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Let G� G′, and G ×� G
′ be three simplicial groups (not necessarily abelian) and CN �G� ⊗t CN �G

′� be the 
“twisted” tensor product associated to CN �G ×� G

′� by the twisted Eilenberg–Zilber theorem. Here we prove 
that the pair �CN �G� ⊗t CN �G

′�� �� is a DGA-algebra where � is the standard product of CN �G� ⊗ CN �G
′�. 

Furthermore, the injection of the twisted Eilenberg–Zilber contraction is a DGA-algebra morphism and the 
projection and the homotopy operator satisfy other weaker multiplicative properties.
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1. INTRODUCTION

The Eilenberg–Zilber theorem (Eilenberg and Zilber, 1953; Eilenberg and Mac 
Lane, 1954) gives a contraction from the chain complex of a cartesian product of 
simplicial sets to the corresponding tensor product of chain complexes. The twisted 
Eilenberg–Zilber theorem (Shih, 1962) generalizes this situation to the case of 
twisted cartesian products. It is well-known that any simplicial set X has canonically 
associated a normalized chain complex, CN �X�, which is a DGA-coalgebra. In the 
case that X is a group, then CN �X� is a DGA-algebra too. Let F ×� B be a twisted 
cartesian product. The twisted Eilenberg–Zilber theorem establishes a contraction 
from CN �F ×� B� to the twisted tensor product (in the sense of Brown, 1959) 
CN �F� ⊗t CN �B�:

TEZ � �CN �F ×� B�� CN �F� ⊗t CN �B�� f� g� ��	

As a module, CN �F� ⊗t CN �B� is the ordinary tensor product of CN �F� with CN �B�; 
both of which are DGA-algebras, when F and B are simplicial groups. Therefore,
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we can define a module map


 � CN�F�⊗t CN �B�⊗ CN�F�⊗t CN �B� → CN�F�⊗t CN �B�

by 
 = �
CN �F�
⊗ 
CN �B�

��1⊗ T ⊗ 1� where 
CN �F�
and 
CN �B�

are the products in
CN�F� and CN�B�, respectively, and T�x⊗ y� = �−1��x� �y�y ⊗ x. Assuming that F and
B are simplicial groups, the following question arises in a natural way: Is CN�F�⊗t

CN �B� a DGA-algebra with regards to the product 
 defined above?
In this article, under the hypothesis that F ×� B is a simplicial group, we

give an affirmative answer to the question above. Furthermore, we prove that the
injection of the contraction above, g � CN �F�⊗t CN �B� → CN�F ×� B� is a DGA-
algebra morphism. To this end, we take the work of Shih (1962) as starting point.

The analogous question for the coalgebra structure has been treated in
Szcsarba (1961), but only the case for twisted cartesian products with base a sphere.
In Kadeishvili and Saneblidze (2005), working with cubical sets, more progress in
this direction has been shown. It is well-known that the study of the coalgebra
structure has important consequences for describing H∗�F ×� B� as an algebra (see
Szcsarba, 1961). Nevertheless, until now, there is a lack of results in the literature
about the algebra structure on CN�F�⊗t CN �B�. As we show at the end of this article,
this structure is useful in some cases for achieving homological computations in an
economical way. Here, we deal only with the algebra structure on CN�F�⊗t CN �B�.

Our approach for proving the main statement of this article deeply depends
upon a suitable development of the homological perturbation theory (HPT)
(Gugenheim and Lambe, 1989; Gugenheim et al., 1991), particularized to the
category of DGA-algebras (Real, 2000). The cornerstone of HPT is the Basic
Perturbation Lemma (BPL), which gives an explicit formula for transferring
a perturbation of the differential of a chain complex to an equivalent chain
subcomplex. In Huebschmann and Kadeishvili (1991) and Gugenheim et al. (1991)
it is proved that the BPL also holds in the algebra category, assuming on the data
the “maximum” degree of the compatibility with regards to the algebra structures.
In Real (2000), assuming weaker hypotheses for the data involved in the BPL, an
analogous result for the algebra category is obtained where the resulting contraction
has weaker properties too. This result is stated in Theorem 3.2 and will be essential
in this article.

The article is organized as follows. In Section 2 we introduce the basic notation
and terminology used throughout the article, we define the objects studied in HPT,
and sketch a familiar example which tells us that the Eilenberg–Zilber contraction
can be perturbed into the twisted Eilenberg–Zilber contraction using BPL (see Shih,
1962). Section 3 is devoted to extend the notion of contraction to the category
of DGA-algebras. In particular, we introduce the category of semi-full algebra
contractions (we follow Real, 2000). Moreover, we show that the Eilenberg–Zilber
contractions associated to two simplicial groups F and B is an almost-full algebra
contraction. Furthermore, provided that F ×� B is a simplicial group, then the
perturbation datum � (which gives rise to the twisted Eilenberg–Zilber contraction
by means of the BPL) is a derivation. Hence, as a consequence we obtain the main
result of this article: CN�F�⊗t CN �B� is a DGA-algebra with product 
 and g is
morphism of DGA-algebra. In Section 4 we give an example where an algebra
homological model for a particular twisted cartesian product is computed.



