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RESUMEN 

La radiación solar es la única fuente de energía renovable de la que disponemos in-
mediatamente en cualquier edificio del planeta. Otras energías como la eólica, podrían 
no ser útiles en función de la disposición urbana, la geografía o el clima local. Sin em-
bargo, cualquier estancia que comporte una residencia permanente de personas ha de 
incluir aperturas al exterior a través de las cuales ingresará inevitablemente la radiación. 
Para su aprovechamiento, por tanto, no es preciso realizar ninguna inversión especial 
sino simplemente tener en cuenta este fenómeno mediante las herramientas científicas 
apropiadas que deseamos presentar en la siguiente conferencia, puesto que son poco 
conocidas entre la comunidad científica. 

Debido al grave problema energético mundial, del que responden en muy alto grado 
las edificaciones, hemos considerado que las nociones de transferencia radiante lumi-
nosa que vamos a aportar partiendo de los postulados de la óptica geométrica, resultarán 
valiosas para la ciencia y la arquitectura y generarán beneficios en la sociedad. 

l. INTRODUCTION 

Solar radiation is the only renewable energy source readily available at every build-
ing in the world. Whilst urban regulations and meteorological or geographical factors 
often impede proper ventilation, to designa building without at least a view of the sur-
roundings is tantamount to making plans for a prison or a tomb, and no culture would 
accept that as a permanent residence. Thus, the necessary connections with the environ-
ment are provided by apertures through which radiation is admitted. 

Since antiquity, a multitude of researchers and scientists have striven to find the 
magnitude of solar radiation incident on a horizontal surface at the earth's crust. A 
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few of them have found adroit correlations between horizontal and vertical irradiation. 
These seem acceptable for the analysis of building facades since direct measurements 
are in many cases not feasible due to obstructions, interferences with ground reflection 
or simply because of economic constraints. 

However, it is still surprising how few scholars are familiar with the distribution of 
such radiation inside the chambers, precisely where it should be used. To be sure, if 
one wants to transfer a certain amount of energy to human beings, the task needs to be 
accomplished piecemeal, or the consequences could be devastating as, unfortunately, 
everybody knows.

In the ensuing chapter, the author would try to explain the fundamentals of radiative 
energy transfer, a discontinued branch of geometric optics that colligates time, space 
and architecture in a single operation. The author would also try to ensure that every 
person is able to reproduce his experiments at home by virtue of computer simulation 
and analysis. 

2. RADIATIVE TRANSFER BETWEEN SPHERICAL SURFACES 

Let us start by discussing radiative exchanges in simple volumes. The sphere is a 
volume enclosed by only one surface and with sorne restrictions it is used both in en-
gineering and architecture. If the inner surface of the sphere emits under Lambertian 
diffusion, the total fraction of energy reaching the samc surface will be one hundred 
percent, that is: the unity. 

In mathematical terms this is expressed as: 

(1) 

The fraction of energy leaving surface 1 and arriving at surface 1, is one. The former 
gives rise to a new algebra defined by: 

F.2 + ... +F. =l 1 1 1n 
(2) 

In a closed volume, by the principie of energy conservation, and disregarding trans-
mission losses, radiant energy emitted by surface i is necessarily distributed in its en-
tirety among the surrounding surfaces. As an example, in a cube, where all faces are 
equal, the fraction of energy leaving from an intemal source to any of the other five is 
115=0.2. 

As the radiant flux is originated in a given surface and bears only nominal relation-
ship with the medium in which the phenomena take place, the distribution of such flux 
will be a function of the dimensions of the surfaces involved. Thus we could anticipate 
a second and final property for our algebra (Lambert, 1764). 

