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Abstract: In the field of building constructions, there is undeniably a growing need to optimize the
energy systems which are a key target in new modern constructions and industrial buildings. In this
sense, energy systems are being traced for the development of energy distribution networks that are
increasingly smart, efficient, and sustainable. Modern generation and distribution energy systems,
such as microgrids control systems, are being affected by the presence of linear and nonlinear loads,
resulting a distorted voltage and current waveforms. Thus, it is stated that industrial and residential
building heating and cooling loads behave essentially like sources of harmonics. This paper presents
a new framework based on geometric algebra (GA) to the definition of a multivectorial distortion
power concept, which is represented by a bivector that is geometrically interpreted to distinguish
the rotated distortion and distortion power bivectors in these kinds of loads. Both bivectors, and
their relations to the phase angles of distorted voltage are the main subject of this paper to interpret
an optimal control of building energy. Numerical examples are used to illustrate of the suggested
distortion power concept, as well as the information it provides for energy control in new buildings
in a more sustainable way.

Keywords: energy systems; building energy consumption; harmonics; geometric algebra; efficient
constructions; heating and cooling loads

1. Introduction

Nowadays, the electric power system has become one of the fundamental installations
in construction. A new architecture is not only sustainable by the control of its energy, but
also by the optimization of the installation and design itself.

One of the most controversial issues in electrical engineering applications is the uni-
versal representation of the power equation of electrical systems in harmonic pollution
situations. Moreover, the confusion extends to the concepts of reactive, not active and
distortion powers. This is partly due to the proliferation of linear and non-linear loads
connected to the circuits in the buildings. The ever-growing proliferation of power switch-
ing devices in modern industrial applications has increased the eventuality of unbalanced
currents, unacceptable harmonic levels, and poor power factor in distribution systems. A
clear example is seen in distributed generation systems, smart buildings or control sys-
tems, where many receivers are installed such as cycloconverters, speed drives, household
appliances, battery power converters, power inverters and more. Thus, “modern home
appliances are increasingly adopting power electronic frontends nowadays due to energy
efficiency considerations. This trend has led to increased harmonic distortions in building
power distribution systems and its supply transmission systems” [1]. Some works have
been published to analyse this issue. For example, [2] investigates the current and voltage
unbalance of nonlinear consumers in the residential and educational sectors. In [3], the
objective is to present a systematic, and versatile technique to study the harmonic impact
of residential load. Reference [4] presents a study of the use of active filters placed at
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different locations for harmonic mitigation methods in wind plants. Reference [5] proposed
the harmonic compensation method on a residential distribution system and in [6], an
advanced model is used to retrieve data from publications related to energy quality.

The result of using such a high number of non-linear loads in buildings is that the
current waveform is distorted, causing excessive harmonic voltages to be generated. This
situation feeds back and causes a progressive degradation to the power quality of the
supply [7]. In [8] a new indicator designated called a power quality factor (PQF) is
suggested to integrally reflect the power transfer quality of a general three phase network
feeding non-linear loads. Modern energy generation and distribution systems are a great
advance for today’s society, since they allow better management and integration of energy
with new sources such as renewable energy, wind energy, solar energy, nuclear energy etc.
These systems, such as multi-energy micro grids (MEMGs) are composed by distributed
generators with adequate placement for the system energy efficiency [9].

Also, the proximity of many of these buildings with similar industrial activities will
contribute to the distortion of the electric power quality of feed supplying these construc-
tions. These harmonics can cause serious problems in the power system of industrial
architecture, for example excessive heat in industrial appliances, premature aging of elec-
trical equipment, de-rating of equipment, fault of protection and lower power factor or
inefficiencies in the transmission of energy. In different countries buildings are responsible
for the 21–25% of total energy consumption and the amount of this energy used for heating
and cooling systems is about 55% in the residential sector [10]. It is a situation that causes
a progressive degradation to the power quality of the supply, [11] give a description of
state of the art for the distributed power generation systems (DPGS) based on renewable
energy; in [12] an extensive survey of loads is conducted in various residential buildings
and [13] aimed to analyse the individual influences, which aggravate the power quality of
the distribution grid. In this sense, other lines of research related to heating and cooling
loads of industrial and residential buildings analyse the phase change materials as cold
thermal energy storage media for district cooling [14].

These harmful and costly effects of harmonics have been discussed extensively and
spurred stringent requirements by international institutions regarding the allowed levels
of harmonics at the point of connection to the power supply [15], (IEEE Recommended
Practice and Requirements for Harmonic Control in Electric Power Systems). On the
other hand, as is well known, a phase displacement between corresponding voltages and
currents [16] indicates both a low utilization of the generation and distribution equipment
and increased line losses for the same power consumption level.