2. PRELIMINARIES

We will quickly review basic notions of Homological Algebra specific to
HPT, and introduce the notation and terminology that we use throughout the
remainder of this article. More details can be found in Mac Lane (1995). Let �
be a commutative ring with nonzero unit, taken henceforth as ground ring and
fixed throughout, and A be an augmented differential graded algebra over �, briefly
DGA-algebra. The differential, product, augmentation, and coaugmentation of A
will be denoted respectively by dA, 
A, A, and �A. Nevertheless, sometimes, we will
write them simply d, 
, , and � when no confusion can arise. In what follows,
the Koszul sign conventions will be used. A morphism � � A∗ → A∗−1 is called
derivation if it is compatible with the algebra structures on A. The degree of an
element a ∈ A is denoted by �a�. Also we recall that if B is a DGA-algebra too, then
A⊗ B has canonically associated an algebra structure by means of the morphism

A⊗B = �
A ⊗ 
B��1A ⊗ T ⊗ 1B�, where T�b ⊗ a� = �−1��b��a�a⊗ b. If the DG-algebra
A is connected, that is A0 = � and d1 � A1 → A0 is zero, then there is a canonical
augmentation A = 1� � A0 → �.

We will use here the twisted tensor product structure. Let A be a DG-algebra
and C be a DG-coalgebra (�C denotes its coproduct). A twisting cochain is a
morphism of graded modules t � C∗ → A∗−1 such that

dAt + tdC + t ∪ t = 0� At = 0� t�C = 0�

where t ∪ t = −
A�t ⊗ t��C . Given the DGA-A-module M , the DGA-C-comodule
N , and a twisting cochain t it is well-known that dt = dM ⊗ 1+ 1⊗ dN + t∩ is a
differential on M ⊗ N , where the morphism t∩ is defined by

t∩ = �
M ⊗ 1��1⊗ t ⊗ 1��1⊗ �N�	 (1)

The DG-module �M ⊗ N� dt� is called the twisted tensor product (or TTP) of M
and N along t. We will also use the notation M ⊗t N for such a DG-module.

Now, we define precisely the objects studied in homological perturbation
theory and sketch a familiar example.

A contraction (see Eilenberg and Mac Lane, 1953; Huebschmann and
Kadeishvili, 1991) is a data set c � �N�M� f� g� �� where f � N → M and g � M → N
are morphisms of DG-modules (called, respectively, the projection and the inclusion)
and � � N → N is a morphism of graded modules of degree +1 (called the homotopy
operator). These data are required to satisfy the rules: (c1) fg = 1M , (c2) �dN +
dN�+ gf = 1N , (c3) �� = 0, (c4) �g = 0, and (c5) f� = 0. These last three are
called the side conditions (Lambe and Stasheff, 1987). In fact, these may always be
assumed to hold, since the homotopy � can be altered to satisfy these conditions
(Gugenheim and Lambe, 1989). These formulas have a simple interpretation: the
DG-module M , the small one, is isomorphic to a subDG-module of N , the big one,
and a decomposition N = M ⊕ L is given where the summand L is acyclic. This
implies that both chain complexes N and M have the same homology. We will also
denote a contraction c by �f� g� �� � N ⇒ M .

If we have two contractions �fi� gi� �i� from Ni to Mi, for i = 1� 2,
then the following contractions can be constructed (see Eilenberg and Mac Lane,



1953):

• The tensor product contraction �f2 ⊗ f1� g1 ⊗ g2� �1 ⊗ g2f2 + 1N1
⊗ �2� from

N1 ⊗ N2 to M1 ⊗M2;• If N2 = M1, the composition contraction �f2f1� g1g2� �1 + g1�2f1� from N1 to M2;

The Eilenberg–Zilber theorem (Eilenberg and Zilber, 1953) provides the
most classic example of a contraction of chain complexes. An Eilenberg–Zilber
contraction is defined in Eilenberg and Mac Lane (1954) by the data set

EZF�B � �CN �F × B�� CN�F�⊗ CN�B�� AWF�B� EMLF�B� SHIF�B��

where F and B are simplicial sets. The results of the present article depend heavily
on these morphisms. We follow May’s (1967) book for the terminology and
notation on Simplicial Topology.

One of the cornerstones of homological perturbation theory is the BPL. It
provides a beautiful way of unifying many disparate results in algebraic topology con-
cerning chain homotopy equivalences, and it can be used to find new results as well.

Now, we recall the concept of a perturbation datum. Let N be a graded
module and let f � N → N be a morphism of graded modules. The morphism f is
pointwise nilpotent if for all x ∈ N �x 
= 0�, a positive integer n exists (in general,
the number n depends on the element x) such that fn�x� = 0. A perturbation of a
DG-module N is a morphism of graded modules � � N → N of degree −1, such that
�dN + ��2 = 0 and �1 = 0. A perturbation datum of the contraction c � �N�M� f� g� ��
is a perturbation � of the DGA-module N verifying that the composition �� is
pointwise nilpotent.

A Transference Problem consists of a contraction c � �M�N� f� g� �� together
with a perturbation � of the DG-module N . The problem is to determine new
morphisms d�� f�� g�, and �� such that c� � ��N� dN + ��� �M� dM + d��� f�� g�� ��� is
a contraction.

The BPL (Brown, 1967; Gugenheim and Lambe, 1989; Gugenheim et al., 1991;
Real, 2000) gives an explicit solution to the Transference Problem, assuming that �
is a perturbation datum of c.

