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Abstract: We consider the stabilization problem for an unstable 1-D diffusion-reaction partial
differential equation using a so-called folding transformation. The diffusion-reaction equation is
transformed into a 2 x 2 system of coupled parabolic PDEs with exotic boundary conditions. A
first backstepping transformation is designed to map the unstable system into a strict-feedback
intermediate target system. A second backstepping transformation is designed to stabilize
the intermediate target system. Interestingly, the companion gain kernel PDEs contain the
folding boundary condition, exhibiting symmetry with the original system. The kernels posses a
cascading structure that allows for sequential solution methods. Finally, the controller derived
is shown to be exponentially stabilizing in the L? sense.
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1. INTRODUCTION

More recently, boundary control of partial differential
equations (PDEs) has been a focus of research. In partic-
ular, the backstepping approach has seen much popularity
for one dimensional PDEs. The reference text in Krstic and
Smyshlyaev (2008) disseminates the classical backstepping
approach for various 1-D PDEs. It is important to note,
however, that much of this theory is unilateral backstep-
ping designs, that is, a single controller on one boundary.

Research into backstepping designs for arbitrarily high di-
mensional parabolic PDE has also been achieved, although
not without restrictive conditions on the domain geometry
and radial symmetry (Vazquez and Krstic (2017a)). In
higher dimensional backstepping boundary control, the
boundary hypersurface is actuated—for example, the unit
disk in 2-D necessitates the unit circle as its boundary
control. Aligning the higher dimensional perspective back
into a 1-D context, one is led to believe the classical PDE
backstepping results imposing only a single controller at
one boundary should be able to be extended to a case
where two controllers (albeit intrinsically linked) can be
designed for actuation at both boundaries. This has mo-
tivated research into the so-called bilateral backstepping
control for one dimensional parabolic PDE (Vazquez and
Krstic (2016)). However, the existing approach is limited in
using a symmetric backstepping transformation, which is
potentially limiting if one is to begin to consider spatially-
varying coefficients. Some results exist for bilateral control
in different PDE classes, namely, systems of hyperbolic
PDE (Auriol and Meglio (2017)) and viscous Hamilton-
Jacobi PDE (Bekiaris-Liberis and Vazquez (2018)).

In hyperbolic PDEs (particularly first-order), the notion
of “folding” the system state in space is easily achievable.
In the first-order case, one can merely seperate the PDE
into two spatial domains, and impose a first-order compat-
ibility condition on the resulting internal boundary. The
method extends to higher-order hyperbolic PDE, which
can be decomposed to systems of first-order hyperbolic
PDE, and folded. This is contrasted with parabolic PDE,
which require second-order compatibility conditions on the
resulting internal boundary. Moreover, the very nature
of diffusion implies a bidirectional flow of information
through these compatibility conditions (as opposed to uni-
directional flow in hyperbolic PDE). It is for this reason
that “folding” parabolic systems becomes more difficult
than for their hyperbolic brethern. Nevertheless, folding
a parabolic PDE will admit a coupled parabolic PDE
system.

Coupled parabolic PDE systems have been studied prior,
although perhaps not to the same extent that hyper-
bolic PDE have enjoyed. Several results exist for vari-
ous coupling structures and in various problem contexts.
In Vazquez and Krstic (2017b), boundary control for
parabolic PDE systems with spatially varying diffusion
and reaction coefficients are considered. In Deutscher and
Kerschbaum (2018), the previous result was extended to
include non-local coupling terms as well as extending
boundary conditions. In Orlov et al. (2017), constant
coefficient parabolic PDE systems are considered in the
output-feedback scenario. In Tsubakino et al. (2013), cas-
caded parabolic PDE systems are studied, which is differ-
entiated from the previous results by including boundary
coupling rather than merely in-domain (interior) coupling.
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This paper achieves an initial result in bilateral control
design for a parabolic PDE by imposing a “folding” trans-
formation and designing a set of controllers for the result-
ing coupled parabolic PDE system with exotic boundary
conditions coupling the systems.