Significant research efforts have been focussed to the analysis of this area, especially
definition and interpretation of reactive and distortion powers and the challenge of devel-
oping a power theory suitable for harmonic analysis has continued forever last century

In sinusoidal situations, the mathematical tools used have been based on Steinmetz
theory [17]. In non-sinusoidal and linear conditions, Budeanu [18] decomposes the appar-
ent power in active, reactive and distortion components and Shepherd et al. [19] suggest a
new concept of reactive power. Likewise, in [20] a reactive power was defined that permits
the derivation of the value of passive linear devices to achieve a relative optimum power
factor and in [21], Fryze published his power equation in time domain.

Other formulations developed in frequency domain [22–26], affect the search for
equations that interpret certain physical phenomena or analyse the distortion component
in non-sinusoidal regimes. Among them [25], provides a meticulous discussion of the
distortion power concept and [26] based on the Fourier series, assumed that the distortion
power may consist of active and reactive components. Unfortunately, the mentioned
work [26], needs to know the load parameters to define these components. Moreover, it is
not possible to generalize this approach in vector form to any load model, because the basic
quantities, voltage and current, are not ordered within a suitable mathematical structure.
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Foundations: Literature Review

In sinusoidal conditions, Steinmetz established his theory of power, which with slight
modifications remains in force to-day. However, it is essential to know the electrical
energy balances in any microgrid to be able to make the right decisions for its control and
optimization. In these conditions, the apparent power is defined by S = P + jQ, where P is
the active power, Q is the reactive power and j is the imaginary unit.

In non-sinusoidal conditions, Budeanu and Fryze formulated the first power equations
for n-sinusoidal operation between 1920 and 1930.

The first author [18], addressed the question in the frequency domain. He defined the
distortion power as:

D2
B = SB

2 −
(

P2 + Q2
B

)
(1)

where P = ∑
n

Un In cos φn, QB = ∑
n

Un In sin φn and SB are the active, reactive and apparent

powers, respectively.
The second author [21], developed the current decomposition into active (ia), and

reactive (ir) currents in the time domain. The active current is given by:

ia =
P

‖u(t)‖2 u(t) = Geu(t) (2)

where Ge is associated to an equivalent conductance of the arbitrary linear load. The
residual part of the total current, is named reactive or non-active current:

ir = i− ia (3)

The rms values of the currents fulfil the equality:

‖ir‖2 = ‖i‖2 − ‖ia‖2 (4)

and the scalar product of these currents is given by:

〈ia, ir〉 =
1
T

∫ T

0
iairdt =

1
T

∫ T

0
ia(i− ia)dt = 0 (5)

If (4) is multiplied by ‖u(t)‖2 it is seen that:

Qr
2 = S2 − P2 (6)

where Qr 6= QB, P, S, are the nonactive, active and apparent powers, respectively.
Motivated by these theories, numerous valuable works have appeared as mentioned

above, but not all of them consider the multivectorial character of apparent power com-
ponents. In this context, in reference [27] the authors use geometric algebra to define a
multivector power based on decomposition of the instantaneous current into the active
and reactive components. It should be noted that this approach does not distinguish
between reactive and distortion power from a mathematical viewpoint. They state that the
scalar part of the apparent power represents the average power (active power). Further-
more, the bivectorial part of the apparent power contains power components involving
like-frequency and cross-frequency products which are not suitable for reactive and/or
distortion compensator design. Moreover, a serious limitation of this theory is based on the
difficulty to consider voltage phase angles. This restriction will probably lead to erroneous
results. In particular [28] is an important and original contribution to the power analysis
in non-sinusoidal networks. This theory was extended by the author for linear circuits
in n-sinusoidal conditions [29]. In [30], Montoya et al. have analysed power flows under
n-sinusoidal conditions via GA a as new advance in power theory.

The large number of papers published on the physical and/or mathematical nature of
distortion power and their applications, suggest that work in this field is not finished. For
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this reason, in this paper a complete solution to the power theory analysis and particularly
the distortion power concept for single-phase periodic n-sinusoidal linear and nonlinear
operation and its relation to the optimization of energy control is presented.

This power concept is based on a new frequency-domain approach, which uses
geometric algebra [31–34], to define and calculate any component of the distortion power
as a bivector from a generalized complex geometric algebra (GCGA). Thus, the distortion
power bivector incorporates in a single equation all required information (magnitude,
direction, and sense) where the experimental phenomena are implicit. In this sense, the
geometrical interpretation of the distortion power bivector is quite effective to clarify its
nature from a mathematical and physical nature viewpoint and optimize energy flow in
distributed generation, control systems or intelligent buildings.

2. Mathematical Preliminaries

Geometric algebra is a mathematical structure developed over the last 40 years based
on Clifford Algebras. A Geometric algebra can be defined simply by specifying appropriate
rules for multiplying vectors. Thus, let Vn an n-dimensional linear space over the real
numbers. The geometric product of vectors a⊗ b if a, b ∈ Vn, [28], can be decomposed into
a symmetric inner product:

a · b =
1
2
(a⊗ b + b⊗ a) (7)

and an antisymmetric outer product:

a ∧ b =
1
2
(a⊗ b− b⊗ a) (8)

Therefore, ab has the canonical decomposition:

a⊗ b = a · b + a ∧ b (9)

The inner product a · b is a scalar and the outer product a ∧ b is called bivector (or
2-vector). Geometrically, it represents a directed plane, in much the same way as a vector
represents a directed line segment (Figure 1).
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Figure 1. Vector, bivector and trivector representation.

