, a, . . . , a2t−1, b, ab, . . . , a2t−1b} inD4t . In these
circumstances, Flannery identified in [7] that the cocycle ρ gives rise to this central
extension, where

Mρ =
(
BN2t BN2t

BNs
2t −BNs

2t

)
(3)

for BN2t being the back negacyclic matrix of order 2t , and BNs
2t being the “symmetric”

matrix obtained from BN2t , by displaying its rows from bottom to top. Thus Q8t is a
Hadamard group if and only if [ρ] ∈ H 2(D4t ; ZZ2) contains an orthogonal cocycle [7].

Ito conjectured in [15] that Q8t is a Hadamard group for every integer t , so type Q
Hadamard matrices would exist for every order 4t as well. Several works in terms of
relative difference sets support this idea [22, 23]. As far as we know, the first undecided
case is t = 47. Actually, notice that 4 · 47 is the first undecided order for the existence of
a cocyclic Hadamard matrix, no matter the base group G is [9].

The purpose of this paper is studyingD4t -cocyclic matrices in a different way, attending
to cocycles over D4t directly.

In this paper, we describe some necessary and sufficient conditions for a set {∂ij } of
k

coboundaries to yield a cocyclic Hadamard matrix ψ = ρ 
∏
j 1 ∂ij over the dihedral 

group D4t , for ρ as described in (3). Using this characterization
=

and performing calcu-
lations in a conventional PC, new classification results for this cohomology class [ρ] of  
cocycles over D4t are obtained, extending existing exhaustive calculations for cocyclic 
Hadamard matrices over D4t from order 36 to order 44. In light of the work in [6], it could 
happen that this characterization could enable looking for larger D4t -cocyclic Hadamard 
matrices, provided high-performance computing techniques were used.

We organize the paper as follows.
The notion of r-path of coboundaries and the characterization of orthogonality in terms 

of r-paths of coboundaries for cocyclic matrices is described in Section 2.
In Section 3 we prove that D4t -coboundaries {∂1, . . . , ∂4t } may be organized in two 

subsets {∂1, . . . , ∂2t } and {∂2t+1, . . . , ∂4t }, which naturally give rise to ingredients and 
recipes, in order to characterize any D4t -cocyclic Hadamard matrix. This information 
will allow us to design an exhaustive search for D4t -cocyclic Hadamard matrices for 
t ≤ 11, so that the table in p. 132 in [9] is extended.

In Section 4 we will define four different transformations on D4t -cocyclic Hadamard 
matrices that are Hadamard preserving (swapping, rotations, specular symmetries, and 
dilatations), so that the set of D4t -cocyclic Hadamard matrices splits in orbits, which are



completely characterized by any of their matrices. These transformations will be shown
to correspond to Horadam’s bundle equivalence operations together with transposition.

2. r-PATHS AND ORTHOGONALITY ON COCYCLIC MATRICES

The material presented next is drawn mainly from [1] for finite groups G = {g1 =
1, . . . , g4t } of order 4t . Fixed a representative cocycle [ρ] ∈ H 2(G; ZZ2), in order to look
for G-cocyclic Hadamard matrices Mψ , for [ψ] = [ρ] ∈ H 2(G; ZZ2), it suffices to look
for a subset of elementary coboundaries ∂ij such thatψ = ρ

∏k
j=1 ∂ij is orthogonal. Since

Mψ is Hadamard if and only if the summation of each row (but the first) is zero (see the
cocyclic Hadamard test in [11]), the coboundaries ∂ij should be selected in such a way
that the number of negative entries at each row of Mψ (but the first, formed all of 1s) is
2t .

In [1] a way to count the number of negative entries is described, in terms of paths and
intersections of coboundaries.

Notice that negating the ij th row ofM∂ij
gives a matrix (termed a generalized cobound-

ary matrix M∂ij
) with exactly two negative entries in each row, excepting the first one

(consisting only of 1s). More concretely, the negative entries in the row r �= 1 of M∂ij

are located at the columns ij and e, where ge = g−1
r gij .

A set {M∂ij
: 1 ≤ j ≤ w} of generalized coboundary matrices (or more briefly, simply

the underlying set of coboundaries ∂ij ) defines a r-walk if these matrices may be ordered
in a sequence (Ml1, . . . ,Mlw ) so that for every 1 ≤ i ≤ w − 1, consecutive matricesMli

and Mli+1 share a negative entry at the rth row, precisely at the position (r, li+1). Such a
walk is called a path if the initial (equivalently, the final) matrix shares a −1 entry with
a generalized coboundary matrix, which is not in the walk itself, and a cycle otherwise.

Similarly, a position in which Mρ and M∂i1
. . .M∂iw

share a common −1 in their rth
row is called a r-intersection.

With this notation at hand, the following theorem follows.

Theorem 2.1. [1] A G-cocyclic matrix Mψ = M∂i1
. . .M∂iw

Mρ is Hadamard if and
only if

2cr − 2Ir = 2t − ρr, 2 ≤ r ≤ 4t, (4)

where cr is the number of maximal r-paths in {M∂i1
, . . . ,M∂iw

}, ρr is the number of
−1s in the rth row of Mρ , and Ir is the number of r-intersections generated by Mρ and
M∂i1

. . .M∂iw
.

Notice that since ρ is a fixed representative cocycle [ρ] ∈ H 2(G; ZZ2), the right-hand
side of (4) is a constant vector vRHS = vρ , and consequently does not depend on the
choice of the coboundaries. However, the left-hand side vLHS of (4) depends on the
subset {M∂ij

} of coboundaries used. Actually, it depends on the way in which r-paths and
r-intersections are formed, for 2 ≤ r ≤ 4t .

It might occur that elementary coboundary matrices can be organized in k > 1 subsets 
S1, . . . , Sk , so that generalized coboundary matrices placed in different subsets never 
share negative entries at rows to be checked.



Consequently, the left-hand side vLHS of (4) would decompose as a summation
vLHS = v1 + · · · + vk of k vectors (called ingredients) of the form vh = (2c(h)

2 −
2I (h)

2 , . . . , 2c(h)
4t − 2I (h)

4t )T , for 1 ≤ h ≤ k, coming from the paths and intersections gen-
erated by the coboundaries in Sh along the rows 2 ≤ r ≤ 4t . The matrix (v1, . . . , vk)
consisting of these ingredients is called a recipe.