Theorem 2.1 (BPL). Let c � �N�M� f� g� �� be a contraction and � � N → N a
perturbation datum of c. Then, a new contraction

c� �
{
�N� dN + ��� �M� dM + d��� f�� g�� ��

}
is defined by the formulas: d� = f���

cg, f� = f�1− ���
c��, g� = ��

cg, �� = ��
c�, where

��
c =

∑
i≥0

�−1�i����i = 1− ��+ ����− · · · + �−1�i����i + · · · 	

Let us note that ��
c�x� is a finite sum for each x ∈ N , because of the pointwise

nilpotency of the composition ��. Moreover, it is obvious that the morphism d� is
a perturbation of the DG-module �M� dM�.

The Twisted Eilenberg–Zilber theorem can be seen as an important example
of the usefulness of this lemma (see Shih, 1962). It solves the Transference Problem



for twisted cartesian products. In the sequel we give the ingredients for a concrete
statement of this result.

Consider two simplicial sets F , B and a simplicial group G which operates on
F from the left. A twisted cartesian product E with fibre F , base B, and structural
group G consists of a simplicial set En = Fn × Bn and

�0�f� b� = ��b ∗ �0f� �0b�
�i�f� b� = ��if� �ib�� for i > 0

si�f� b� = �sif� sib�� for i ≥ 0

as face and degeneracy operators. Here ∗ � G× F → F is the action of G on F and
� is a twisting function, i.e., �n � Bn → Gn−1, n ≥ 1 satisfies

�0��b� = ����0b��
−1 · ���1b�

�i��b� = ���i+1b�� for i > 0

si��b� = ��si+1b�� for i ≥ 0

��s0b� = en�

where en denotes the identity element of the corresponding group Gn. We write
E = F ×� B.

Theorem 2.2 (Shih, 1962, Twisted Eilenberg–Zilber Theorem). The morphism

��f� b� = ��b ∗ �0f� �0b�− ��0f� �0b�� �f� b� ∈ CN�F × B�

is a perturbation datum of the contraction,

EZF�B � �CN �F × B�� CN�F�⊗ CN�B�� AWF�B� EMLF�B� SHIF�B�	

From these data a new contraction (called the twisted Eilenberg–Zilber contraction) is
obtained by applying BPL:

TEZF�B � �CN �F ×� B�� �CN �F�⊗ CN�B�� d
⊗ + d��� �AWF�B��� �EMLF�B��� �SHIF�B����

where the smaller chain complex consists of a twisted tensor product along the twisting
cochain t, CN�F�⊗t CN �B�, for t = p � d� � �

CN�B�
�−→ CN�G�⊗ CN�B�

d�−→ CN�G�⊗ CN�B�
p−→ CN�G�

where

��x� = e0 ⊗ x� e0 being the identity element of G0 and p�y ⊗ x� = y · CN �B�
x	

Hence,

d� = t∩ = �
CN �F�
⊗ 1��1⊗ t ⊗ 1��1⊗ �CN �B�

��

where 
CN �F�
is the module action induced by the the action ∗ � G× F → F .



3. THE MAIN THEOREMS

When solving problems in homological or homotopical algebra, one often
works with chain complexes with additional algebraic structure, e.g., chain algebras
or coalgebras. For instance, given a simplicial group G, one may define a product

CN �G� on CN�G�, called the Eilenberg–Mac Lane or Pontrjagin product, by composing
the Eilenberg–Mac Lane operator EMLG�G and the morphism of DG-modules
induced by the product on G, · � CN �G×G� → CN�G�. An explicit formula for this
morphism is


CN �G��xp ⊗ yq� =
∑
�����

�−1�sg�����
(
s�q 	 	 	 s�1xp · s�p 	 	 	 s�1yq

)
�

where the ��� �� index runs over all the �p� q�-shuffles. The pair �CN �G�� 
CN �G��

is a DGA-algebra, which is commutative whenever G is. Furthermore,(
CN�G�� 
CN �G�� �CN �G�

)
is a Hopf DGA-algebra where �CN �G� is the Alexander–

Whitney coproduct (see May, 1967, p. 138). It is natural to extend the notion of
contraction to the proper categories of such objects. Here, we are only interested in
the category of DGA-algebras.

Let A and A′ be two DGA-algebras. Given a contraction c � �A�A′� f� g� �� we
can distinguish different types of algebra contractions in function of the degree of
compatibility of the morphisms f� g and � with regards to the products 
A and 
A′ .
We say (see Real, 2000) that c is:

(i) A full algebra contraction if f and g are morphisms of DGA-algebras and � is
an algebra homotopy;

(ii) An almost-full algebra contraction if f and g are morphisms of DGA-algebras
and � is a quasi algebra homotopy;

(iii) A semi-full algebra contraction if f is a quasi algebra projection, g is a morphism
of DGA-algebras and � is a quasi algebra homotopy.

Here the projection f is said to be a quasi algebra projection if the following
conditions hold:

f
A��⊗ �� = 0� f
A��⊗ g� = 0� f
A�g ⊗ �� = 0	

The homotopy operator � is said to be a quasi algebra homotopy if the following
conditions hold:

�
A��⊗ �� = 0� �
A��⊗ g� = 0� �
A��⊗ �� = 0	

We also recall that � is called a homotopy algebra if

�
A = 
A�
�⊗2�

where ��⊗2� = 1⊗ �+ �⊗ gf	



One can immediately see that, in the context of algebra contractions, the
designation of full implies almost-full, as well as almost-full implies semi-full. Let us
observe that each of these classes is closed under composition and tensor product
of contractions. Examples of all these types of contractions appear in Real (2000).
Furthermore, some interesting properties concerning the relationship between these
categories are given in Real (2000). For instance,

Proposition 3.1 (Real, 2000). An almost-full algebra contraction c � �A�A′� f� g� ��
is a full algebra contraction if and only if �
A�1⊗ �� = 0	

The following result tells us that the set of semi-full algebra contractions is
closed under homological perturbation. This theorem is used in the proof of one of
the main theorems of this article.