A .*F.. = A .*F .. 1 IJ J JI 
(3) 
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Where A . is the area of surface i and F is the fraction of energy that leaves i and 
1 ~ 

reaches J. 
Retuming to the sphere, it is easy to see that although interior radiation may occur, 

unless we are able to pierce the surface by meaos of sorne kind of section, interaction 
with the environment remains negligible. Any planar section of the sphere will produce 
a spherical cap with a circular base that works as an aperture. (See Figure 1 ). 

The size of the aperture is determined by the height of the cap, h. Beginning with the 
case of a hemisphere, the said height coincides with the radius of the sphere R=a=h. 

FIG.1 
SURFACES GENERATED BY A SPHERICAL CAP 

In this situation, there are two surfaces involved in the radiation problem. Let us ap-
ply the former algebra to them. 

If for the whole sphere F
11 

=l, taking into account the dependence on area of radia-
tive transfer, it is assumed that for the hemisphere F 11= 1/2= 0.5 , and the demonstration 
will be given later in the text. 

By equation (2) the former also implies that F 12 = 0.5. Thus, half of the flux of the 
hemisphere is distributed over itself and the other half is ceded to the circular base that 
serves as an aperture of the sphere. 

In accordance with this reasoning, for a cap whose area equals one third (1 /3) of the 
whole surface, F

11 
= 1/3 and F12 = 2/3 and so on. 

When the respective areas of surfaces 1 and 2 are introduced, the fraction of energy 
that leaves 1 and arrives at 2 equates the area-ratio of such potential sources. In this way, 
equation 3 is proved if we remember that, for the spherical cap, F21 has to be one. The 
circle is a planar figure and gives one hundred percent of its energy to the surrounding 
cap. 

ª2 
+ 

It is inferred that F11 = 1- F 12 , and its value would be, 

F =-- -
11 + 
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Substituting into equation 5, the trigonometric relation for the radius of the sphere, 
R, 

a2 +h2 = 2 R h (6) 

We obtain an extremely important and beautiful expression, 

h 
(7) 

Thus, by simple logic, and with hardly any calculus, the author has solved for the 
first time in this field one of the most complex integral equations of environmental sci-
ence (Eq. 8). 

(8) 

Where is the radiative flux exchange between the surfaces considered, and 
is the radiant energy emitted by surface l. The relative ease of the solution is partly due 
to the fact that the quantities termed cos8., which represent the cosines of the angles 

1 

between the line going from the center of surface 1 to the center of surface 2 and their 
respective normals, are simpler to find in this case as the said normals always pass 
through the center of the sphere. 

It is convenient to use the former results in an ample variety of ways. 
For instance, if the aforementioned division of the sphere is performed by means 

of two planar sections, like in a quarter of sphere (see Figure 2), the solutions are still 
valid, in the sense that the quarter of a sphere is giving itself one fourth of its emissive 
power F33 =1/4. 

FIG. 2 
SURFACES GENERATED BY A QUARTER OF A SPHERE 

As we already found, the two semicircles receive in total 3/4 of the flux, but provided 
that they are of equal area, each one of them receives 3/8= F

32 
= F31• 
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Thus, equation 2 is fulfilled. 
By equation 3, the so-called principie of reciprocity, F13 = 

F 
31 

And this implies that F
12 

= F
21 

=1/4 
A second complex integral equation has been solved by the author without calcu-

lus. 
In a similar manner, adjusting the fragment of sphere which the problem may de-

mand, the radiative exchange between semicircles with a common edge, forming any 
angle from O 'to 180 degrees, can be found. The above example is valid for 90 degrees. 