In these circumstances, (4) is satisfied if and only if v1 + · · · + vk = vρ . If it is the
case, the recipe is called a Hadamard recipe.

We now apply these notions to the case of D4t -cocyclic matrices.

3. INGREDIENTS, RECIPES, AND DIAGRAMS

In what follows, we will consider D4t -cocyclic matrices Mψ = M∂i1
. . .M∂ik

Mρ with
[ψ] = [ρ] ∈ H 2(D4t ; ZZ2), ρ as defined in (3). Though these are just a subset among
D4t -cocyclic matrices, there is computational evidence that most orthogonal cocycles
over D4t are of this type [1, 7].

The elementary coboundary matrices M∂i consist in negating both the ith row and
column of the matrices(

Bi J2t

J2t BiP

)
, 1 ≤ i ≤ 2t,

(
J2t Bi−2t

Bi−2tP J2t

)
, 2t + 1 ≤ i ≤ 4t, (5)

where Bi is the back circulant 2t × 2t matrix with first row formed all of 1s excepting
the ith-entry, and P is the back circulant 2t × 2t permutation matrix with first row
(1, 0, . . . , 0). Notice that the product used in BiP is the usual one of matrices, not the
Hadamard (pointwise) product. Consequently, the generalized coboundary matricesM∂i

consist in negating the ith column of the matrices in (5).
A basis for coboundaries is given by {∂2, . . . , ∂4t−2}, since ∂1, ∂4t−1 and ∂4t may be

expressed as a product of the remaining coboundaries:

∂1 = −
2t∏
i=2

∂i, ∂4t−1 =
t∏
i=1

∂2i

t−1∏
i=1

∂2t+2i−1, ∂4t =
t∏
i=1

∂2i

t−1∏
i=1

∂2t+2i . (6)

Every D4t -cocyclic matrix Mψ may be expressed in eight ways, precisely one of which
uses none of M∂1 , M∂4t−1 , and M∂4t .

Next we clarify how r-paths may be formed fromD4t -coboundaries. Since the cocyclic
Hadamard test (4) for D4t -cocyclic matrices Mψ just concerns rows from 2 to t [1], we
only have to attend to r-paths, for 2 ≤ r ≤ t .

Observe that each generalized coboundary matrixM∂i has exactly two negative entries
in each row r , 2 ≤ r ≤ t , which are located at columns:

• i and [i − (r − 1)]2t if i ≤ 2t.
• i and 2t + [i − (r − 1)]2t if i ≥ 2t + 1.

(7)

Here we use [m]n instead of m mod n for brevity. In addition, for convenience, we assume 
that [0]2t = 2t .

From this, it is apparent that r-paths of D4t -coboundaries consists in sequences of the 
type (. . . , ∂i , ∂[i−(r−1)]2t , . . .) or (. . . , ∂2t+i , ∂2t+[i−(r−1)]2t , . . .). Therefore, given a subset



S of D4t -coboundaries, calculating the vector of r-paths, 2 ≤ r ≤ t , that they generate
takes O(t) at worst.

Example 1. For t = 5, consider the subset of coboundaries {∂2, ∂5, ∂7, ∂13, ∂14}. For
convenience of the reader, we next include rows from 2 to 5 of the related generalized
coboundary matricesM∂i , for i = 2, 5, 7, 13, 14. We use − instead of −1 for brevity, and
- in case that this occurrence is shared with another generalized coboundary matrix in

the subset.

� M∂2 :

⎛
⎜⎜⎝

− − 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 − 1 1 1 1 1 1 1 − 1 1 1 1 1 1 1 1 1 1
1 - 1 1 1 1 1 1 − 1 1 1 1 1 1 1 1 1 1 1
1 − 1 1 1 1 1 − 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎠

� M∂5 :

⎛
⎜⎜⎝

1 1 1 − − 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 − 1 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 - 1 1 − 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
− 1 1 1 − 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎠

� M∂7 :

⎛
⎜⎜⎝

1 1 1 1 1 − − 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 - 1 − 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 − 1 1 − 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 − 1 1 1 − 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎠

� M∂13 :

⎛
⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 − - 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 − 1 − 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 − 1 1 1 1 1 1 −
1 1 1 1 1 1 1 1 1 1 1 1 − 1 1 1 1 1 − 1

⎞
⎟⎟⎠

� M∂14 :

⎛
⎜⎜⎝

1 1 1 1 1 1 1 1 1 1 1 1 - − 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 − 1 − 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 − 1 1 − 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 − 1 1 1 1 1 −

⎞
⎟⎟⎠

Now it may be easily checked that this subset of coboundaries defines four 2-paths 
((∂2), (∂5), (∂7), and (∂14, ∂13)), four 3-paths ((∂2), (∂7, ∂5), (∂13), and (∂14)), four 4-
paths ((∂5, ∂2), (∂7), (∂13), and (∂14)), and five 5-paths ((∂2), (∂5), (∂7), (∂13), and (∂14)). 
This information may be reported as a vector of length 4, (4, 4, 4, 5)T , the  ith entry 
corresponding to the number of (i + 1)-paths, 1 ≤ i ≤ 4.



From (7), it is apparent that ∂i would never form an r-path with ∂2t+j , for any 1 ≤
i, j ≤ 2t . In particular, the set of elementary coboundaries on D4t may be split into two
disjoint subsets S1 = {∂1, . . . , ∂2t } and S2 = {∂2t+1, . . . , ∂4t }, so that r-paths are always
formed from coboundaries belonging to the same subset Sm, for 2 ≤ r ≤ t .

Due to this property, anyD4t -cocycle ψ = ρ
∏k
j=1 ∂ij (respectively,D4t -cocyclic ma-

trixMψ ) can be visualized as a 2 × 2t matrixDψ = (aij )1≤i≤2, 1≤j≤2t , such that aij = × if
2t(i − 1) + j ∈ {i1, . . . , ik} and empty (−) elsewhere. This matrixDψ is termed diagram
in [2].