Theorem 3.2 (Real, 2000, SF-APL). Taking as input data a semi-full algebra
contraction c � �A�A′� f� g� �� and an algebra perturbation datum � of c, the perturbed
contraction c� is a semi-full algebra contraction, where the product on A′

� is the original
product 
A′ .

Before stating one of the main results of this article, we recall that the cartesian
product of two simplicial groups G×G′ is again a simplicial group with the trivial
(internal) law for the group, so that the formula for the product 
CN �G×G′� on
CN�G×G′� is


CN �G×G′� = �· × ·��1× t × 1�EMLG×G′�G×G′ 	

Here operator t is defined so that it interchanges the components of a cartesian
product of simplicial sets: t�x× y� = y × x.

The next theorem yields an important example of an almost-full algebra
contraction which is not full in general. The proof that it is not a full algebra
contraction is by means of a construction of a particular cartesian product where
we show that �
A�1⊗ �� is not the null morphism. This example is included after
the proof of the following result.

Theorem 3.3. Let G and G′ be simplicial groups. The Eilenberg–Zilber contraction
associated to G and G′

EZG�G′ � �CN �G×G′�� CN �G�⊗ CN�G
′�� AWG�G′ � EMLG�G′ � SHIG�G′� (2)

is an almost-full algebra contraction.

Proof. For the sake of clarity we denote the projection, inclusion and homotopy
operators of the contraction (2) by f� g and �, respectively.

Under the hypothesis that G and G′ are commutative, Eilenberg and Mac Lane
(1954, Theorem 3.2) proved that the operators f and g are both morphisms of
DGA-algebras; that is, the following identities hold:

f
CN �G×G′� = 
CN �G�⊗CN �G
′��f ⊗ f�� g
CN �G�⊗CN �G

′� = 
CN �G×G′��g ⊗ g�	



This result may be extended to the noncommutative framework, as we show as
follows.

For f , this is immediate since a careful reading of the proof of Eilenberg–
Mac Lane shows that the commutative assumption is not used in this case.
However, Eilenberg–Mac Lane’s proof of the multiplicative behaviour of g uses the
commutative condition, so we have to take an alternative way. The following results
will lead us to the desired goal.

It is straightforward that if ��� �� is a �p� q�-shuffle, then ��� �� is a �q� p�-
shuffle. Furthermore, their respective signatures verify the following identity:

sg��� ��+ sg��� �� = pq	 (3)

In the sequel a denotes an element of Gp, a
′ denotes an element of G′

r and 1� 1′

denote the identity elements of G∗ and G′
∗, respectively, in the appropriate degree

such that all the cartesian products which appear below are well defined. As a
consequence of (3), we have


CN �G×G′���a× 1′�⊗ �1× a′�� = �−1�pr
CN �G×G′���1× a′�⊗ �a× 1′��	 (4)

Moreover, it may be readily checked that the following identity holds:


CN �G×G′���a× 1′�⊗ �1× a′�� = g�a⊗ a′�	 (5)

As it is shown in Eilenberg and Mac Lane (1954, p. 56), both the DGA-algebras
CN�G� and CN�G

′� may be considered as subalgebras of CN�G×G′�. In this way,
we sometimes identify some elements a and a′ with their correspondents a× 1′ and
1× a′, respectively. Furthermore, a rule connecting those products of the algebras
above is


CN �G��a⊗ b� = 
CN �G×G′���a× 1′�⊗ �b × 1′�� (6)

for any a ∈ Gp and b ∈ Gq. Analogously,


CN �G��a
′ ⊗ b′� = 
CN �G×G′���1× a′�⊗ �1× b′�� (7)

for any a′ ∈ G′
p and b′ ∈ G′

q.
Now it is possible to prove the multiplicative character of the inclusion

morphism g, that is,

g
(

CN �G�⊗CN �G

′���a⊗ a′�⊗ �b ⊗ b′��
) = 
CN �G×G′��g�a⊗ a′�⊗ g�b ⊗ b′���

where a ∈ Gp, b ∈ Gq, a
′ ∈ G′

r , and b′ ∈ G′
s. Working with the term on the left,

g
(

CN �G�⊗CN �G

′���a⊗ a′�⊗ �b ⊗ b′��
) = g

(
�−1�qr
CN �G��a⊗ b�⊗ 
CN �G

′��a
′ ⊗ b′�

)
(attending to (5), (6), and (7))

= �−1�qr
CN �G×G′�
(

CN �G×G′��a× 1′ ⊗ b × 1′�⊗ 
CN �G×G′��1× a′ ⊗ 1× b′�

)



(using the associativity of the product 
CN �G×G′� and (4))

= 
CN �G×G′�
(

CN �G×G′��a× 1′ ⊗ 1× a′�⊗ 
CN �G×G′��b × 1′ ⊗ 1× b′�

)
(by (5))

= 
CN �G×G′��g�a⊗ a′�⊗ g�b ⊗ b′��	

Then, we have just proved that both the projection and the injection operators
of the inicial Eilenberg–Zilber contraction are morphisms of DGA-algebras. It
remains to prove that the homotopy operator � is a quasi-algebra homotopy
in order to conclude that the Eilenberg–Zilber contraction from CN�G×G′� to
CN�G�⊗ CN�G

′� is an almost-full algebra contraction; that is,

�
CN �G×G′���⊗ �� = 0�

�
CN �G×G′���⊗ g� = 0�

�
CN �G×G′��g ⊗ �� = 0	

For the remainder of the proof A and A′ will denote CN
∗ �G×G′� and CN

∗ �G�⊗
CN

∗ �G
′�, respectively. Obviously, 
A and 
A′ denote their respective products.
We set up some definitions, notations, and remarks that will be used in the

sequel.