The author has been the first to propose the following equation, previously unheard 
of in the literature, to obtain the energy balance between the said semicircles, where x 
represents the value of the interna! angle (Fig. 3), 

X X 2 

F =1--+---
11 90 32400 

(9) 

FIG.3 
RADIATIVE EXCHANGES BETWEEN TWO SEMICIRCLES WITH A COMMON EDGE ANO 

FORMING AN INTERNAL ANGLE x 
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So far so good. The former expression solves a whole set of integral equations and 
anybody can understand how the radiant flux is transferred from circular or semicircular 
apertures to the interior of the sphere as a total fraction. However, it is often useful to 
examine thi-s transfer in more detail, i.e. point by point. 
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2.1. Radiative Transfer between spherical surfaces and points 

FIG.4 
DIFFERENTIAL SURFACES IN THE SPHERE USED TO FINO THE RADIATIVE EXCHANGE 

Referring again to the sphere in respect with the canonical equation 8; if you look at 
figure 4, it is easy to find the relationship between r, cos8 and the radius of the sphere 
R. 

(10) 

is obviously the area of the sphere. Thus, the radiative flux transfer is de-
pendent on the size of the surfaces but not on their position on the sphere and for a given 
area it is also a constant. 

Those properties are unique to the spherical surface and also crucial for our discus-
s1on. 

At this point, if we retum to the spherical cap described in figure 1, there the flux 
from the cap to the circle was defined. However, assuming this circle to be virtual or, in 
other words, transparent to radiation, what remains behind is simply the opposite cap of 
the sphere, now called surface 2 for convenience. 

The fraction of energy emitted from 1 to the new surface 2 is the same as in equation 
4, but the energy received by surface 2 is F2 1, and we can obtain it from the theorem of 
reciprocity finding the ratio between the respective areas. 

The area of surface 2 is, 

A2 = 2 * * R * (2 * R h) (11) 

F =-------
2 1 

(12) 

And from equation 6, 

a2 = h * (2 * R h) (13) 
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(14) 

(15) 

This equates the fraction defined as F , 1 for the spherical cap. Let us see it depicted 
in a different graph (Figure 5). 

FIG.5 
CAP AND SPHERE WHERE THE RADIATIVE EXCHANGE TAKES PLACE 

s 

In figure 5, the cap S goes from A to B and its area is *h, as mentioned above 
(Eq. 6). Dividing the former by the total area of the sphere according to equation 10, 
the result is as shown in Equations 7 and 15. That is, the energy received at any point 
of the interior sphere wall outside the spherical cap S is constant, h/2*R. This is often 
expressed as 1/2*(1 -cosa) or 

With the former property we can replace the cap source by its enclosed circle AB. 
Radiant energy due to the spherical cap or the said circle, in a direction normal to 

the interior of the sphere, is constant but it is mandatory not to forget that radiation is 
in truth a vector, meaning that its projection on different planes may present diverse 
values. 

Finding the radiation vector that originates in the cap source poses no particular 
problem (See Figure 6). For reasons of symmetry, its centre has to be at point Q, fol -
lowing the well-known principie of the circumference by virtue of which, equal ares 
subtend equal angles 1• 

l . Both MacA!lister and Sumpner failed to see this point and located the origin of the vector al the centre of 
the enclosed circle, though this error may be relevant for sizeable sources. 
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FIG. 6 
THE RADIATION VECTOR IN A SPHERE 

a 
A 

o E Eh E 

The extreme of the vector lies at the point under study. If the direction of the vector 
is known, it only remains to calculate its modulus. Using trigonometric properties, as 
the normal is constant, this implies that the vertical component equates the normal 
for the value of direction angle is a half of the angle subtended by the are OP from 
the centre of the sphere, being P the point under study and O the horizontal projection 
of the centre. 

Thc last step to determine the modulus of the vector is to project its vertical compo-
nent h/(2*R) onto the horizontal plan, multiplying by the tangent of 8. 

The fact that the vertical component is constant has led to the construction of useful 
graphs in which horizontal radiation at a point is obtained as a function of the 
radius of the cap's base and the distance from the circle's centre to the point considered 
(See figures 7 and 8). 

FIG. 7 
PERPENDICULAR COMPONENT OF THE RADIATION VECTOR UNDER A DISK 

b 
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If the said quantities are known, the coordinate component which is constant 
only for the same height over the horizontal in the sphere, in other words, by parallels, 
can be found employing the circumference's properties. 