Remark 1. The definition of diagram has to do with the expression of the matrixMψ in
terms of the full set of elementary coboundaries, so every D4t -cocyclic matrix has eight
different diagrams (depending on the relations (6)).

Example 2. For instance, for t = 5, consider the (orthogonal) D4·5-cocycle ψ =
ρ∂2∂5∂7∂13∂14. A diagram Dψ for ψ is

∣∣∣∣∣
− × − − × − × − − −
− − × × − − − − − −

∣∣∣∣∣ . (8)

Diagrams will play an essential role in defining some operations preserving orthogo-
nality on D4t -cocyclic Hadamard matrices in Section 4.

The adaptation of the cocyclic Hadamard test (4) to D4t -cocyclic matrices gives

cr − Ir = t − (r − 1), 2 ≤ r ≤ t. (9)

Since r-paths and intersections may be determined independently for coboundaries
in subsets S1 and S2 (i.e., appearing in rows 1 or 2 of a diagram), given any D4t -
cocyclic matrix Mψ = Mρ

∏k
j=1M∂ij

one could calculate the column vectors (ingre-
dients) vh = (c(h)

2 − I
(h)
2 , . . . , c

(h)
t − I

(h)
t )T , 1 ≤ h ≤ 2, whose entries correspond to the

left-hand side of equation (9) applied to the subset Sh. Thus ψ is orthogonal if and 
only if v1 + v2 = vρ = (t − 1, . . . ,  1)T . If this is the case, the matrix (v1, v2) is called a 
Hadamard recipe.

Notice that since r-intersections consist in those negative occurrences that are shared 
by r-paths and negative entries at the rth  row of Mρ , then the vector of r-intersections, 
2 ≤ r ≤ t , may be straightforwardly calculated by means of a loop on the set of r-paths, 
which takes O(t) at worst.

Example 3. For t = 5, ψ = ρ∂2∂5∂7∂13∂14 is an orthogonal D4t -cocycle.
The set of coboundaries {∂2∂5∂7∂13∂14} splits into S1 = {∂2∂5∂7} and S2 = {∂13∂14}.
In order to see that ψ is an orthogonal D4·5-cocycle, we calculate the ingredients 

v1 = c(1) − I(1) and v2 = c(2) − I(2) related to this cocycle, as the difference of the corre-
sponding vectors consisting of r-paths and r-intersections, 2 ≤ r ≤ 5. And check whether 
v1 + v2 = vρ = (4, 3, 2, 1)T .

Taking into account the calculations in Example 1, we know that the vectors c(1) 

and c(2) of r-paths, for 2 ≤ r ≤ 5, generated by these subsets of coboundaries are 
c(1) = (3, 2, 2, 3)T and c(2) = (1, 2, 2, 2)T . Notice that the vector (4, 4, 4, 5)T obtained 
in Example 1 consists in the summation c(1) + c(2).

We now compute the vectors I(h) of r-intersections, for 2 ≤ r ≤ 5, 1 ≤ h ≤ 2. For  
convenience of the reader, we next include rows from 2 to 5 of Mρ and the product



M = M∂2M∂5M∂7M∂13M∂14 . We use − instead of −1 for brevity, and - in case that this
occurrence gives an intersection (i.e., this negative entry appears in both matrices).

� Mρ:

⎛
⎜⎜⎝

1 1 1 1 1 1 1 1 1 − 1 1 1 1 1 1 1 1 1 −
1 1 1 1 1 1 1 1 − - 1 1 1 1 1 1 1 1 − −
1 1 1 1 1 1 1 − - − 1 1 1 1 1 1 1 − − -
1 1 1 1 1 1 - - − − 1 1 1 1 1 1 − − - -

⎞
⎟⎟⎠

� M:
⎛
⎜⎜⎝

− − 1 − − − − 1 1 1 1 − 1 − 1 1 1 1 1 1
1 − − 1 1 1 − 1 1 - − − − − 1 1 1 1 1 1
1 1 1 − − 1 − 1 - 1 − 1 − − 1 1 1 1 1 -
− − − 1 − 1 - - 1 1 1 1 − − 1 1 1 1 - -

⎞
⎟⎟⎠

Since I(1) = (0, 1, 1, 2)T and I(2) = (0, 0, 1, 2)T , the set of coboundaries {∂2, ∂5, ∂7}
gives rise to the ingredient v1 = (3, 2, 2, 3)T − (0, 1, 1, 2)T = (3, 1, 1, 1)T . And the set
of coboundaries {∂13, ∂14} gives rise to the ingredient v2 = (1, 2, 2, 2)T − (0, 0, 1, 2)T =
(1, 2, 1, 0)T . Since v1 + v2 = (3, 1, 1, 1)T + (1, 2, 1, 0)T = (4, 3, 2, 1)T = vρ , then
(v1v2) is a Hadamard recipe, ψ an orthogonal D4·5-cocycle, and Mψ a D4·5-cocyclic
Hadamard matrix.

Remark 2. Notice that the notion of recipe does not depend on the order of its
ingredients. Consequently, the set of ingredients may be calculated attending just to
subsets of coboundaries in S1.

Now it is straightforward to design an algorithm searching exhaustively for D4t -
cocyclic Hadamard matrices Mψ , [ψ] = [ρ] ∈ H 2(D4t ; ZZ2).

Algorithm 1. Exhaustive search for orthogonal D4t -cocycles ψ .
INPUT: t .

1. Compute the list Vt = {v : ∃S/vS = v} of ingredients, and classify every subset
S of coboundaries in {∂1, . . . , ∂2t } attending to the ingredient vS that it produces,
Sv = {S : vS = v}.

2. Determine the set Ht of (unordered) Hadamard recipes (v,w).
3. Construct all pairs of subsets (S,R) producing a Hadamard recipe (vS,wR), {(S,R) :

∀ (v,w) ∈ Ht , ∀ S ∈ Sv, ∀R ∈ Sw}.
4. Both ψS,R = ρ

∏
j∈S∪{2t+i: i∈R} ∂j and ψR,S = ρ

∏
j∈R∪{2t+i: i∈S} ∂j are orthogonal

D4t -cocycles.

OUTPUT: the full set of orthogonal D4t -cocycles in [ρ].