1. We deal with normalized chain complexes, so that zero means zero modulo
degeneracies. In other words, any linear combination of degenerate elements must
be considered zero.

2. A simplicial operator (or simplicial operator of groups) D of type �p� q�� p,
and q nonnegative integers, is a collection of maps (or homomorphisms) D�X� �
Xp → Xq, one for each simplicial set (or simplicial group) X, natural with respect
to simplicial maps (or simplicial homomorphisms). The integer p− q is called the
degree of D. In Szcsarba (1961, §1) it is proved that any simplicial operator D of
type �p� q� can be written uniquely as

D = sir 	 	 	 si1�js 	 	 	 �j1� (8)

where r − s = q − p, ir > ir−1 > · · · > i1� and js < js−1 < · · · ≤ p. In the case that D
is a simplicial operator of groups, Eilenberg and Mac Lance stated in Eilenberg and
Mac Lane (1953, §3) that D can be represented uniquely as a linear combination of
terms like (8) with integral coefficients.

Given a simplicial operator D of degree r − s in the form of (8) and initial
dimension p, the derived operator of D, denoted by D′, is the simplicial operator of
degree r − s and initial dimension p+ 1 given by raising all the indices by 1, i.e.,

D′ = sir+1 	 	 	 si1+1�js+1 	 	 	 �j1+1	

This definition is straightforwardly extended by linearity to simplicial operator
of groups.



Now, we give some of the main properties concerning to the “derivation”
extracted from Eilenberg and Mac Lane (1953, §3):

�0D
′ = D�0� s0D = D′s0� if �0 is not in D	

If D1 and D2 are simplicial operators of groups, then

�D1 +D2�
′ = D′

1 +D′
2� �D1D2�

′ = D′
1D

′
2� 0′ = 0� 1′ = 1� (9)

whenever the sum D1 +D2 or the composite D1D2 is defined.

3. We denote h = gf the morphism given by the composition of the injection
and projection morphisms of the Eilenberg–Zilber contraction.

4. Recall that f� g and � verify the following basic rules, from the definition
of contraction:

f� = 0� �g = 0� �� = 0� (10)

where the identities above are considered on normalized chain complexes.

5. Eilenberg and Mac Lane (1953, 1954) extended the notion of derivation
to g� h, and � in a natural way.

6. The homotopy operator � is recursively defined by the formula:{
�0 = 0� on zero degree

�n = −�
′
n−1 + h

′
ns0� on n > 0 degree

(11)

as it is shown in Eilenberg and Mac Lane (1954).

7. Eilenberg–Mac Lane also proved that the injection operator verifies the
rule:

g = g′�s0 ⊗ 1+ 1⊗ s0�	 (12)

Furthermore, it is easy to check that the following identities hold:

s0g = g′�s0 ⊗ s0�� (13)

s0� = �′s0	 (14)

8. It follows at once from (10) and (11) that:

f�′ = fh′s0� (15)

since, f� = 0 ⇒ 0 = f�−�′ + h′s0� = −f�′ + fh′s0	

Attending to the remarks above, we are now able to prove that the homotopy
operator � constitutes a quasi-algebra homotopy. Firstly, we prove that

�
A��⊗ g� = 0	 (16)



The proof is by induction on the degree of the homotopy operator � placed on the
left.

On degree one the identity (16) is verified by definition, attending to (11):

�1
A��0 ⊗ g0� = 0	

Let us suppose that (16) is satisfied on degree k, for all k less than n. Our aim is
to verify the corresponding identity on degree n. In order to apply the induction
hypothesis, we use (11) to substitute �n by −�

′
n−1 + h

′
ns0.

Recall that the product 
A = 
CN �G×G′� is defined by,


A = �· × ·��1× t × 1�gG×G′�G×G′

in terms of the Eilenberg–Zilber operator. The notation ḡ = gG×G′�G×G′ simplifies the
reading and writing for the remainder of the article.

Hence, the formula (16) on degree n can be rewritten as:

�n
A��⊗ g� = �−�
′
n−1 + h

′
ns0�
A��−�′ + h′s0�⊗ g�

= �−�
′
n−1 + h

′
ns0��· × ·��1× t × 1�ḡ

′
n−1

×�s0 ⊗ 1+ 1⊗ s0���−�′ + h′s0�⊗ g�

= �
′
n−1�· × ·��1× t × 1�ḡ

′
n−1�s0�

′ ⊗ g�

− �
′
n−1�· × ·��1× t × 1�ḡ

′
n−1�s0h

′s0 ⊗ g� (17)

+ �
′
n−1�· × ·��1× t × 1�ḡ

′
n−1��

′ ⊗ s0g� (18)

− �
′
n−1�· × ·��1× t × 1�ḡ

′
n−1�h

′s0 ⊗ s0g� (19)

+ h
′
ns0�· × ·��1× t × 1�ḡn��⊗ g�	 (20)

In the sequel we shall prove that each of these summands vanish modulo
degeneracies.