( = + 

h = a2 

(1 6) 

( 17) 

And the vertical distance from the origin of the radiation vector to the point consid-
ered is, evidently, 

d=b+h ( 18) 

FIG. 8 
THE MACALLISTER GRAPH FOR FINDING THE VERTICAL COMPONENT OF RADIATION, 
USING ONLY THE MAGNITUDES ON FIGURE 7 AND WITHOUT NEED FOR CALCULATION 
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To obtain the vectorial field of radiation around a spherical cap source or its equiva-
lent disk (the final aim of radiative transfer and simulation for such common geometry) 
is tantamount to finding a set of virtual spheres which contains both the source and 
each one of the points considered in the reticule that represents the field. From this set 
we extract the components and consequently the radiation vector at each point of the 
domain analysed. 

The author has created original software that simulates the aforementioned fields 
for planes, spheres and cylinders at every possible inclination angle in spherical coordi-
nates, or sorne results are presented in figures 9 and 1 O. 

FIG. 9 
DISTRIBUTION OF RADIATION ON A SPHERE OF RADIUS 20 M. AND REFLECTAN CE 0.3, 

UNDER THREE CIRCULAR SOURCES OF 9 M. DIAMETER AND 10000 LUMEN/M2 (LUX) 
INTENSITY, ROTATED 120º 

SPHERE I MEAN=489.1125 MIN=1 JMC lLAINEZ 
1000 

FIG.10 
THE SAME THREE SOURCES AS IN FIG. 9 BUT RADIATION VALUES ARE FOUND INSTEAD 

ON A CIRCULAR DISK 7.5 METRES UNDER THE CENTRE OF THE SPHERE 

SPHERE 2 MEAN=7D9.7013 MAX=1837.1995 MIN=231 .2B74 (LUX) 2011 I JMC LAINEZ 
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On the understanding that radiation fields are additive due to their vectorial nature, 
the author has solved with ease the fundamental problem of radiative transfer. To be 
sure, not all the openings I in buildings are circular but a significant amount of them can 
be approximated to one or several emitting disks with sufficient precision, taking into 
account the inevitable lack of accuracy in the construction industry. In any case, the 
author has adapted his software to triangular and rectangular apertures but in the latter 
situation, solutions are not simple and require complex integration2

. 

\ 

2.2. Radiative Transfer between complex surf aces 

Once this matter is settled, retrieving the fundamental equation expounded at 8 to be 
partly solved in 10 and extending it to a second spherical cap as in figure 11, the radiant 
flux between the two caps of heights and h2 is, 

bl l 2 (19) 

For the area of the second cap is nothing but *h2 • 

FIG.11 
TWO SPHERICAL CAPS INSIDE A SPHERE EMPLOYED TO FIND THE RADIATIVE 

TRANSFER 

o 

In the special situation that = h
2 

= h, which often coincides with parallel disks of 
equal radius a, the flux would be and the fraction of energy from disk 1 to disk 
2 (or their surrounding caps), equates h2/a2 • 

l. The word "open" comes from ancient Greek (opeh), meaning eye. The main aperture or vent in classic 
buildings is often termed "opaion" or "oculus", its latin equivalent. 

2. As a matter of fact only J. H. Lambert was capable of finding a solution for perpendicular rectangles with a 
common edge without the help of integration, but he often complained in his book of the "insurmountable difficul-
ties" that the process entailed. 
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If only the perpendicular distance between the disks, called 2b, is known (see figure 
12), the height of the cap would be, 

h a2 b 

Thus, the fraction is obtained as, 

FIG.12 

(20) 

(21) 

SURFACES DEFINED BY A CYLINDRICAL VOLUME USED TO FIND THE RADIATIVE 
TRANSFER 

3 

(T\, 
\ 

1 
. ) 