Remark 3. The time consuming parts of this algorithm are steps 1 and 2:

1. In order to construct the exhaustive list Vt of ingredients v, one needs to construct
the ingredients vS provided by each possible subset S of D4t -coboundaries. Recall
that given a subset ofD4t -coboundaries S, calculating the related ingredient vS takes
O(t), as it was pointed out before. Unfortunately, the number of candidate subsets S is
very large, less than 24t−3 but close to this number (in [1] the number of coboundaries



TABLE I. D4t -cocyclic Hadamard matrices from Algorithm 1.

t |Vt | |Ht | #Mψ ij : ψ = ρ
∏k
j=1 ∂ij

3 5 1 72 2, 9
4 12 2 512 3, 5, 11
5 34 6 1,400 3, 5, 14, 17
6 96 13 7,488 3, 6, 16, 17, 19, 21
7 317 17 11,368 4, 6, 9, 11, 17, 20, 21
8 1,040 52 69,632 3, 5, 7, 10, 11, 13, 19, 24, 25
9 3,341 75 130,248 2, 6, 11, 13, 20, 23, 26, 27, 30, 31, 32
10 12,398 234 521,600 4, 6, 8, 11, 15, 23, 26, 31, 32, 33, 36
11 41,821 290 619,564 3, 9, 10, 11, 18, 24, 26, 29, 31, 34, 35, 38, 39, 41

TABLE II. Orbits of D4t -cocyclic Hadamard matrices.

No. of No. of Hadamard
t orbits Matrices/orbits matrices 32t2φ(2t)

3 1 72 × 1 72 576
4 1 512 × 1 512 2,048
5 3 200 × 1 + 400 × 1 + 800× 1 1,400 3,200
6 8 576 × 3 + 1,152 × 5 7,488 4,608
7 5 784 × 1 + 1,176× 1 + 2,352 × 2 + 4,704 × 1 11,368 9,408
8 13 4,096 × 9 + 8,192 × 4 69,632 16,384
9 20 1,944 × 1 + 3,888 × 5 + 7,776 × 14 130,248 15,552
10 59 1,600 × 2 + 3,200 × 4 + 6,400 × 27 + 12,800 × 26 521,600 25,600
11 34 9,680 × 4 + 19,360 × 30 619,520 38,720

whose combination yields a D4t -cocyclic Hadamard matrix is proved to run in the
range [t − 1, 3t − 2]). Thus constructing the complete list Vt of ingredients v may
require a long time.

2. Once the complete list Vt of ingredients is available, step 2 requires to locate two
ingredients such that their summation is equal to (t − 1, . . . , 1)T . If V consists of |Vt |
ingredients, looking for the full set of Hadamard recipes takesO(|Vt |2). This may be
impractical for large |Vt |.

Table I shows a report of Algorithm 1 running for 3 ≤ t ≤ 11. Column 2 in-
dicates the number |Vt | of different ingredients v, which are produced by subsets
in S1 = {∂1, . . . , ∂2t }. Column 3 indicates the number |Ht | of different (unordered)
Hadamard recipes (v,w), which may be formed from these ingredients. Column 4
gives the number of different D4t -cocyclic Hadamard matrices Mψ obtained from these
recipes. And column 5 includes an explicit subset of indices {ij } such that theD4t -cocycle
ψ = ρ

∏k
j=1 ∂ij is orthogonal. All calculations have been performed in a 64 bits Intel(R)

Core(TM) i3 CPU M330 2.13GHz RAM 4Gb system.



4. OPERATIONS

In Remark 2 it was noted that a recipe does not depend on the order of its ingredients.
In other words, this comes to say that if Ds(ψ) is the diagram obtained by swapping the
rows of the diagram Dψ , then ψ is orthogonal if and only if s(ψ) is.

This is just one of the multiple orthogonality-preserving geometric operations that
may be defined on diagrams Dψ . The idea is looking for operations on ψ , which do
not modify the final recipe. In fact, in light of the operations described in [2], detecting
operations on D4t -cocyclic matrices that preserve r-paths, 2 ≤ r ≤ t , is not so difficult.
Unfortunately, unlike the case of ZZt × ZZ2

2-cocyclic matrices, for which four Hadamard-
preserving operations were defined depending solely on r-paths [2], the situation here is
more subtle. Actually, since the Hadamard test (9) depends not only on the number cr of
r-paths, but also on the number Ir of intersections, the difficult question here is finding
out those operations that fairly preserve the difference between r-paths and intersections
along rows r , 2 ≤ r ≤ t .

At the beginning, we were able to detect three geometric operations of this type:
swapping, rotations, and specular symmetries. The authors were convinced that a fourth
operation might exist, acting as a homothecy on coboundaries, as it was in the case of
dilatations for ZZt × ZZ2

2-cocyclic matrices [2]. In fact, we defined dilatations acting on
coboundaries, and r-paths were somehow preserved (we obtained a permutation of the
original vector of r-paths). However, we could not determine how dilatations should
affect ρ in order to properly shift intersections, in addition. In the end, comparison of
these operations and bundles (2) as in [3] took us to the right direction. This provided
us essential information to find out an explicit formula for dilatations on D4t -cocyclic
matrices.

Let ψ = ρ
∏k
j=1 ∂ij be a D4t -cocycle. Denote c1 = {ij : 1 ≤ ij ≤ 2t} and c2 = {ij :

2t + 1 ≤ ij ≤ 4t} the indices of any subset of coboundaries defining ψ (recall that there
are eight different forms to express ψ in terms of coboundaries, see (6)). Let cj + k
denote the set obtained by adding k to each element of cj modulo 2t (here, one must
assume [0]2t = 2t in c1, whereas [0]2t = 4t in c2).

Definition 4.1. Let {(c1, c2)} be a set of indices related to aD4t -cocycle ψ , and call Ci
the columns of the diagram Dψ = (C0, · · · , C2t−1).