• On one hand, since �0 � �′, it follows at once that s0�
′ = �′′s0; taking derived

operators in (11),

�′ = −�′′ + h′′s1 ⇒ �′′ = −�′ + h′′s1 ⇒ �′′s0 + �′s0 = h′s1s0	

On the other hand, since �0 � h′, it is verified that s0h
′s0 = h′′s1s0. Thus, �′′s0 +

�′s0 = s0h
′s0	

Hence, on substituting the value of s0h
′s0 into (17) and carrying out the indicated

additions, it can be rewritten as

−�
′
n−1�· × ·��1× t × 1�ḡ

′
n−1��

′s0 ⊗ g�

(using (12)),

= −�
′
n−1�· × ·��1× t × 1�ḡ

′
n−1��

′s0 ⊗ g′�s0 ⊗ 1+ 1⊗ s0���



taking into account that �
′
n−1�· × ·��1× t × 1�ḡ

′
n−1��

′ ⊗ g′� = ��n−1
A��⊗ g��′ by
the definition of 
A and the second property of (9). Now using the induction
hypothesis and the third property of (9),

��n−1
A��⊗ g��′ = 0	

Hence, the summand (17) vanishes as desired.
• The fact that (18) is also zero follows at once from the identity s0g = g′�s0 ⊗ s0�

and the induction hypothesis.
• Taking into account that g is a DGA-algebra morphism and the property �g = 0,

we conclude that

�
A�g ⊗ g� = 0�

and as a straightforward consequence �′
′
A�g

′ ⊗ g′� = 0. Furthermore, it is
verified that

h′ = g′f ′ and s0g = g′�s0 ⊗ s0�	

Using these identities and following similar arguments to those for the summands
before, we conclude that the summand (19) vanishes as well.

• Concerning the summand (20) the process is slightly more complicated. It is easy
to check that

h′s0�· × ·��1× t × 1�ḡ��⊗ g� = h′�· × ·��1× t × 1�s0ḡ��⊗ g�

= h′�· × ·��1× t × 1�ḡ′�s0 ⊗ s0���⊗ g�

= h′�· × ·��1× t × 1�ḡ′�s0�⊗ s0g�	 (21)

The identity

h
A = gf
A = g
A′�f ⊗ f�

follows at once from the fact that the projection operator f is a morphism of
DGA-algebras. Now, considering derived morphisms

h′�
A�
′ = g′f ′�
A�

′ = g′�
A′�′�f ′ ⊗ f ′��

that is,

h′�· × ·��1× t × 1�ḡ′ = g′�
A′�′�f ′ ⊗ f ′�	 (22)

By (11),

s0� = s0�−�′ + h′s0� = −�′′s0 + h′′s0s0 = −�′′s0 + h′′s1s0� (23)

since �0 � �′, �0 � h′, and s0s0 = s1s0.



On the other hand,

f ′�−�′′s0 + h′′s1s0� = −f ′�′′s0 + f ′h′′s1s0

= �−f ′�′′ + f ′h′′s1�s0

= �−f�′ + fh′s0�
′s0	 (24)

Combining (21), (23), (22), (24), and (13) the summand (20) can be rewritten as

g′�
A′�′��−f�′ + fh′s0�
′ ⊗ f ′g′��s0 ⊗ �s0 ⊗ s0��	 (25)

Next we prove

g
A′ ��−f�′ + fh′s0�⊗ fg� = 0� (26)

and as a direct consequence simply taking derived operators we have that (25)
vanishes too.

By (15),

−f�′ + fh′s0 = 0� (modulo degeneracies)

and the product 
A′ maps degeneracies into degeneracies, since


A′ = �
CN �G� ⊗ 
CN �G
′���1⊗ T ⊗ 1� = �· ⊗ ·��gG ⊗ gG′��1⊗ T ⊗ 1��

and the injection operator g maps degeneracies into degeneracies (see Eilenberg and
Mac Lane, 1953, Lemma 5.3). Thus, (25) is satisfied. This completes the proof of
(16).

The identities,

�
A�g ⊗ �� = 0 and �
A��⊗ �� = 0

are proved in an analogous way to (16). �

Next, we give an example of a commutative simplicial group G where the
homotopy operator of the Eilenberg–Zilber contraction associated to G×G is not
an algebra homotopy.

Example 3.4. Let us consider

EZG�G � �CN �G×G��CN�G�⊗ CN�G�� f� g� �� (27)

where G is the Eilenberg–Mac Lane complex of type �Z� 1�, denoted by K�Z� 1�,
described in terms of the classifying complex �W� as a commutative simplicial group
(see May, 1967, Theorem 23.2).

• By Theorem 3.3, (27) is an almost-full contraction.
• It is easy to check that �
CN �G×G��1⊗ �����a�× �b��⊗ ��a�× �b��� 
= 0 (module
degeneracies).



By applying Proposition 3.1, we conclude that (27) is not a full algebra
contraction.

Remark 3.5. In general, the Eilenberg–Zilber contraction associated to two
simplicial groups is not a full algebra contraction.

Let prove now that the twisted Eilenberg–Zilber contraction associated to
two simplicial groups is a semi-full algebra contraction. We need some preliminary
results which will be essential in the proof.

Let ��� �� be a �p� q�-shuffle. If �1 = 0, i.e., ��� �� = �0� �2� 	 	 	 � �p� �1� 	 	 	 � �q�,
then �̄ denotes the set obtained from � by omitting �1 = 0, i.e., �̄ = ��2� 	 	 	 � �p�; in
analogous way, �̄ may be defined. The notation �− 1 defines the set obtained from
� by subtracting 1, i.e., �− 1 = ��1 − 1� 	 	 	 � �p − 1�; the term � − 1 is analogously
defined.