J 

With the former expression, solving the radiative transfer inside cylinders is easy 
as there are only three surfaces involved and we can form a non-trivial system of two 
equations with two unknowns. Changing the circular base of the cylinder by a spherical 
cap (fig.13) will alter sorne values but not the general problem because all the possibili-
ties of transfer between caps and disks have already been explored. Por instance, if the 
cap is a hemisphere, the values of the factors to the disk and the cylinder need to be 
affected by +h2)=0.5 (Eq. 4), and progressively until reaching one which is again 
the planar disk1• 

The resulting volume in figure 13 has been used by humankind for centuries; mainly 
in churches but also in libraries, concert halls, banks, markets or pavilions of any sort. 
With another cap on the base, the form is more recently used for silos, fluid reservoirs 
and containment vessels at power stations. 

Having solved the primary transference problems, the following step is the important 
subject of interreflections. 

1. Note that values under 0.5 can also be found for this relationship in a sort of globular cap with an area bigger 
than the hemisphere. 
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FIG.13 
VOLUME COMPOSED OF A CYLINDER ANDA SPHERICAL CAP USED TO FIND THE 

RADIATIVE TRANSFER AMONG THOSE SURFACES 

3. JNTEREFLECTIONS AMONG SURFACES IN A VOLUME 

Thus far, we have considered that energy is transferred from a primary source to 
several secondary ones. However this procedure <loes not <leal with the fact that the 
receiving sources, being partially absorptive, may in tum become ernitters. 

In this situation, the total balance of energy is obtained by equation 22, 

E +E rot d,r ref 
(22) 

Where represents the energy directly received and is the reflected energy. 
These two terms added give the total balance of radiative energy When more than 
one surface is involved, expression 22 generates a system of equations. In order to solve 
it, it is useful to define a priori two similar matrices and without physical entity, 
whose elements would be as follows, (for a volume contained by three surfaces like the 
one depicted in figure 13): 

* * * * 
* * o 

(23) 

( 1 
* 

F= * 1 * r 

-F * p * 1 31 l 

(24) 
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Where F. are the radiative exchange fractions or factors from surface i to surface 
lj 

j found previously, and is a new term, defined as the coefficient of diffuse or direct 
refl.ection which can be attributed to surface i. It can be obtained as the quotient between 
the energy received and the energy effectively emitted. 

This is the reason why in matrix described at 23, the element in column 3, row 3, 
is zero as a planar disk does not send radiation to itself. 

However, if we should have a curved surface it would be necessary to substitute the 
former element by F

3
/p

3
• On the contrary, in a volume defined by planes, all the ele-

ments in the diagonal of matrix are equal to zero. 
Once the value of these matrices is obtained, it is easy to establish a relationship 

between direct and reflected radiation: 

F E = * r 
(25) 

F = * F rd r d 
(26) 

E = F ref rd dir 
(27) 

As the value of reflected radiation is known, the problem is solved. However, we 
have to bear in mind that the mínimum of surfaces in an actual room would be six. 

Recently, the author has developed software for up to twelve surfaces inside a room. 
This will augment precision at the cost of a lengthier input of data. 

The process of interrefl.ection can be repeated many times until no significant chang-
es in refl.ected radiation are observed. 

Again, a simple case of this reiterative process occurs in the sphere and is often used 
as a substitute for the calculations described. 

In equation 10 and successive, it was stated that the energy received by a point in 
the sphere from any surface contained in the same sphere was equivalent to the ratio 
between the area of the emitting surface and the total area this can be written 
W/A. 

After infinite rebounds, the energy reflected on the sphere would be: 

w 
E = E * -- * (p + + ... (28) 

As, 

- 1) p 
= 

p- 1 1-p 
(29) 

E 
p 

) ref A 1-p 
(30) 
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p in the former equations means the average of the reflection coefficients and 
E is the direct energy emitted by the source. Therefore, this equation is suitable for 
all kinds of volumes, but its accuracy diminishes as the actual room is dissimilar to 
a sphere. Under these circumstances, equation 27 is preferable to equation 30. 