We can regard a∧ b as a directed area with a norm ‖a∧ b‖ equal to the usual scalar area
of each parallelogram in Figure 1, with the direction of the plane in which the parallelogram
lies, and sense that can be assigned to the parallelogram in the plane. Then, just as a vector
a represents (or is represented by) a directed line segment and a bivector a ∧ b represents
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a directed plane segment, the trivector (3-vector) a ∧ b ∧ c represents a directed space
segment (the parallelepiped with edges a, b, c).

However the electrical quantities voltage and current do not have an easy interpre-
tation in classic Clifford algebra. For a clear representation of these waveforms, a new
geometric algebra has been constructed—a generalization of the classic Clifford algebra [32]
which we have termed “generalized complex geometric algebra” (GCGA) and denoted by
{CGn,� }. In this framework, C is the complex vector space, Gn is the Clifford algebra or
geometric algebra associated to the n-dimensional real space Vnand:

� : (< ◦ ⊗) (10)

is the new generalized geometric product. A detailed description of this new structure
(GCGA), of the geometric product “�” and their properties, are given in references [32,33].

3. Geometric Phasor Representation of Periodic Voltage and Current Waveforms

We start by considering periodic voltage and current waveforms of an arbitrary single-
phase system. Both signals can be considered elements of the vector space with inner and
outer product. Suppose a non-sinusoidal voltage u(t) =

√
2 ∑p∈L∪ N Up sin

(
pωt + αp

)
where p is the harmonic order of u(t) and a current i(t) =

√
2 ∑q∈N∪M Iq sin

(
qωt + βq

)
where q is the harmonic order of i(t). It is assumed that a group of voltage harmonics N
exist that have corresponding current harmonics of the same frequencies, that components
L of the supply voltage exist without corresponding currents, and that components M of
current exist without corresponding voltages. In linear operation, βq = αq − φq, φqis the
harmonic impedance phase angle and L = {ϕ} , M = {ϕ}. The capital Up and Iq represent
rms values of up(t) and iq(t). In the {CGn,� } structure spanned by an orthonormal basis
{σ1,σ2, σ3, . . . σn}, the associated p-th harmonic voltage and q-th harmonic current can be
represented by the geometric-phasors:

Ũp = Upejαp σp (11)

Ĩq = Ipejβq σq (12)

where Up = ‖Ũp‖, Iq = ‖ Ĩq‖. Then:

Ũ = ∑p∈L∪N Upejαp σp (13)

Ĩ = ∑q∈N∪M

{
Iqej(αq−φq)σq

∣∣∣
q∈N

+ Iqejβq
∣∣∣
q∈M

}
(14)

In particular, on linear operation the Equation (14) is given by Ĩ = ∑q∈N Iqej(αq−φq)σq

geometric -phasor, where Ĩq harmonic current can be decomposed as follows:

Ĩq = Iqejαq e−jφq σq = Ĩqe−jφq σq = Ĩq cos φqσq − j Ĩqsinφqσq = Ĩq‖ − j Ĩq⊥ (15)

The subscripts “ ‖ ” and “⊥” indicates “in phase” and “in quadrature” respectively.
The Ĩ∗q conjugate harmonic current is given by:

Ĩ∗q = Ĩ∗q‖ + j Ĩ∗q⊥ (16)

where (∗) is the standard “conjugate complex”operation.
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4. Distortion Power Bivector
4.1. Power Multivector

Consider an arbitrary nonlinear single-phase system supplied by the voltage u(t). The
resulting current has an instantaneous value given by i(t). The instantaneous voltage and
current signals have been defined in the section above.

In order to represent the concept of power multivector in GCGA, we introduce a new
rule for multiplying geometric-phasors (complex-vectors). This rule is the new geometric
product (10), where < [32] is an application over complex planes and “⊗” is the standard
geometric product. Apparent power can thus be expressed as a multivector S̃ in {CGn},
generated by “�” of the voltage and conjugate current geometric phasors:

S̃ =

Ũ · Ĩ∗︸ ︷︷ ︸
Ω̃•

+ Ũ ∧ Ĩ∗︸ ︷︷ ︸
Ω̃∧

 (17)

and which obeys the usual conservation law [33]. From Equation (17), one easily defines
that power multivector is given by:

S̃ = ∑
p ∈ N ∪ L
q ∈ N ∪ M

Ũp � Ĩ∗q

(
∑

p=q
Up Ip cos φp + j ∑

p=q
Up Ip sin φp

)
σ0+ ∑

p < q
p, q ∈ N

{
ej(αp−αq)