1. The swapping s({c1, c2}) is the set {(c2 − 2t, c1 + 2t)}.
2. For 0 ≤ i, j ≤ t − 1, the (i, j )-rotation Tij ({c1, c2}) is the set obtained from

{(c1 + i, c2 + j)} by adding the indices ({1, . . . , i}, {2t + 1, . . . , 2t + j}).
3. For 0 ≤ i, j ≤ 1, the (i, j )-specular symmetry σij ({c1, c2}) of this set is the set

{((2t + 1)i + (−1)ic1, (6t + 1)j + (−1)jc2)}.
4. The j th dilatation Vj ({c1, c2}), for j ∈ ZZ∗

2t , is obtained by modifying the diagram
(C0, . . . , C[(2t−1)j−1]2t ) (resulting from the homothecy of ratio j applied toDψ ), in the
following way:

(i) Compute the numbers I = {[1 − j ]2t , [1 − 2j ]2t , . . . , [1 − j−1j ]2t }.
(ii) Reorder all the nonzero numbers i ∈ I as i1 < i2 < . . . < i2s , for 2s = j−1 −

1 mod 2t .
(iii) For 1 ≤ k ≤ s, change in the diagram the positions corresponding to

∂i2k−1+1, . . . , ∂i2k and ∂2t+i2k−1+1, . . . , ∂2t+i2k .



In terms of diagrams, s swaps the rows; Tij cyclically shifts the first row i places to
the right and/or the second row j places to the right, and adds ∂1 (if i = 1) and/or ∂2t+1

(if j = 1); σij , depending on whether i = 1 and/or j = 1, displays rows 1 and/or 2 of the
diagram in reverse order; and Vj initially permutes columns according to multiplication
of column index by the invertible element j , and adds some extra coboundaries to fairly
shift the cocycle ρ (that is, r-intersections, 2 ≤ r ≤ t).

For instance, if Dψ =
∣∣∣∣∣
− × − − × − × − − −
− − × × − − − − − −

∣∣∣∣∣ is the diagram in (8), then

� s(Dψ ) =
∣∣∣∣− − × × − − − − − −
− × − − × − × − − −

∣∣∣∣.
� T13(Dψ ) =

∣∣∣∣× − × − − × − × − −
× × × − − × × − − −

∣∣∣∣.
� σ01(Dψ ) =

∣∣∣∣− × − − × − × − − −
− − − − − − × × − −

∣∣∣∣.
� V3(Dψ ) =

∣∣∣∣− − × × − × − − − −
− − × − − × × − × ×

∣∣∣∣.
Clearly the order of the swapping s is 2 and 〈s〉 ∼= ZZ2. Each of the elementary ro-

tations T10 and T01 has order 2t , and generate a group 〈T10, T01〉 ∼= ZZ2t × ZZ2t . The
specular symmetries each have order 2 and generate a group 〈σ10, σ01〉 ∼= ZZ2 × ZZ2.
And the dilatations 〈Vj , j ∈ ZZ∗

2t 〉 ∼= ZZ∗
2t . It is straightforward to check that sσ10 =

σ01s, T10s = sT01, Tmnσmn = σmnT2t−1
mn , TjmnVj = VjTmn, and Tj−1

mn Vj σmn = σmnVj , for
(m, n) ∈ {(1, 0), (0, 1), (1, 1)}, j ∈ ZZ∗

2t . These relations give a presentation of the group
Diag(D4t ) of diagrammatic operations on diagrams Dψ of D4t -cocycles ψ . The most
remarkable fact is that every operation in Diag(D4t ) preserves orthogonal cocycles.

Theorem 4.2. For every f ∈ Diag(D4t ), Dψ defines an orthogonal cocycle ψ if and
only if f (Dψ ) = Df (ψ) does.

Proof. The swapping s simply swaps the ingredients of a recipe.
Given a diagramDψ , it is apparent that rotating independently any of its rows does not

affect the way in which r-paths are formed, 2 ≤ r ≤ t . However, intersections may be
affected by this rotation, unless a way to rotateMρ fairly with coboundary matricesM∂ij

is found. Notice that the effect of MρM∂1 is rotating the block of negative entries of Mρ

one column to the right cyclically in the range [1, 2t]. Similarly, the effect of MρM∂2t+1

is rotating the block of negative entries of Mρ one column to the right cyclically in the
range [2t + 1, 4t]. This way, as defined, the operation Tij rotates simultaneously both
r-paths and intersections, and hence preserve ingredients and recipes.

Every specular symmetry σij preserves not only r-paths (due to the fact that the
relative positions of coboundaries remain unchanged), but also intersections (notice that
a generalized coboundary matrix M∂k shares a negative entry with Mρ at row r if and
only Mσij (∂k) does, see (7)), and consequently ingredients and recipes as well.

Finally, every dilatation Vj acts in two steps. First, it permutes columns of the diagram
according to multiplication of column index by the invertible element j . In particular,
r-paths turn into (r − 1)j -paths. Second, in order to shift intersections accordingly, some
coboundaries are introduced, so that negative entries in Mρ are properly moved. Thus
the initial ingredients are permuted (according to the homothecy of ratio j ), and a valid
recipe is obtained. �



In fact, the groupBund(D4t ) of bundles (2) ofD4t -cocyclic matrices may be identified
as a subgroup of Diag(D4t ).

Theorem 4.3. Diag(D4t ) strictly contains the group of bundles Bund(D4t ) = D4t �

Aut(D4t ), faibj ,θ (ψ) = (ψ · aibj ) ◦ (θ × θ), f ′
aibj ,θ

(ψ) = (aibj · ψ) ◦ (θ × θ) such that

faibj ,θ (ψ)(g, h) = ψ(aibj θ(g), θ(h))ψ(aibj , θ(h)),

f ′
aibj ,θ

(ψ)(g, h) = ψ(θ (g), θ (h)aibj )ψ(θ (g), aibj ).
(10)

More concretely:

1. The right shift action on a consists in fa,1 = T−1
11 .

2. The right shift action on b consists in fb,1 = T11σ11s.
3. The left shift action on a consists in f ′

a,1 = T−1
10 T01.