2. MODEL AND FOLDING TRANSFORMATION

Consider the following unstable reaction-diffusion system
with a spatially-varying reaction coefficient:

Bru(y,t) = edyuly,t) + A(y)uly,t) (1)
w(—1,t) = U (t) (2)
u(1,t) = Us(t) (3)

Where y € (—1,1).

We select an arbiitary point yo € (—1,1) to “fold” the
parabolic equation (1) around. We first use the following
piecewise definition of u(y,t) as

ui(y,t) y € (=190)
u(y,t) = { 4
W= ualyt) e (o,) W
and define the following piecewise spatial transformation
in y:
z1 = (yo — y)/(1 + vo) y € (=1,30) (5)
z2 = (y — y0)/(1 — o) y € (y,1)  (6)
Note that z1,22 € [0,1]. This set of scaling and folding
(3)

transformations will allow us to map the system (1)-(3
into the following system in matrix form:

U (z,t) = BO2U (x,t) + A(z)U(,t) (7)
aU,(0,t) = —BU(0,1) (8)
U(1L,t) =U(t) (9)

We have dropped the subscript indexing on x for simplic-
ity. The state U : [0,1] x [0, 00) — R? is defined as

w1 (yo — (1 Tt
Ulz,t) = (uzgzg N El jzggmg) (10)
while the control U : [0,00) — R? is defined as
Ui (t
u= (1) ()
The parameter matrices are defined by
E := diag(eq, e2) (12)
A(z) := diag(A1(z), A2(z)) (13)
ai= (4 ) (14)
5= (1) (15)
€
€1 = m (16)
€
R TEE "
A(z) = Ayo — (1 + yo)z) (18)
A2(z) = A(yo + (1 — yo)z) (19)
a=(1+yo)/(1— o) (20)

The conditions encoded in the «, 8 matrices arise from
imposing compatibility conditions between u; and wuy at
z=0

Assumption 1. We will assume that g1 > &5 (ie., —1 <
yo < 0) without loss of generality. To consider the opposing
case, one may merely define § = —y initially and proceed
with the same design outlined.

3. BACKSTEPPING CONTROL DESIGN

We use two sets of backstepping transformations. The
first is modified from the transformation found in Vazquez
and Krstic (2017b) to account for the folding conditions
encapsulated in (8).

The first transformation is
V(o) = U0 - [ KU 0dy
0

where K(x,y) : Tx — R?*2 are the kernels of the
transformation on the domain Tx = {(z,y) € R?|0 <y <
x < 1}. The kernels componentwise (with i-th row and
J-th column of K notated with k;;) satisfy a 2 x 2 coupled
system of second-order hyperbolic PDE. We employ an
approach like Vazquez and Krstic (2017b), where we use
the following definition:

L(z,y) = VEO,K (z,y) + Oy K (x, y)VE (22)

allowing us to transform the K kernel into a system of
coupled first-order hyperbolic PDE (K, L):

(21)

VE1Ozki(z,y) + /10 k11 (7, y) = L (z,y) (23)
VE10zki2(z,y) + /€20y k12(, y) = lia(z,y) (24)
\/58xk21(xa y) + \/aaykﬂ(xa y) = l21(x7 y) (25)
\/58931{22 (l‘, y) + \/gayk@? (CL‘, y) lao (1‘7 y) (26)
Verozlhii(z,y) — Ve10yln(z, y) = (Mi(y) + Cl)kn(aza Zé))

VE1O:li2(7,y) — VE20,li2(w,y) = (Na(y) + Cl)ku(x(, Zé))

VE20:la1 (2, y) — \/e10yla1 (2, y) = (>\ (y) + c2)kar1(z,y)

—g(x)k11(z,y) (29)

VE20:l22(,y) — \/E20yl22(,y) = (A2(y) + 02)k22(l’ Y)

g(x)k12(z,y) (30)

subject to the following boundary conditions:

111(1'71') Al(Q\)/i61 (31)
aeg
0= s+ vEm)
X /O \/ETZH(%()) + \/5112(3/7 O)dy (32)
112(1'71') =0 (33)
klg(I,x) =0 (34)
1
ki2(z,0) = PR
x /0 VE (y,0) + vEsha(y, 00y (35)
t1(0,0) = (VBT + VB (62 - VB
+ (81 — 62)k11($,$)]€21($,$)) (36)
k‘Ql(l‘,O) = a&?)@(/\(;)(?:c (\/5152 + ) 1
X /OI \/algl(y,()) + \/5l22(y’ O)dy (37)
122(17,1’) = *m (38)

2/
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1

)\2?02)((1)02 ags (\/ETQ+ )

xr
< / JETla1 (4, 0) + y/Ealas (y, 0)dy
0

where ¢ is a function that is related to the gain kernel
component koi:

g(z) = (g2 — €1)ka1(z, x). (40)

These kernel equations are very similar to those found in
Vazquez and Krstic (2017b), albeit with a mirrored folding
condition in arising in (32),(35),(37),(39). The way the
folding condition arises will be elucidated in Section 3.2.

]{)22 (m, O) =

(39)

Following this, an intermediate target system is imposed:

Oy = slﬁgvl — 10 (41)

Oy = 62621)2 — cov9 + g(x)0v1 (42)
0,v1(0,t) = —ad,v2(0,t) (43)
v1(0,t) = vg(O t) (44)
vi(1,t) = (45)
U2(1’ t) = V2(t) (46)

with ¢1,co > 0 being designed coefficients. Furthermore,
Vs is an auxiliary controller that is to be designed with
another backstepping transformation, and is related to the
original controller Us:

1

Va(t) = lt) [ [han (1) (5,8) + a1, )z, )y
0

(47)

The second transformation takes the intermediate target

system and transforms it into a stable target system. Note
that it is a scalar transformation on one equation.

wn(@, t) = va(a, 1) / (. ya(y. D)y
- /Om q(z,y)vi(y, t)dy

p, q are kernels that satisfy a coupled second-order hyper-
bolic PDE system. Much like the case with the k;; kernels,
we define two functions r(z,y), s(z,y) to transform the
gain kernels (p,q) from a 2 x 2 second-order hyperbolic
PDEs into a 4 x 4 set of first-order hyperbolic PDEs:

(48)

r(z,y) = up(z,y) + Oyp(z,Yy) (49)

5(x,y) = VE20:q(x, y) + /E10yq(x,y) (50)

Where the kernels p,q,r,s satisfy the following set of

PDEs:

9up(z,y) + Oyp(z,y) = r(2,Y) (51)

Opr(z,y) — Oyr(z,y) =0 (52)

VE20:q(,y) + VE1dyq(x,y) = s(z,y) (53)
VE20:8(2,y) — /E10ys(w,y) = (c1 — c2)q(z,y)

+ Oyp(z,y)9(y)
—p(z,y)g'(y)
subject to the following boundary conditions:

_ aé‘l<9<0>
€9 \E1 — €2
. /w 52T(y70) + \/as(yvo) —
0 ag1 + +/€1€2

(54)

p(z,0)

9(0))dy (55)

r(z,z) =0 (56)

_g(0) “ear(y,0) + /218(y,0) — g(0)
a(,0) = €1 — €2 _/0 agy + /2162 2
(57)
(2,2) = (V&7 + V) ! (g<x>
+ (\/8182 —52)81 i€2g/(;(;)> (58)

These transformations will admit the following target
system:

Oy (2,t) = £10%v1 (,t) — crvy (1) (59)
Orws (2, 1) = £20%wo(x.t) — cowa(x, t) (60)
0,v1(0,t) = —adyw2(0, 1) (61)
v1(0,t) = w2 (0, 1) (62)
v1(1,t) =0 (63)
wa(1,t) =0 (64)

3.1 Lyapunov stability

Lemma 2. The target system (59)-(64) is exponentially
stable in the L2-sense, that is, there exist constants
M;i,v1 > 0 such that

[(v1, w2)l| 2 () < Mie™ " [|(v1,w2)l| 2 (0), V£ >0 (65)

We omit the proof but give the following Lyapunov func-
tion.