(
Up Iqejφq −Uq Ipejφp

)
σpq

)}
︸ ︷︷ ︸

D̃pq,Lin

+ ∑
p ∈ L ∪ N, q ∈ M

p ∈ L, q ∈ N

ejαp Up Iqe−jβq σpq︸ ︷︷ ︸
D̃pq,Nonlin

= P̃ + jQ̃ + ∆̃
(18)

which consist of a complex-scalar part Ω̃• = P̃ + jQ̃ and a complex-bivector part Ω̃∧ = ∆̃.
In Equation (18), “�” is the new “generalized complex geometric product” [32]. The
components P̃, Q̃, ∆̃ in Equation (18), can be represented as:

P̃ = Re
[
Ũ · Ĩ∗

]
= ∑

p∈N
Up Ipcosφpσ0 (19)

Q̃ = Im
[
Ũ · Ĩ∗

]
= ∑

p∈N
Up Ipsinφpσ0 (20)

∆̃ = ∑
p < q

p, q ∈ N

<
(

Ũp ∧ Ĩ∗q
)

σpq + ∑
p ∈ L ∪ N, q ∈ M

p ∈ L, q ∈ N

ejαp Up Iqe−jβq (21)

The generic term D̃pq (18) is a bivector named distortion power term and it is related
with the generic term ∆̃pq named rotated distortion power term:

∆̃pq = ej(αp−αq)D̃pq ⇒ ‖∆̃pq‖ = ‖D̃pq‖ (22)

The ∆̃pq terms in Equations (18) and (21), can be collected into four groups and written
in a short notation related with the sets L, N and M as:

∆̃N,N = ∑
p,q∈N

∆̃pq ⇒ ∆̃pq = ej(αp−αq)D̃pq,Lin (23)

∆̃L,N = ∑
p ∈ L
q ∈ N

∆̃pq ⇒ ∆̃pq = ej(αp−αq)D̃pq,Nonlin (24)
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∆̃L,M = ∑
p ∈ L
q ∈ M

∆̃pq ⇒ ∆̃pq = ejαp D̃pq,Nonlin (25)

∆̃N,M = ∑
p ∈ N
q ∈ M

∆̃pq ⇒ ∆̃pq = ejαp D̃pq,Nonlin (26)

Consequently, the complex-bivector part, Equation (21), named rotated distortion power,
is given by:

∆̃ = ∆̃N,N + ∆̃L,N + ∆̃L,M + ∆̃N,M (27)

Thus, in the cross products (21), each ∆̃pq term represents the interaction of voltage
and current harmonics, with different frequencies. This term is associated to D̃pqlinear
and/or D̃pq nonlinear distortion power bivector term. More exactly, in linear operation the
generic ∆̃pq term represents to a D̃pq term (distortion power bivector) associated to a rotation
defined by

(
αp − αq

)
angle. In non-linear operation D̃pq term (distortion power bivector) is

associated to a rotation
(
αp − αq

)
and/or αp angle.

The new quantity, rotated distortion power proposed in Equation (21), have three basic
attributes: magnitude, direction and sense. In the numerous situations direction and
sense are not required; then the magnitude ‖∆̃‖ = ‖D̃‖ was established to manage a
concrete problem. However, there are situations where direction and sense are necessary,
as those that depend on the origin and nature of distortion. In these cases, the distortion
power bivector ∆̃ is the appropriate quantity to solve the problem, since it incorporates
in a succinct expression all required information. The convenience of one or the other is
dictated by the necessities of the situation. In this sense, ‖∆̃‖ = ‖D̃‖ is a consequence of ∆̃
and both, magnitude and bivector are complementary.

It is seen from Equation (27), that due to the independence of the basis σ1...n, the
following equality is true:

‖∆̃‖2
= ‖D̃‖2

= ‖∆̃N,N‖2
+ ‖∆̃L,N‖2

+ ‖∆̃L,M‖2
+ ‖∆̃N,M‖2

(28)

4.2. Distortion Power Bivector: Admittance Matrix Representation

When the load impedance is linear, the only current harmonics that will flow must
correspond to the supply voltage harmonics. Thus, in linear operation, the harmonic
indexes of voltage and current, p, q ∈ N can define the quantities:

Ŷ =
(
Ypp
)n

p=1 = Yp ⇒ Ypp = Gp − jBp (29)

Gp =
Ip

Up
cosφp, Bp =

Ip

Up
sinφp (30)

where Ŷ is called the n-frequency admittance matrix, Gpis the p-th conductance and Bpis
the p-th susceptance. The multivectorial Ohm’s law is now given by:

Ĩ = Ũ Ŷ = ∑
q

Ĩq ⇒ Ĩ∗ = Ũ∗Ŷ∗ = ∑
q

Ĩ∗q (31)

where:
Ĩq = Ũq

(
Gq − jBq

)
σq = Ĩ‖ − j Ĩ⊥ (32)

Ĩ∗q = Ũ∗q
(
Gq + jBq

)
σq = Ĩ∗‖ + j Ĩ∗⊥ (33)

that coincide with Equations (15) and (16), respectively. In this case, S̃ multivector may be
written in the form:

S̃ = Ũ � Ĩ∗ = Ũ � Ĩ∗‖ + jŨ � Ĩ∗⊥ (34)



Energies 2021, 14, 2177 8 of 17

Now it is seen from Equations (A2) and (34) that:

Ũ � Ĩ∗‖ = Ũ · Ĩ∗‖ + Ũ ∧ Ĩ∗‖ (35)

and the following magnitude expressions of the active and active rotated distortion power
components are obtained:

P̃ = Ũ · Ĩ∗‖ = ∑
P

ŨpŨ∗p Gp ⇒ P = ∑
P

U2
pGp (36)

∆̃Act = Ũ ∧ Ĩ∗‖ = ∑ p < q
p, q ∈ N

Ũp ∧ Ĩ∗q‖‖∆̃Act‖
2
= ∑p<q Up

2 Iq
2(Gp − Gq

)2 (37)

where from Appendix A, Equation (A4):

Ũp ∧ Ĩ∗q‖ = Upσp ∧U∗q Gqσq + Uqσq ∧U∗pGpσp = ej(αp−αq)D̃pq,Act = ∆̃pq,Act (38)

On the other hand, from Equations (A5) and (34) can be obtained that:

Ũ � Ĩ∗⊥ = Ũ · Ĩ∗⊥ + Ũ ∧ Ĩ∗⊥ (39)

Similarly, another two magnitude expressions for reactive and reactive rotated distortion
powers are obtained:

Q̃ = Ũ · Ĩ∗⊥ = ∑p UpU∗pBp ⇒ Q = ∑p U2
pBp (40)

∆̃Re act = Ũ ∧ Ĩ∗⊥ = ∑ p < q
p, q ∈ N

Ũp ∧ Ĩ∗q⊥‖∆̃Re act‖
2
= ∑p<q Up

2 Iq
2(Bp − Bq

)2 (41)

where from Appendix A, Equation (A7):

Ũp ∧ Ĩ∗q⊥ = Upσp ∧U∗q Bqσq + Uqσq ∧U∗pBpσp = ej(αp−αq)D̃pq,Re act = ∆̃pq,Re act (42)

Combination of Equations (36)–(40) gives the apparent power multivector:

S̃ = Ũ � Ĩ∗ = Ũ � Ĩ∗‖ + jŨ � Ĩ∗⊥ = (P + jQ)σ0 + ∑
p < q

p, q ∈ N

ej(αp−αq)(D̃pq,Act + jD̃pq,Re act) = P̃ + jQ̃ + ∆̃ (43)

Note that the magnitudes of Equations (36)–(41) agree with the ones defined by a
linear operation in [23,27]. These magnitudes are not simply calculated from algebraic
operations, but rather they are a result of the multivectorial analysis. It should be noted
that the introduction of a multivector representation became possible by employing the
GCGA. In general, it can be said that today’s accepted approaches cannot explain the results
obtained here.

4.3. Geometric Interpretation of Distortion Power Bivectors

In the (CGn,�) algebraic structure, the bivectorial part Ω̃∧ of Equations (18) and (21),
can be represented as a linear combination of basis bivectors, each encoding a distinct
independent pq-plane involving cross-frequency products (p 6= q) in n-dimensional space.

Thus, Figure 2 shows the geometric interpretation into generic pq-planes of ∆̃pq rotated
distortion power and the corresponding D̃pqdistortion power term when p, q ∈ N, q 6= p
and/or p ∈ L, q ∈ N. Therefore, it is seen that Figure 3 shows, into generic pq-planes, the
geometric interpretation of ∆̃pq rotated distortion power and the corresponding D̃pqdistortion
power term when p ∈ L ∪ N, q ∈ M. It can be seen from Figures 2 and 3, that the geometric
interpretation of Equation (21) is based on the association of complex planes (C) to each
multivectorial element of Clifford basis Gn.
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Note in Figure 2 that:

Re
{

∆̃pq

}
= Re

{
ej(αp−αq)D̃pq

}
6= ∆̃pq,Act (44)

Im
{

∆̃pq

}
= Im

{
ej(αp−αq)D̃pq

}
6= ∆̃pq,Re act (45)

Similarly, in Figure 3:

Re
{

∆̃pq

}
= Re

{
ejαp D̃pq

}
6= ∆̃pq,Act (46)

Im
{

∆̃pq

}
= Im

{
ejαp D̃pq

}
6= ∆̃pq,Re act (47)
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It is certain that the value (magnitude),‖∆̃‖ = ‖D̃‖, of the distortion power does not
provide information to the waveform distortion, but each ∆̃pq distortion power bivector
term, has a direct dependence of the harmonic voltage phase angles. Notice that the choice
of equal or zero-phased geometric-phasors for the voltage frequency components, αp = αq
or αp = αq = 0, simplifies the Equations (18), (21) and (44)–(47) very much. Then, in this
case, these equations are now given by:

S̃ = ∑p ∈ N
q ∈ N

Ũp ⊗ Ĩ∗q = P̃ + jQ̃ + D̃ (48)

∆̃ = ∑ p < q
p, q ∈ N

(
Ũp ∧ Ĩ∗q

)
σpq + ∑ p ∈ L ∪ N, q ∈ M

p ∈ L, q ∈ N

ejαp Up Iqe−jβq σpq (49)

Re
{

∆̃pq

}
= Re

{
D̃pq

}
= ∆̃pq,Act (50)

Im
{

∆̃pq

}
= Im

{
D̃pq

}
= ∆̃pq,Re act (51)

Note in Equation (46) that now “�” becomes “⊗” that is the classic geometric product
defined in Equation (9).

5. Numerical Examples

To demonstrate the validity of the concepts stated in the above section and their
application to energy control in industrial architecture, two numerical examples are illus-
trated. Both represents a hypothetical residential and commercial load in a single energy
microgrids (SEMG) with harmonic voltage source behaviour (Figure 4).
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Figure 4. Architecture of single-energy micro grid (SEMG).

5.1. Example 1

Let a periodic n-sinusoidal voltage with instantaneous value given by
u1(t) =

√
2[200sin(ωt) + 100sin(2ωt)] (Figure 5), be applied to the hypothetical residential

load. Note that α1 = α2 = 0. The resulting current (Figure 5) has an instantaneous value:

i1(t) =
√

2[40sin(ωt− 53.1◦) + 11.7 sin(2ωt− 69.4◦) + 10sin(3ωt + 30)] (52)
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The corresponding geometric phasors are respectively:

Ũ1 = 200ej0σ1 + 100ej0σ2,
∣∣∣Ũ∣∣∣ = 223.6 (53)

Ĩ1 = 40e−j53.1σ1 + 11.71e−j69.4σ2 + 10ej30σ3 ,
∣∣∣ Ĩ∣∣∣ = 42.86 (54)

From Equation (18), the apparent power multivector may be written as:

S̃1 = (5215.4 + j7494)σ0 + (−1578− j1006)σ12 ++(1732− j1000)σ13 + (866− j500)σ23 (55)

where P1 = 5215.4, Q1 = 7494, ‖∆̃1‖ = 2915.82, ‖S̃1‖ = 9584.3 and power factor is
PF1= 0.54

Table 1 and Figure 6, illustrate the simulation and geometric representation results.

Table 1. Example 1. Simulation results.

p = 1, q = 2 p = 1, q = 3 p = 2, q = 3

∆̃12 = −1578− j1006 ∆̃13 = 1732− j1000 ∆̃23 = 866− j500
D̃12 = −1578− j1006 D̃13 = 1732− j1000 D̃23 = 866− j500
‖∆̃12‖ = 1871 ‖∆̃13‖ = 2000 ‖∆̃23‖ = 1000∣∣∣D̃12

∣∣∣ = 1871
∣∣∣D̃13

∣∣∣ = 2000
∣∣∣D̃23

∣∣∣ = 1000
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5.2. Example 2

Let a periodic n-sinusoidal voltage (Figure 7) with instantaneous value given by:

u2(t) =
√

2[200sin(ωt + 53.1◦) + 100sin(2ωt + 69.4◦)] (56)

be applied to a hypothetical commercial building. The resulting current (Figure 7) has an
instantaneous value:

i2(t) =
√

2[40sin(ωt) + 11.7sin(2ωt) + 10sin(3ωt + 30◦)] (57)
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Figure 7. Distorted voltage and load current.

In this case, α1 = 53.1◦, α2 = 69.4◦, and the corresponding geometric phasors
are respectively:

Ũ2 = 200ej53.1σ1 + 100ej69.4σ2, ‖Ũ‖ = 223.60 (58)

u2 Ĩ2 = 40ej0σ1 + 11.71ej0σ2 + 10ej30σ3, ‖ Ĩ‖ = 42.86 (59)

From Equation (18), the apparent power multivector may be written as:

S̃2 = (5215.4 + j7494)σ0 + (−1797− j523.2)σ12 + (1840 + j784.6)σ13 + (772.7 + j634.7)σ23 (60)

where P2 = 5215.4, Q2 = 7494, ‖∆̃2‖ = 2915.82, ‖S̃2‖ = 9584.3 and power factor
is PF2= 0.54. Table 2 and Figure 8, illustrate the simulation and geometric representa-
tion results.