4. The left shift action on b consists in f ′
b,1 = T−1

10 T01s.
5. The automorphism action θa,ab such that θa,ab(a) = a, θa,ab(b) = ab, consists in
f1,θa,ab = T01.

6. For j ∈ ZZ∗
2t , the automorphism action θaj ,b such that θaj ,b(a) = aj , θaj ,b(b) = b,

consists in f1,θ
aj ,b

= Vj−1 .
7. Consequently, Bund(D4t ) ∼= 〈Tij , σ11, s, Vj 〉 ⊂ Diag(D4t ). Hence the single spec-

ular symmetries σ10 and σ01 define genuinely new operations on D4t -cocycles, not
included in bundles (10).

Proof. This may be checked by direct inspection. �
Thus there seems to be a gap between geometric and algebraic operations on D4t -

cocycles. This is by no means the case, as it may be straightforwardly checked:

Theorem 4.4. For everyψ in the circumstances above, the dual cocycleψ∗ (defined as
ψ∗(g, h) = ψ(h−1, g−1)), coincides with T10σ10(ψ). Consequently, the group generated
by duals and bundles ofD4t -cocyclesψ coincides with the groupDiag(D4t ) of geometric
transformations on diagrams Dψ .

The total orbit of a cocyclic Hadamard matrix overD4t is the union of all orbits under
the action of swapping, rotations, specular symmetries, and dilatations.

Table A1 shows an exhaustive calculation of D4t -cocyclic Hadamard orbits for t ,
3 ≤ t ≤ 11, split according to its size. For instance, for t = 6, 576 × 3 + 1, 152 × 5
means three orbits with 576 matrices each, plus five orbits with 1, 152 matrices each,
totalizing 7, 488 matrices. The maximum theoretical possible size of one orbit (i.e.,
|Diag(D4t )|) is displayed in the last column. It is apparent that this theoretical size is
never reached up to t = 11, though it seems that there always exist orbits as large as a
half of this size, for t ≥ 6. This implies that occasionally the same matrix can be obtained
from a given one by means of different sequences of operations in Diag(D4t ) (this is
obvious for t = 3, 4, 5).

Table A1 in Appendix includes a list of subsets of indices {ij } for those cocycles
ρ

k
j 1 ∂ij generating each orbit in Table II.

∏ 
=

Another question is how do operations interact with recipes. Apart from the swapping and specular symmetry operations (which obviously preserve the recipe, up to swapping 

its ingredients), we have not found any explicit relation between orbits and recipes. 
Table III shows the number of recipes and the number of orbits for t , 3  ≤ t ≤ 11.



TABLE III. Orbits and recipes of D4t -cocyclic Hadamard matrices.

t 3 4 5 6 7 8 9 10 11

No. of orbits 1 1 3 8 5 13 20 59 34
No. of recipes 1 2 6 13 17 52 75 234 290

We can observe that the number of recipes is significantly larger than the num-
ber of orbits in a concrete t , excepting the case t = 3. This is not surpris-
ing. Actually, many different recipes contribute matrices to a common orbit. For
instance, for t = 5, consider the orthogonal D4·5-cocycle ψ consisting in ψ =

ρ∂2∂5∂7∂13∂14, which defines the recipe

⎛
⎜⎜⎝

3 1
1 2
1 1
1 0

⎞
⎟⎟⎠. It may be straightforwardly checked

⎛
⎜⎜⎝

⎞
⎟⎟⎠

that T01
9 (ψ) = ρ∂2∂5∂7∂11∂14∂15∂16∂17∂18∂19, which, by means of (6), can be expressed

1 3
1 2

as ρ∂4∂5∂6∂7∂8∂10∂13∂14∂16∂18, which defines the recipe 
1 1  .

1 0
Nevertheless, it may also occur that orthogonal D4t -cocycles belonging to differ-

ent orbits define a common recipe. For instance, for t = 9, it may be checked that 
ρ∂4∂7∂9∂13∂22∂25∂27∂30∂31 and ρ∂4∂7∂9∂13∂21∂23∂29∂30∂32∂33 define two different orbits 
of length 3, 888. However, these cocycles define the same recipe, since they share the 
same first ingredient (which depends only on ∂4∂7∂9∂13), and hence the second as well, 
and consequently the full recipe.

5. CONCLUSIONS

In this paper, we have developed a new description of D4t -cocyclic matrices, in terms of 
ingredients and recipes. In addition, we have been able to describe four geometric opera-
tions (swapping, rotations, specular symmetries, and dilatations), which strictly include 
the bundles generated by shiftings and automorphisms actions of [9]. Furthermore, we 
have also proved that the groups generated by the algebraic and geometric operations are 
isomorphic, if bundles are enriched with duals of cocycles.

We have performed an exhaustive search for D4t -cocyclic Hadamard matrices Mψ 
(classified up to orbits of these geometric operations) for t ≤ 11, in the case of ψ ∈ [ρ] 
as described in (3). As far as we know, the cases t = 10 and t = 11 have not been 
constructed previously.

It is remarkable that these calculations have been performed on a conventional PC. If 
high-performance computing systems were available, it is conceivable that larger D4t -
cocyclic Hadamard matrices might be found, the cases t = 47, 167 being of maximal 
interest, since no cocyclic Hadamard matrix is known of order 4 · 47, and no Hadamard



matrix is known of order 4 · 167. Actually, in [6] this kind of resources has been used to
find some new orders of Hadamard matrices in the following way:

� Given four large (up to 10 millions lines each) text files Fi , 1 ≤ i ≤ 4 consisting of
vectors v, one has to find four vectors vi ∈ Li , 1 ≤ i ≤ 4 such that v1 + v2 + v3 +
v4 = w, for certain constant vector w previously fixed.

� A new efficient matching algorithm based on hashing techniques is used to solve this
problem (actually, for t = 251, 631 for usual Hadamard matrices).