As the reflectance of the room surfaces may be shifted at will, it is possible to 
conceive sorne of great absorptiveness which can be equated to virtual or transparent 
surfaces and, in that manner we would deal with semi-open spaces or non-reflecting 
elements. For instance, the former enables us to address the urban canyon and con-
sequently the radiative transfer that takes place in urban spaces. To perform that 
kind of analysis, the energy exchanges in parallelepipeds must first be obtained. 

4. DISCUSSION AND SIMULATION EXAMPLES 

With all that we have expounded thus far, the reader is in the position to extract use-
ful consequences to find the performance of radiation in buildings, either existing or 
projected. 

Using his original software, based on the former section, the author has conducted a 
wide variety of simulations around the world. Most of them were validated by means of 
direct monitoring, both automatic and manual where available. 

However, sorne provisos have to be taken into account. First of all, it has been as-
sumed that radiation is emitted in a diffuse manner following Lambert's law. While this 
may be true for many materials especially modem ones, when dealing with heritage 
buildings such properties may not be accurate. In fact, the reflectance of surfaces at no 
longer extant architectural spaces remains largely unknown. 

Even more difficult is the question of glazing in ancient buildings. Transparent glass 
panes which follow quantum dynamics in transmitting radiation are relatively modern. 
An added constraint is the fact that, recently, a wide variety of systems capable of selec-
tive or holographic transmission has been made accessible to designers and builders. 

The main solution has been to define a directional or volumetric transmittance 
for glazing. This is a similar concept to the well-known photometric curve and 
gives us the spatial or spectral properties of glass-emitters. For the time being, these 
transformations can only admit bi-ellipsoidal form in the author's software. 

For this and other reasons interferences of radiation like diffraction and scatter-
ing, though predictable, are not handled in their entirety. Fortunately these phenom-
ena are not very common in the building industry, especially because they may lead 
to visual discomfort and are generally avoided by users and designers. 

Once the radiative transfer is settled for a given space through its geometric 
and optic features, the amount of renewable energy available is known. This may 
become an important figure in the energy analysis or may have a thermal or visual 
correlate. The visual results are more intuitive than the thermal ones. 

To find the temperature field due to radiation on a surface, Stefan-Bolzmann's 
law has to be invoked and significant differences with the luminous domain emerge. 
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The first and more relevant one is that the temperature of the surfaces considered 
has to be found or estimated since there are no elements at O K in buildings. The 
author's and other correlations help in this respect but may not be definitive. A sec-
ond proviso is that reflectances for thermal radiation are not similar to those in the 
luminous domain. Fortunately, most of them fall into the range of 0.9 for interior 
building surfaces. 

Finally, if due to ventilation a convective field coincides with that provided by 
radiation, the latter, according to our experiments, will not be significantly altered 
in the short term because what is mostly affected is the thermal sensation. 

With all the former in mind, the author would like to present the simulation cases 
of two paradigms of ancient Roman architecture, whose accurate radiative perform-
ance was largely unknown: the Pantheon and its superb baroque evolution the Church 
of Sant' Andrea all Quirinale. The architect and sculptor of light Gian Lorenzo Bemini 
completed this masterpiece, considered to be his own spiritual retreat. 

Following the discussion of radiation in centralised spaces, a building currently un-
der construction, the new railway station at the airport of Barcelona (Spain) is briefly 
presented in an effort to show how simulation can help in the design process and as-
sessment. 

The final case to be introduced is the Rautatalo building of 1955, by the modem 
Finnish master Alvar Aalto. Originally a department store, it beckoned Helsinki 's citi-
zens by its intelligent use of luminous radiation, enhanced by conical skylights subtly 
adapted to the solar path in this northem city. 