Table 2. Example 2. Simulation results.

p = 1, q = 2 p = 1, q = 3 p = 2, q = 3

∆̃12 = −1797− j523.2 ∆̃13 = 1840 + j784.6 ∆̃23 = 772.7 + j634.7
D̃12 = −1578− j1006 D̃13 = 1732− j1000 D̃23 = 866− j500
‖∆̃12‖ = 1871 ‖∆̃13‖ = 2000 ‖∆̃23‖ = 1000
‖D̃12‖ = 1871 ‖D̃13‖ = 2000 ‖D̃23‖ = 1000

These two examples cannot be distinguished respect of the distortion power magni-
tudes of well-established distortion power approaches. One can show that in each example
all the corresponding rotated distortion and distortion power magnitudes are the same:

‖∆̃12‖ = ‖D̃12‖ = 1871, (61a)

‖∆̃13‖ = ‖D̃13‖ = 2000, (61b)
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‖∆̃23‖ = ‖D̃23‖ = 1000, (61c)

and:
‖∆̃1‖ = ‖D̃1‖ = ‖∆̃2‖ = ‖D̃2‖ = 2915.82. (62)
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The corresponding rotated distortion power bivectors for the proposed examples can
be calculated as:

∆̃1 = (−1578− j1006)σ12 + (1732− j1000)σ13 + (866− j500)σ23 (63)

and:
∆̃2 = (−1797− j523.2)σ12 + (1840 + 784.6)σ13 + (772.7 + j634.7)σ23 (64)

Accordingly, it is coherent to assume that any differentiation between both buildings
must be based on the information of distortion power bivector. Only this concept can
distinguish one from the other, to energy building control because it considers, voltage
phase angles, magnitude, direction, and sense as can be seen in geometric representation
Figures 6 and 8.

6. Conclusions

In this paper, a new bivectorial concept has been presented to be applied in con-
trol energy systems for sustainable constructions to the distortion power under periodic
n-sinusoidal linear/nonlinear operation. Clifford theory turned out to be a suitable mathe-
matical framework to introduce this new representation of distortion power bivector. It is
derived in terms of geometric phasors from a multivectorial analysis of the apparent power
(18) and not only as formal cross product of the rms values of voltages and currents. More-
over, the new power components are geometrically interpreted to distinguish the rotated
distortion and distortion power bivectors. This geometric interpretation permits a vectorial
direct sum of all the components into complex planes, (C), defined for each multivectorial
element of Clifford basis (Gn). In classical approaches this goal is not possible, and any
definition of distortion power is only a secondary result of this work. Both bivectors, rotated
distortion and distortion power concepts and their relation to the optimization of energy
control in building heating and cooling loads are the main subject of this paper.
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The potentiality of the power distortion bivector concept compared to any distortion
power definition is important. Thus, analysing the results in Tables 1 and 2, the main
findings of this investigation may be summarized as follows:

• Rotated distortion power bivector ∆̃ incorporates in a single expression, Equation (21),
and three attributes, namely magnitude, direction, and sense.

• In linear and nonlinear operation, if the voltage phase angles are the same or zero,
rotated distortion power ∆̃ coincides with distortion power bivector D̃ (Figure 6).

• In a general case, rotated distortion power multivector depends of the harmonic voltage
phase angles (Figure 8).

• For all cases, it can be seen that ‖∆̃‖ = ‖D̃‖.
• Rotated distortion power ∆̃ is an entirely mathematical and fictitious component and

nonphysical quantity.

In general, the multivectorial apparent power concept and the bivector distortion
power concept (magnitude, direction and sense) are fundamental for a correct identifi-
cation of harmonic source locations, power factor improvement, power quality indexes,
dependency of the voltage phase angles and their physical interpretation, etc.

Their application to electronic loads in today’s microgrid allows one to control the
energy of the load in vector form, considering its real and imaginary components when
the phase angles present in the voltage harmonics differ from zero. In our case, residential
building heating and cooling loads can inject higher harmonic currents than those compa-
rable in industrial loads. Consequently, the harmonic spectra of these two types of loads
are quite different where the 3rd harmonic is highly noticeable for residential feeders.

The suggested representation can provide a new language for the design of compen-
sator systems, optimization algorithms or power quality indexes, that will help the design
of more efficient energy networks in buildings and sustainable architecture. In this sense,
the study of new applications is open it could be a task that deserves further research.
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Appendix A

Linear Group of Bivectorial Components

The generalized complex geometric product S̃ = Ũ � Ĩ∗ can be written as:

Γ̃Lin = ∑
p∈N

Ũp � ∑
q∈N

Ĩ∗q = ∑
p

Ũp �∑
q

(
Ĩ∗q‖ + j Ĩ∗q⊥

)
== ∑

p
Ũp �∑

q
Ĩ∗q‖︸ ︷︷ ︸

Γ̃Lin,‖

+ ∑
p

Ũp �∑
q

Ĩ∗q⊥︸ ︷︷ ︸
Γ̃Lin,⊥

(A1)

where:

Γ̃Lin,‖ = ∑
p∈N

Ũp � ∑
q∈N

Ĩ∗q‖ = ∑
p

Ũp ·∑
q

Ĩ∗q‖︸ ︷︷ ︸
inner product

+ ∑
p

Ũp ∧∑
q

Ĩ∗q‖︸ ︷︷ ︸
outer product

(A2)