In our approach, as soon as a single file F of ingredients is provided, it suffices to find
a Hadamard recipe, that is, two ingredients v,w ∈ F such that v + w = (t − 1, . . . , 1)T .
In light of the work in [6], it seems that this could be certainly feasible for values t
significantly greater than 11.
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[1] V. Álvarez, J. A. Armario, M. D. Frau, and P. Real, A system of equations for describing cocyclic
Hadamard matrices, J Comb Des 16 (2008), 276–290.
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APPENDIX

TABLE A1. Explicit D4t -cocycles generating orbits(I).

t {ij : ψ = ρ
∏k
j=1 ∂ij }

3 {2, 9}
4 {3, 11, 13}
5 {3, 5, 14, 17}, {2, 6, 12, 15, 16}, {5, 12, 14, 17, 18}
6 {3, 6, 16, 17, 19, 21}, {3, 5, 9, 15, 17, 18}, {2, 6, 7, 15, 17, 22}, {2, 6, 7, 9, 15, 20},

{3, 7, 9, 17, 20}, {2, 4, 7, 16, 19, 20}, {4, 6, 9, 16, 19}, {2, 4, 7, 8, 16, 19}
7 {4, 6, 9, 11, 17, 20, 21}, {2, 6, 11, 16, 19, 22, 23, 24}, {2, 6, 10, 18, 21, 23, 24},

{3, 9, 11, 17, 22, 23, 25}, {3, 5, 7, 12, 17, 22, 23}
8 {3, 5, 7, 10, 11, 13, 19, 24, 25}, {3, 5, 9, 10, 11, 13, 19, 24, 27}, {3, 5, 7, 8, 11, 13,

19, 25, 26},
{3, 5, 11, 13, 21, 24, 25, 28}, {2, 4, 7, 11, 12, 13, 20, 23, 26},
{2, 5, 9, 10, 11, 13, 20, 23, 28}, {2, 4, 7, 8, 10, 14, 20, 25, 26}, {3, 6, 9, 11, 13, 19,

27, 28, 29},
{4, 6, 7, 9, 13, 21, 24, 28}, {2, 6, 7, 9, 11, 19, 22, 28, 29}, {3, 5, 11, 13, 19, 22, 23,

24, 27},
{3, 6, 9, 11, 13, 20, 25, 26}, {2, 4, 8, 11, 12, 20, 21, 23, 26}

9 {6, 8, 11, 13, 22, 23, 26, 29, 33}, {2, 6, 11, 13, 20, 23, 26, 27, 30, 31, 32},
{4, 7, 9, 11, 21, 23, 24, 27, 31, 32}, {4, 7, 9, 13, 22, 25, 27, 30, 31},
{4, 7, 9, 13, 21, 23, 29, 30, 32, 33}, {2, 4, 9, 10, 12, 20, 23, 24, 29, 32, 33},
{2, 4, 8, 11, 12, 14, 23, 24, 27, 32}, {2, 4, 8, 11, 12, 14, 21, 23, 24, 28, 29},
{2, 6, 9, 10, 12, 14, 22, 23, 28, 31}, {3, 5, 7, 10, 11, 13, 21, 26, 30, 31},
{2, 6, 8, 11, 12, 13, 20, 23, 24, 27, 32}, {3, 5, 9, 10, 11, 13, 20, 23, 24, 27, 32},
{3, 6, 8, 12, 23, 24, 27, 28, 30, 32}, {3, 8, 10, 16, 23, 24, 27, 28, 30, 32},

(Continued)



TABLE A1. Continued

t {ij : ψ = ρ
∏k
j=1 ∂ij }

{2, 6, 9, 10, 11, 15, 20, 23, 25, 26, 32}, {3, 8, 9, 12, 21, 23, 24, 28, 30, 32},
{3, 8, 10, 12, 21, 23, 24, 27, 31, 32}, {4, 6, 9, 12, 21, 22, 26, 28, 30, 31},
{3, 5, 9, 12, 14, 21, 25, 26, 27, 34}, {3, 5, 8, 12, 14, 22, 24, 25, 28, 29}

10 {2, 6, 9, 13, 14, 15, 24, 27, 30, 32, 37}, {3, 6, 10, 12, 13, 14, 16, 24, 25, 27, 32, 37},
{4, 6, 10, 13, 14, 22, 25, 30, 31, 34, 36}, {3, 4, 10, 12, 13, 23, 25, 27, 30, 31, 34, 36},
{2, 7, 8, 11, 15, 25, 27, 30, 31, 34, 36}, {2, 5, 6, 10, 12, 13, 15, 17, 25, 28, 29, 34},
{2, 4, 7, 11, 13, 14, 15, 23, 26, 31, 35, 36}, {5, 8, 10, 14, 24, 25, 28, 31, 32, 34, 36},
{4, 6, 9, 11, 12, 13, 17, 25, 28, 32, 35}, {2, 5, 7, 10, 11, 13, 17, 24, 27, 28, 29, 36},
{2, 6, 8, 9, 11, 13, 14, 17, 25, 30, 34, 35}, {4, 5, 8, 10, 13, 15, 17, 26, 27, 30, 33},
{6, 8, 10, 15, 23, 25, 28, 31, 32, 35, 36}, {2, 5, 10, 14, 15, 23, 25, 30, 31, 32, 34, 38},
{2, 5, 10, 14, 15, 24, 26, 27, 30, 31, 33, 35}, {2, 5, 6, 10, 12, 14, 15, 16, 22, 25, 32,

35, 36},
{2, 7, 8, 12, 15, 22, 24, 28, 31, 34, 35, 36}, {3, 5, 12, 13, 16, 22, 24, 28, 31, 34, 35,

36},
{2, 7, 10, 11, 16, 22, 25, 26, 32, 33, 35, 37}, {2, 6, 9, 10, 13, 15, 23, 25, 28, 35, 36,

37},
{2, 5, 6, 9, 11, 13, 15, 16, 23, 24, 29, 31, 32}, {3, 4, 9, 11, 14, 24, 26, 28, 29, 32, 33,

35},
{2, 4, 6, 9, 10, 13, 15, 18, 23, 24, 30, 31, 32}, {3, 4, 10, 11, 13, 23, 25, 28, 29, 32,

34, 36},
{3, 5, 8, 11, 12, 24, 25, 28, 30, 32, 34, 35}, {3, 6, 8, 9, 13, 23, 27, 29, 31, 34, 35, 36},
{3, 5, 9, 11, 14, 23, 24, 27, 32, 34, 35, 36}, {2, 5, 8, 12, 13, 15, 17, 23, 27, 28, 29,