Vi =3 [ e

Note that aslsgl > 1 by definition and Assumption 1.
The constants M7, ~y; can be found:

+ quz(x’ t)%dx

= (66)

M = 1 (67)
€2
. &1 &2 €2
71—m1n{cl+ 1 ae (62+ 4>} (68)

We will now state the contribution of our paper below:

Theorem 3. Consider the system (1)-(3). The pair of feed-
back controllers

1
0= | F@uw.0d (69)
—1
1
) = [ Fawuly. oy (70)
-1
where the gain functions Fi, F, are defined by
(L+y0) "k (L= ) y<wo
_ + %o
Fi(y) = S At ()
(1 =50)" iz (1, 7 Y > Yo
— Yo
(1+yo) ' ‘11/0+_yy y <o
Fy(y) = RS (72)
1—yo) h
(1 —y0)" he T Yy >Yo
1
) = has(L) + alLg) = [ o1 (z.0)
Yy
+ q(l,z)kn(z,y)]dz (73)

1
ha(y) = kaa(1,9) + p(Loy) — / [p(1, 2)kas(2,9)
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where k;;, p, ¢ are kernels which satisfy (23)-(30),(51)-(54).
With a choice of the design parameter y, € (—1,1),
the controller pair U;,Us; will exponentially stabilize the

trivial solution v = 0 in the L?-sense, that is, there exist
constants M, ~y > 0 such that

lu( )l g2 < Me™ ™ [Ju(-0)]2,¥t >0 (75)
The proof of the theorem is relatively straightforward, and
utilizes the invertibility of the Volterra transformations
(21),(48) to establish an equivalence relation between the
target system and the original system under feedback. The
Lyapunov function (66) can be shown to be equivalent to
a transformed Lyapunov function establishing stability in
the original system with the nonlocal stabilizing feedback
law.

3.2 Kernel equation derivation for K

Differentiating (21) once in time and twice in space and
then imposing (41)-(46), one can arrive at the following
set of conditions comprising a PDE for K:

EOK (z,y) + 00K (z,y)E = K(z,y)A(y)

76)

0yK(z,2)E + E0,K(z,x) = —E%K(I, x) — A(2)
—C—-G(x)K(z,x) (77)
EK(z,z) — K(z,2)E = G(z) (78)
K(z,0)E,U(0) = 8, K (x,0)EU(0) (79)

where C' and G(z) are defined as follows for compact
matrix notation:

C = diag(cy, cs)
Gle) = (g(ow) 8)

One may see that (79) is quite curious and unusual for
most backstepping designs. (79) comes about due to the
exotic folding condition (8). Surprisingly enough, looking
at the conditions componentwise will reveal that (79)
exactly consitutes folding conditions on K. The folding
conditions that arise from (79) are:

(80)
(81)

e1k11(2,0) — aggki2(x,0) =0 (82)
€10yk11(x,0) + £20yk12(z,0) =0 (83)
e1kor(x,0) — acgkos(2,0) =0 (84)
616yk21(.1‘,0) +€28y/€22($,0) =0 (85)

Then, applying (22) to the 2 x 2 second-order hyperbolic
matrix PDE (76) will transform the problem into the 2 x
2 x 2 first-order hyperbolic PDEs given by (23)-(30).