FIG.14 
THE ROMAN PANTHEON ILLUMINATED BY DIFFUSE RADIATION OF AN INTENSITY OF 

10000 LUMEN/M2 (LUX). A TYPICAL SITUATION IN AUTUMN AND SPRING. 
SCALE O TO 400 LUX 

COVPE LONGITVDINALE

.. ' • 1 - . 
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FIG.15 
SANT' ANDREA ALL QUIRINALE'S CHURCH BY BERNINI (ROME) ILLUMINATED 

BY DIRECT SOLAR RADIATION IN WINTER. VALUES IN LUX (0-800) 

FIG.16 
SANT' ANDREA ALL QUIRINALE'S CHURCH. SECTION UNDER DIRECT SOLAR 

RADIATION IN WINTER. VALUES IN LUX (0-1600) 

íl
,-,,, 
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In the first two examples, luminous radiation is nuanced and constant for the lower 
spaces. It is outlined that the values for the Pantheon were not significant (sometimes, 
under 200 lux) and this fact may have led to the introduction of vertical windows in the 
drum of the cylinder by late Renaissance or Baroque epochs. Radiative performance 
does not show an acute seasonal variation, but allows for sunshine to reveal certain dec-
orative details of the structure adding to the reputation of spiritual luminous atmosphere 
that encompass the work of Bemini. A hall of more than 300 square metres featuring a 
consistent level of 800 lux with only nine carved windows and the magnificent lantem 
is remarkable for the century. 

FIG. 17 
SECTION OF THE NEW RAILWAY STATION IN BARCELONA. RADIATION DESIGN BY THE 

AUTHOR. PROJECT BY THE ARCHITECTS CESAR PORTELA AND ANTONIO 
BARRIONUEVO. VALUES IN LUX (0-600) 

Changing the scale for the modem requirements of transportation spaces which have 
become the cathedrals of our time, the author propases a lighting design in which the 
oculus reaches a diameter of 35 metres and the radiative energy is distributed by means 
of massive aluminium louvers with a height exceeding 3 metres in total. The simulations 
show good levels and an acceptable raise of temperature levels at the glazed aperture 
dueto the mild climate of Barcelona. 

The last example, the Rautatalo building, brings the reader back to the efforts of the 
modem movement in architecture to control radiation. With 40 skylights it was subse-
quently adapted to many projects around the world, which generally speaking fared less 
well than the original for climatic and economic circumstances. 

This climate-responsive building would remind the reader that, in order to pro-
duce universal results there is the need to consider local weather parameters. 

8. CONCLUSION 

The author has produced sorne innovative tools which prove to be highly efficient and 
compatible with those currently employed in architectural and engineering projects. 
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FIG.18 
PLAN OF THE RAILWAY STATION IN SUMMER. VALUES IN LUX 

400 

FIG.19 
THE RAUTATALO BUILDING OF 1955 BY ALVAR AALTO, HELSINKI. SIMULATION OF 40 

SKYLIGHTS (8*5), PERFORMED IN JUNE WITH DIRECT SUNLIGHT AND MONITORED ON 
OF JUNE 2011. VALUES IN LUX 

In doing so, it is his firm belief that creativity and freedom of design in the realm of 
solar radiation will be much enhanced. The so-created software is universal and aims to 
bridge the gap in solar design between developed and non-developed regions. 

The conscious application of these techniques also brings new possibilities to benefit 
from solar radiation in our own homes. This is in the author's hope, a good way to help 
the peoples in the world, in a moment of turbulence and social unrest. 

The main drawback found is the lack of preparedness of many architects and au-
thorities to implement these methods in the decision-making process. 
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With the warp thus created fabrics can be woven as usual, although it is also pos-
sible to make a sort of net out of it and lie down at ease, or perchance play with it as a 
makeshift harp and see how it sounds ! For as Coleridge once wrote 1, 

And what if all of animated nature 
Be but organic Harps diversely fram'd 
That tremble into thought 
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