34},
{3, 6, 7, 9, 11, 13, 16, 24, 26, 27, 31, 32}, {3, 7, 9, 13, 14, 16, 23, 29, 33, 34, 36},
{4, 7, 9, 10, 17, 24, 27, 31, 33, 35, 36}, {2, 4, 8, 9, 11, 16, 17, 23, 30, 33, 34, 36},
{2, 5, 12, 13, 15, 17, 22, 26, 27, 32, 33, 36}, {3, 7, 9, 13, 14, 16, 24, 27, 29, 30, 37},
{3, 5, 9, 11, 14, 17, 23, 27, 32, 33, 34}, {2, 5, 8, 12, 13, 15, 17, 24, 26, 27, 31, 32},
{3, 5, 8, 9, 13, 15, 23, 26, 28, 29, 30, 37}, {3, 5, 7, 11, 12, 15, 24, 29, 32, 34, 35},
{3, 5, 8, 11, 12, 23, 27, 29, 31, 34, 35, 36}, {3, 5, 7, 9, 10, 13, 24, 25, 29, 32, 34, 35},
{2, 6, 10, 11, 14, 16, 25, 26, 28, 31, 35}, {3, 5, 10, 13, 14, 24, 26, 29, 30, 33, 35},
{2, 7, 10, 14, 15, 24, 26, 29, 30, 33, 35}, {3, 7, 8, 10, 14, 16, 22, 25, 28, 29, 30, 34},
{2, 4, 9, 12, 13, 15, 23, 27, 30, 35, 36, 37}, {2, 4, 9, 12, 13, 15, 23, 25, 26, 30, 34,

35},
{2, 5, 11, 12, 16, 22, 26, 28, 32, 33, 35, 36}, {2, 4, 10, 11, 15, 24, 27, 28, 31, 33, 34,

36},
{3, 5, 8, 10, 12, 16, 25, 26, 29, 32, 33}, {2, 5, 7, 11, 12, 15, 17, 23, 24, 31, 32, 34},
{5, 10, 13, 14, 22, 24, 26, 29, 30, 33, 35, 36}, {5, 8, 12, 13, 22, 24, 26, 29, 30, 33,

35, 36},
{5, 8, 11, 15, 24, 26, 28, 31, 32, 33, 36}, {2, 5, 7, 9, 11, 12, 15, 23, 27, 28, 33, 34},
{2, 4, 7, 8, 12, 14, 18, 23, 26, 31, 32, 33}, {2, 4, 6, 9, 12, 16, 17, 23, 26, 31, 32, 33},
{2, 6, 7, 8, 12, 14, 17, 23, 31, 32, 34, 37}, {2, 6, 7, 8, 12, 14, 17, 23, 27, 28, 30, 33},
{4, 6, 8, 11, 15, 23, 26, 31, 32, 33, 36}

(Continued)



TABLE A1. Continued

t {ij : ψ = ρ
∏k
j=1 ∂ij }

11 {2, 4, 7, 10, 11, 13, 15, 26, 27, 28, 33, 36, 37, 40}, {4, 8, 11, 13, 15, 25, 26, 29, 31,
32, 37, 39, 40},

{2, 5, 6, 11, 13, 15, 26, 27, 31, 34, 35, 37, 38, 40}, {3, 5, 7, 12, 13, 15, 25, 29, 33,
34, 36, 39, 40},

{2, 4, 7, 10, 12, 16, 17, 19, 28, 29, 32, 33, 38}, {2, 5, 8, 10, 12, 13, 17, 19, 27, 28,
32, 35, 36},

{5, 12, 15, 16, 17, 24, 26, 28, 31, 34, 36, 37, 40, 41}, {2, 4, 7, 10, 14, 17, 19, 25,
29, 30, 31, 32, 36, 37},

{2, 5, 10, 14, 16, 18, 25, 28, 31, 32, 36, 37, 38}, {3, 5, 7, 11, 13, 14, 16, 26, 27, 31,
32, 35, 38},

{4, 6, 11, 12, 14, 25, 28, 31, 32, 36, 37, 39, 41}, {2, 4, 8, 9, 12, 14, 15, 16, 18, 25,
30, 33, 38, 39},

{3, 5, 7, 11, 16, 17, 19, 25, 30, 35, 36, 38, 39}, {3, 7, 9, 14, 15, 17, 19, 25, 26, 32,
35, 37, 38},

{2, 4, 6, 9, 14, 15, 16, 19, 25, 28, 31, 32, 33, 40}, {2, 4, 6, 9, 14, 17, 18, 19, 25, 28,
33, 34, 35, 42},

{4, 6, 8, 12, 13, 15, 18, 25, 28, 31, 32, 33, 41}, {2, 7, 8, 10, 12, 14, 17, 18, 26, 29,
32, 33, 38},

{2, 6, 8, 10, 11, 13, 17, 18, 27, 30, 31, 34, 40}, {6, 7, 10, 13, 15, 26, 27, 31, 33, 35,
38, 41},

{4, 5, 8, 10, 13, 15, 17, 26, 27, 30, 33, 34, 36}, {4, 6, 9, 12, 14, 16, 17, 18, 25, 29,
34, 35, 38},

{3, 6, 8, 10, 12, 15, 16, 25, 32, 34, 35, 40, 41}, {2, 5, 9, 14, 15, 17, 19, 24, 27, 28,
35, 38, 39, 40},

{2, 4, 7, 11, 16, 17, 19, 26, 29, 34, 35, 36, 39}, {3, 5, 7, 8, 11, 17, 19, 26, 29, 34,
35, 36, 39},

{3, 8, 9, 11, 13, 15, 20, 26, 27, 30, 37, 39, 40}, {2, 4, 6, 9, 12, 15, 16, 17, 27, 31,
32, 36, 39},

{3, 6, 11, 13, 15, 17, 18, 25, 29, 30, 31, 35, 38}, {3, 5, 12, 13, 14, 17, 25, 28, 30,
34, 38, 40, 41},

{3, 8, 9, 10, 12, 17, 25, 28, 30, 34, 38, 40, 41}, {3, 8, 13, 15, 16, 17, 24, 27, 30, 34,
35, 39, 41},

{2, 5, 11, 13, 15, 16, 19, 26, 27, 31, 36, 38, 39}, {2, 4, 8, 13, 15, 16, 25, 27, 30, 31,
33, 34, 40, 41}