Lemma 3.6 (May, 1967). Using the notations above:

1. Let ��� �� be a �p� q�-shuffle, with �1 = 0. Then, ��̄− 1� � − 1� becomes a �p− 1� q�-
shuffle and sg��̄− 1� � − 1� = sg��� ��. Furthermore, every �p− 1� q�-shuffle may be
constructed in this way.

2. Let ��� �� be a �p� q�-shuffle, with �1 = 0. Then, ��− 1� �̄ − 1� is a �p� q − 1�-shuffle
and sg��− 1� �̄ − 1� = sg��� ��+ p. Furthermore, every �p� q − 1�-shuffle may be
constructed in this way.

Proposition 3.7. Let �G� ·�, �G′� ·� and G′′ be three simplicial groups, G′′ operating
on the left of G via ∗, and � � G′ −→ G′′ be a twisting function. The following conditions
are equivalent:

• The twisted cartesian product of fibre G, base G′, group G′′ and twisting function �

is a simplicial group with regards to the group multiplication of the banal cartesian
product, G×G′ (i.e., the trivial group multiplication).

• The identity

��a′ · b′� ∗ ��0a · �0b� = ��a′ ∗ �0a� · ��b′ ∗ �0b� (28)

is verified, for all �a� a′� and �b� b′� in G×G′.

Proof. The only difference between the simplicial sets G×� G
′ and G×G′ is the

definition of the zero face operator. Hence, G×� G
′ is a simplicial group if and only

if the rule

�0��a� a
′� · �b� b′�� = �0�a� a

′� · �0�b� b′� (29)

is satisfied.
Expanding the left term of the equation (29)

�0��a� a
′� · �b� b′�� = �0�a · b� a′ · b′� = ���a′ · b′� ∗ ��0a · �0b�� �0a′ · �0b′�	



The right term of (29)

�0�a� a
′� · �0�b� b′� =

(
��a′ ∗ �0a� · ��b′ ∗ �0b�� �0a′ · �0b′

)
	

Hence, the identity (29) is verified if and only if

��a′ · b′� ∗ ��0a · �0b� = ��a′ ∗ �0a� · ��b′ ∗ �0b�	 �

Theorem 3.8. Let �G� ·�, �G′� ·� and G′′ be three simplicial groups, G′′ operating on
the left of G and � � G′ −→ G′′ be a twisting function such that the twisted cartesian
product of fibre G, base G′, group G′′ and twisting function � constitutes a simplicial
group with regards to the trivial group multiplication. Then, the morphism

� � CN �G×G′� −→ CN�G×G′��a� a′� −→ ��a� a′� = ��a′ ∗ �0a� �0a′�− ��0a� �0a
′�

is an algebra perturbation datum for the Eilenberg–Zilber contraction

EZG�G′ � �CN �G×G′�� CN �G�⊗ CN�G
′�� AWG�G′ � EMLG�G′ � SHIG�G′�	

Proof. Theorem 2.2 ensures that � is a perturbation datum for EZG�G′ 	 So it
remains to prove that � is a derivation; that is,

�
A = 
A�1⊗ �+ �⊗ 1��

where 
A denotes the Eilenberg–Mac Lane product on CN�G×G′�.
For the remainder of the proof �a� a′� and �b� b′� denote an element in

�G×G′�p and in �G×G′�q, respectively.
On one hand,

�
A��a� a
′�⊗ �b� b′�� = �

( ∑
�����

�−1�sg������s�a · s�b� s�a′ · s�b′�
)

the sum being taken over all �p� q�-shuffles ��� ��

= ∑
�����

�−1�sg��������s�a
′ · s�b′� ∗ �0�s�a · s�b�� �0�s�a′ · s�b′��

− ∑
�����

�−1�sg�������0�s�a · s�b�� �0�s�a′ · s�b′��

according to (28)

= ∑
�����

�−1�sg��������s�a
′ ∗ �0s�a� · ��s�b′ ∗ �0s�b�� �0s�a′ · �0s�b′�

− ∑
�����

�−1�sg�������0s�a · �0s�b� �0s�a′ · �0s�b′�

= ∑
�����

�1=0

�−1�sg������s�̄−1a · �s�−1�b
′ ∗ s�−1�0b�� s�̄−1a

′ · s�−1�0b
′� (30)



− ∑
�����

�1=0

�−1�sg������s�̄−1a · s�−1�0b� s�̄−1a
′ · s�−1�0b

′� (31)

+ ∑
�����

�1=0

�−1�sg�������s�−1�a
′ ∗ s�−1�0a� · s�̄−1b� s�−1�0a

′ · s�̄−1b
′� (32)

− ∑
�����

�1=0

�−1�sg������s�−1�0a · s�̄−1b� s�−1�0a
′ · s�̄−1b

′�	 (33)

On the other hand,


A�1⊗ �+ �⊗ 1���a� a′�⊗ �b� b′��

= 
A��−1���a�a
′���a� a′�⊗ ���b′ ∗ �0b� �0b′�− ��0b� �0b

′���

+ 
A����a
′ ∗ �0a� �0a′�− ��0a� �0a

′��⊗ �b� b′��

= 
A��−1�p�a� a′�⊗ ��b′ ∗ �0b� �0b′��− 
A��−1�p�a� a′�⊗ ��0b� �0b
′��

+ 
A���a
′ ∗ �0a� �0a′��⊗ �b� b′��− 
A���0a� �0a

′�⊗ �b� b′��

= ∑
����̂�

�−1�p+sg����̂��s�̂a · �s��b′ ∗ s��0b�� s�̂a′ · s��0b′� (34)