A discussion of well-posedness of kij,l;;  The method of
solving the kernel equations is very similar to the approach
found in Vazquez and Krstic (2017b). However, due to the
differing boundary conditions, some care must be taken.
The initial step is identical — one can establish integral
operator equations:

(i) = [(32)]
(1) = (k)]

(86)

(87)

>

11 12

/';z Ly

k - red
y [ - blue

21 22

Fig. 1. Kernel characteristics for k,l equations. In par-
ticular, note 12 and 21 cases, and which boundary
conditions are needed.

One can directly apply the method of successive approxi-
mations to obtain a solution k11, k12,111, l12. This process
is repeated for ko1, koo, lo1, l22.

(k) = (12)]
(i) = |G2)]

Since the integral operators found in H;,i € {1,2,3,4}
are all of Volterra type with L? kernels, by Section 1.5 in

Tricomi (1985), one can conclude that a unique L? solution
exists for these integral equations.

(83)

(89)

3.8 Kernel derivation for p,q

We differentiate (48) once in time, and twice in space,
and then impose (59)-(64). We can recover the following
coupled hyperbolic kernel PDEs for p, ¢:

2p(x,y) — Dop(x,y) =0
202q(x,y) — €105q(x,y) = (ca — c1)q(, )
+ 0yp(x,y)9(y)
—p(x,9)9'(y)

(90)

2 pfa,) = 0 (92)

dlaa) = ——gle)  (99)

(61 = )0y 0) + —2 (@) = g(a) (o)
—£20yp(x,0) + g(0) — £10yq(x,0) =0 (95)
p(,0) =a_q(r,0) (%)

Again, applying (49),(50) will admit the gain kernels (51)-
(54).

A discussion of well-posedness for p,q,r,s It is not
immediately obvious that the system p,q,r, s is even a
well-posed system. One can apply method of characteristcs
selectively, and prune the system into one where the well-
posedness is more straightforward to prove. Straight away,
o?e cs;n note that (52),(56) will trivially define the solution
r(z,y) =0.
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(51) will then be trivially solvable via method of charac-
teristics, with p(x,y) = p(z — y,0). One must note that
p(x,0) is an integral operator on s(z,0), which is critical
for establishing the well-posedness of the reduced (g, s)
kernel system.

(54) is the primary point of contention, as it involves a
term of the form dyp(z,y). However, noting our observa-
tion above,

_ VEs(z —y,0) —g(0)
o aeq +\/@

By using this representation for dyp(z, y) in (54), it is quite
clear to see that (g, s) becomes a coupled hyperbolic PDE
system with a nonlocal term (being s(xz—y, 0)) in the right-
hand side. However, this nonlocality does not affect the
well-posedness of the system, which becomes more clear if
one directly applies the method of characteristics.

yp(w,y) = dyp(r — y,0) (97)

4. SIMULATION STUDIES

A natural question arises with the design parameter yq.
The choice of the folding point intuitively will affect the
distribution of control effort between U7 and Us. Since
explicit solutions to the gain kernels (23)—(30), (51) — (54)
are difficult (and probably impossible) to find, we turn to
numerical studies to gain a basic understanding of how the
choice of yq affects the controllers.

Recalling Assumption 1, we select a folding point yo =
—0.001 to observe the case in which the folding point is
close to the center, and another folding point at yo = —0.3
which is further inside the interval (—1,0).

Parameter Value
€ 1
Azx) 5e2®
Y0 —0.001, —-0.3
c1,C2 2

Table 1. Simulation parameters

The reaction coefficient A(z) is chosen to be \(z) = 5e2?,
which is heavily biased for € (0,1). This in particu-
lar helps illustrate the effectiveness of choosing a non-
midway folding point. Since the instability is nonuniform,
the choice of the folding point can help mitigate the un-
balanced control effort, or in certain operating scenarios,
shift the control effort from one controller the other.

The closed-loop responses show the effect of choosing the
folding point on the state response. In particular, the
symmetry of the solution is heavily affected, as one may
naturally be inclinded to believe. In Figure 3, the folding
point is close to the midpoint, and therefore the response
looks roughly symmetric. However, this is contrasted with
Figure 4 (the choice of yo = —0.3, further from the
midpoint), where the response is quicker in z € (—1,0)
than in € (0,1).