Inner product
P̃ = ∑

p∈N
Ũp · ∑

q∈N
Ĩ∗q‖ = ∑

p=q
Up Ipcosφpσp (A3)
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Outer product

∆̃N,N
Act = ∑

p∈N
Ũp ∧ ∑

q∈N
Ĩ∗q‖ = ∑

p<q
ej(αp−αq)

(
Up Iqcosφq −Uq Ipcosφp

)
σpq︸ ︷︷ ︸

D̃pq,Act

(A4)

Of similar form:

Γ̃Lin,⊥ = ∑
p

Ũp � ∑
q

Ĩ∗q⊥ = ∑
p

Ũp ·∑
q

Ĩ∗q⊥︸ ︷︷ ︸
inner product

+ ∑
p

Ũp ∧∑
q

Ĩ∗q⊥︸ ︷︷ ︸
outer product

(A5)

Inner product
Q̃ = ∑

p
Ũp ·∑

q
Ĩ∗q⊥ = ∑

p=q
Up Ipsinφpσp (A6)

Outer product

∆̃N,N
Re act = ∑

p∈N
Ũp ∧ ∑

q∈N
Ĩ∗q⊥ = ∑

p<q
ej(αp−αq)

(
Up Iqsinφq −Uq Ipsinφp

)
σpq︸ ︷︷ ︸

D̃pq,Re act

(A7)

The total linear group of bivectorial components is found to be:

Γ̃Lin = Γ̃‖ + Γ̃⊥ = ∑
p

Up Ip‖σ0 + j ∑
p

Up Ip⊥σ0 + ∆̃N,N = ∑
p

Up Ip cos φpσ0 + j
∑̃p 0

N,N

∑
p

Up Ipsin (A8)

where from Equations (A4) and (A7):

∆̃N,N = ∆̃N,N
Act + j∆̃N,N

Re act (A9)

Note that ∆̃N,N
pq,Act and ∆̃N,N

pq,Re act represent the pq-active and reactive, D̃pq,Act,D̃pq,Re act

terms rotated by ej(αp−αq) respectively.

A. Nonlinear group of bivectorial components

Let:

Ĩ = ∑q∈N∪M

{∣∣∣ Ĩq

∣∣∣ej(αq−φq)σq

∣∣∣
q∈N

+
∣∣∣ Ĩq

∣∣∣ejβq
∣∣∣
q∈M

}
(A10)

Be a geometric-phasor, where Ĩq is the q-th harmonic current. The total nonlinear
group of bivectorial components are given by:

Γ̃Nonlin =

(
∑
p∈L

Ũp

)
�
(

∑
q∈N

Ĩ∗q

)
+

(
∑

p∈L ∪ N
Ũp

)
�
(

∑
q∈M

Ĩ∗q

)
= ∑

p∈L,q∈N
ej(αp−αq ) Up Iqejφq σpq︸ ︷︷ ︸

D̃pq,Nonlin

+ ∑
p∈L∪ N,q∈M

ejαp Up Iqejβq σpq︸ ︷︷ ︸
D̃pq,Nonlin

= ∆̃L,N + ∆̃L,M + ∆̃N,M (A11)

where:

∆̃L,N =

(
∑

p∈L
Ũp

)
�
(

∑
q∈N

Ĩ∗q

)
= ∑

p∈L,q∈N
ej(αp−αq)Up Iqejφq σpq︸ ︷︷ ︸

D̃pq,Nonlin

∆̃L,N
Act = ∑

p∈L,q∈N
ej(αp−αq)Re

(
Up Iqejφq

)
σpq︸ ︷︷ ︸

D̃pq,Act

∆̃L,N
Re act = ∑

p∈L,q∈N

ej(αp−αq) Im
(

Up Iqejφq
)

σpq︸ ︷︷ ︸
D̃pq,Re act

(A12)
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∆̃L,N =

(
∑

p∈L
Ũp

)
�
(

∑
q∈N

Ĩ∗q

)
= ∑

p∈L,q∈N
ej(αp−αq)Up Iqejφq σpq︸ ︷︷ ︸

D̃pq,Nonlin

∆̃L,M
Act = ∑

p,q
ejαp Re

(
Up Iqejβq

)
σpq︸ ︷︷ ︸

D̃pq,Act

∆̃L,M
Re act = ∑

p,q
ejαp Im

(
Up Iqejβq

)
σpq︸ ︷︷ ︸

D̃pq,Re act

(A13)

∆̃N,M =

(
∑

p∈N
Ũp

)
�
(

∑
q∈M

Ĩ∗q

)
= ∑

p,q
ejαp Up Iqejβq σpq︸ ︷︷ ︸

D̃pq,Nonlin

∆̃N,M
Act = ∑

p,q
ejαp Re

(
Up Iqejβq

)
σpq︸ ︷︷ ︸

D̃pq,Act

∆̃N,M
Re act = ∑

p,q
ejαp Im

(
Up Iqejβq

)
σpq︸ ︷︷ ︸

D̃pq,Re act

(A14)
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