− ∑
����̂�

�−1�p+sg����̂��s�̂a · s��0b� s�̂a′ · s��0b′� (35)

+ ∑
��̂���

�−1�sg��̂�����s��a
′ ∗ s��0a� · s�̂b� s��0a′ · s�̂b′� (36)

− ∑
��̂���

�−1�sg��̂����s��0a · s�̂b� s��0a′ · s�̂b′�	 (37)

The sums being taken over all �p� q − 1�-shuffles ��� �̂� and �p− 1� q�-shuffles ��̂� ��,
respectively.

By Lemma 3.6, (30) and (34), (31) and (35), (32) and (36), (33) and (37)
coincide two against two. �

Theorem 3.9. Let G′′ be a simplicial group operating on the left of G and � � G′ →
G′′ be a twisting function such that the TCP G×� G

′ is a simplicial group with regards
to the trivial group multiplication. Then, the contraction associated to G×� G

′ by
applying Theorem 2.2 is a semi-full algebra contraction.

Proof.

• Theorems 3.3 and 3.8 state that EZG�G′ is an almost-full algebra contraction and
� is an algebra perturbation of this contraction, respectively.

• Theorem 2.2 states that EZG�G′ contraction can be perturbed into TEZG�G′ taking
� as perturbation datum.

Hence, using Theorem 3.2, we obtain the desired conclusion. �



4. AN EXAMPLE

In the next example we show how it is possible to take advantage of the
multiplicative properties of the chain complexes in order to compute homological
models for some special fiber bundles in an economical way. Concretely, we work
with the TCP induced from K�Z2� 1�×� K�Z2� 2� by the group endomorphism
f � Z → Z2.

In the sequel we follow the iterative simplicial description of K��� n� in terms
of the classifying complex (W ) given in May (1967, Theorem 23.2).

Given

K�Z2� 2�
�−→ K�Z2� 1�((

gn−1
n−2� 	 	 	 � g

n−1
0

)
� 	 	 	 � �g10�� � �

) −→ (
gn−1
n−2� 	 	 	 � g

n−1
0

)
� g

j
i ∈ Z2

the universal (principal) TCP K�Z2� 1�×� K�Z2� 2� is defined. Now, making use
of the (natural) extended simplicial group homomorphism f � K�Z� 2� → K�Z2� 2�
from the group homomorphism f � Z → Z2, we can consider the principal TCP

E = K�Z2� 1�×�f K�Z� 2�

induced from K�Z2� 1�×� K�Z2� 2� by f . It is a simple matter to prove that E is a
simplicial group. Hence, by Theorem 3.9,

CN�K�Z2� 1��⊗t CN �K�Z� 2��

is a DGA-algebra with the same product as that of CN�K�Z2� 1��⊗ CN�K�Z� 2��.
Thus, t∩ is a derivation.

On the other hand, combining the results of Eilenberg and Mac Lane
(1953, 1954) and Real (2000) the following semi-full algebra contractions can be
established

CN�K�Z2� 1�� ⇒ E�u1� 1�⊗ ��v1� 2�

where d��j�v1�� = 2u1�j−1�v1�. (The last one is, actually, almost-full).
And

CN�K�Z� 2�� ⇒ ��v2� 2�	

Here E�u� 1� denotes the exterior algebra with one generator u in degree 1 and
��v� 2� denotes the divided power algebra with one generator v in degree 2.

With this information at hand, it is immediate to establish

CN�K�Z2� 1��⊗ CN�K�Z� 2�� ⇒ �E�u1� 1�⊗ ��v1� 2��⊗ ��v2� 2�	 (38)

This contraction can be perturbed into

CN�K�Z2� 1��⊗t CN �K�Z� 2�� ⇒ ��E�u1� 1�⊗ ��v1� 2��⊗ ��v2� 2�� d
⊗ + dt∩� (39)



taking t∩ as the perturbation datum. The pointwise nilpotency condition is
guaranteed using the standard filtration on CN�K�Z2� 1��⊗ CN�K�Z� 2�� since
CN�K�Z2� 1�� is reduced.

Let us observe that (38) is a semi-full algebra contraction and t∩ is an algebra
perturbation of this contraction. Then, by Theorem 3.2, the contraction (39) is semi-
full, hence dt∩ is a derivation. In particular, this mean that the right hand of (39) is a
DGA-algebra. This fact has important consequences in order to compute dt∩ on the
whole set of additive generators of the homological model (as a module). By BPL,
we have

dt∩ = f�t∩��t∩
c g (40)

by direct computation we obtain

dt∩��1�v2�� = u1	

Taking into account that

�i�v2��j�v2� =
(
i+ j
i

)
�i+j�v2�

and dt∩ is a derivation, we have

dt∩��j�v2�� = u1�j−1�v2�	

By a similar argument we can calculate dt∩ on any additive generator of the module;
in this way, it is easy to see that dt∩ is null on all additive generators except on
�j�v2�.

Summing up, in order to compute dt∩ over all additive generators of the
module, we only use the formula (40) over the generators of the algebra: u1� v1, and
v2; for the remaining additive generators we use the multiplicative property of dt∩.
Let us observe that this represents an economical alternative way to the formula
(40) for computing dt∩.
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