Finally, the control effort exerted by each controller reveals
more. By shifting the folding point further from the spatial
midpoint, we can see that the control effort exerted by each
controller can change drastically. In particular, observing
Figure 5, when the folding point is chosen to be close to
the midpoint, the control effort exerted by either controller
is roughly the same. However, by biasing the controllers
via selecting the folding point further away, the control
effort of U; diminishes, while the control effort of Us
increases. However, from these plots, the overall control

u(x,t)

Fig. 2. Open-loop response u(x, t) of the system. Note that
the biasing of A to half the domain is noticeble in the
growth.

u(x,t)

S5
AL 7
=
1 e
05557555
AT

)

%

Fig. 3. Closed-loop response u(z,t) with the folding point
chosen to be yg = —0.001. The folding point is quite
close to the midpoint of the spatial domain, and the
response is close to symmetric.

Folding point yo 21 o Uy + Wy
—0.001 0.1459  0.0854 0.2313
-0.3 0.0372  0.0643 0.1015

Table 2. Energy ¥; (L2) consumed by control
effort for varying folding point choices

effort appears to increase. To study this, we define the
controller energy using an L, norm:

T
U, = / |U4; (1) |2 dt
0

where T is the total simulation length. It turns out instead
that the energy expended by either controller is in fact
lower as the folding point is moved further away from the
midpoint, as one may notice from Table 2.

(98)

It is interesting to note that depending on application, one
design may be superior than another. With one choice, the
Iy signal norm of the controller is smaller (lower energy),
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u(x,t)

Fig. 4. Closed-loop response u(x,t) with the folding point
chosen to be yg = —0.3. The folding point is further
from the midpoint of the spatial domain. One half of
the domain converges quicker than the other.

Y R S SO O A S .
—
S —yo = —0.001]
g = —0.3
-15 L 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
t
5
P S S VU Y A A
~ [
L —_— J—
N Yo = 0.001
Aot -=Yo = —-0.3
-15 ! ! . : . : . . :
0 0.2 0.4 0.6 0.8 1 12 1.4 16 18 2
t

Fig. 5. Control effort exerted by controllers for both choices
of folding point. Notice how as the folding point
yo is shifted further into the negative half of the
domain, the control effort exerted by Uy grows while
U1 shrinks.

but pays the price of high peaking. The opposite case is
certainly true as well — a choice that lowers the peaking
(I signal norm) will reduce the peaking, but at the cost
of energy.

5. CONCLUSION

A method for designing bilateral backstepping feedback
controllers for an unstable parabolic equation is presented.
The unstable diffusion-reaction PDE is transformed via
folding to a system of coupled parabolic PDEs with an
exotic boundary condition arising from imposing second-
order compatibility conditions. The controllers are de-
signed for the coupled PDE system through the use of two
consecutive backstepping transformations. The controllers
possess a design parameter in the choice of the folding
point, which affects the response of both controllers. By
choosing this design parameter, the designer can shift

control effort from one controller to another, which is
beneficial from a fault-tolerant perspective, as well as in
efficiency.

This problem raises an interesting perspective from the
dual problem in state estimation. In particular, if one
follows the intuition behind the dual problem, it is possible
that having a pair of pointwise sensors within the interior
of the domain of the PDE may be sufficient to fully observe
the system state. From an application standpoint, this is
highly desirable, as it involves potentially two low-cost or
otherwise simple sensors in the interior. For example, in
chemical reactors, measuring concentration and flux at any
arbitrary point within the domain could admit an accurate
estimate of the state.

Ongoing and future work includes the dual problem in
state estimation, output feedback, and applying extend-
able framework of results in mixed-type PDEs to solve the
problem of bilateral boundary control with distinct input
delays.
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