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Abstract: The problem of boundary stabilization of thermoacoustic oscillations is investigated.
The Rijke tube is used as prototype system to study such phenomena. We consider that this
system is modelled as a 2 × 2 linear first-order hyperbolic system that behaves like a wave
equation with the control variable at one boundary condition. Our control approach is based on
employing characteristic coordinates to convert the system into a system of two delay elements.
Analysing the periodicity of the solution of these equations a discrete transfer function is
obtained. This enable us to employ a discrete time domain control design to guarantee the
exponential stability of the closed-loop system. The performance of the controller is evaluated
through simulation results.
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1. INTRODUCTION

In this paper, we investigate boundary stabilization of
thermoacoustic oscillations in the Rijke tube. This phe-
nomenon is described by high levels of sound produced by
placing a heater release in a vertical tube with open ends.
The mechanisms that cause unsteady heat release fluctu-
ations are described in Lieuwen (2012). These instabilities
also arise in combustors of gas turbines and aero engines
in much more complex levels. These systems can oscillate
in a self-excited way due to coupling between the unsteady
heat release of a source and acoustic waves (generated by
the pressure gradient).

This phenomenon is often modelled by the Euler equations
of gas dynamics, where the control variable appears at one
boundary condition (Epperlein et al., 2015). Remarkably,
the Dirac delta distribution appears in the right hand side
of these equations, implying in the discontinuity of the
system states. Depending on the steady-state conditions
about which these equations are linearized, the resulting
linearization is a linear first-order partial differential equa-
tion (PDE) that behaves like a wave equation and thus
describes acoustic wave propagation. The linearization of
this model leads to the system considered throughout this
paper.

Boundary stabilization of linear first-order PDEs has re-
ceived significant attention in the literature, see for in-
stance Vazquez et al. (2012); Di Meglio et al. (2013);
Xu and Sallet (2014); Bastin et al. (2015); Aamo (2013);
de Andrade and Pagano (2015) and the references therein.

Unfortunately, these methods cannot be used in the system
treated in this work, since the Dirac delta distribution is
a non strict-feedback term 1 .

Therefore, in this paper we propose a stabilizing state
feedback control law based on the interpretation of the an-
alytical solution of the system equations. We reformulate
the system by introducing the characteristic coordinates,
which allow us to convert the system equations to a system
of transport equations which convect in opposite directions
and reflects at the boundaries. As we shall see, in this
framework a discrete transfer function of the system can
be obtained by analysing the periodicity of the solution.
Then, the control law is designed by using classical tools
of discrete time domain systems, guaranteeing exponential
stability of the zero equilibrium-point in the L ∞-norm.
The proposed control strategy was tested via numerical
simulations to show its effectiveness.

The paper is organized as follows. In Section 2, the Rijke
tube and the mathematical model are described. The
control design and the stability analysis of the closed-
loop system with the proposed feedback control law are
developed in Section 3. Simulation results are shown in
Section 4. Finally, we discuss the obtained results and
perspectives for future improvement in Section 5.

1 The control methodologies in literature consider that the right
hand side of the PDE system is given by bounded functions, which
is not the case of the Dirac delta distribution. Therefore, for the
Rijke system, a feedback control law cannot be directly obtained by
applying these control strategies.
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(e-mail: gustavo.artur@posgrad.ufsc.br, daniel.pagano@ufsc.br)
∗∗ Department of Aerospace Engineering, Universidad de Sevilla,

Camino de los Descubrimientos, s.n.,41092 Sevilla, Spain
(e-mail: rvazquez1@us.es)

Abstract: The problem of boundary stabilization of thermoacoustic oscillations is investigated.
The Rijke tube is used as prototype system to study such phenomena. We consider that this
system is modelled as a 2 × 2 linear first-order hyperbolic system that behaves like a wave
equation with the control variable at one boundary condition. Our control approach is based on
employing characteristic coordinates to convert the system into a system of two delay elements.
Analysing the periodicity of the solution of these equations a discrete transfer function is
obtained. This enable us to employ a discrete time domain control design to guarantee the
exponential stability of the closed-loop system. The performance of the controller is evaluated
through simulation results.

Keywords: boundary control, method of characteristics, thermoacoustic instability, Rijke tube,
stabilization

1. INTRODUCTION

In this paper, we investigate boundary stabilization of
thermoacoustic oscillations in the Rijke tube. This phe-
nomenon is described by high levels of sound produced by
placing a heater release in a vertical tube with open ends.
The mechanisms that cause unsteady heat release fluctu-
ations are described in Lieuwen (2012). These instabilities
also arise in combustors of gas turbines and aero engines
in much more complex levels. These systems can oscillate
in a self-excited way due to coupling between the unsteady
heat release of a source and acoustic waves (generated by
the pressure gradient).

This phenomenon is often modelled by the Euler equations
of gas dynamics, where the control variable appears at one
boundary condition (Epperlein et al., 2015). Remarkably,
the Dirac delta distribution appears in the right hand side
of these equations, implying in the discontinuity of the
system states. Depending on the steady-state conditions
about which these equations are linearized, the resulting
linearization is a linear first-order partial differential equa-
tion (PDE) that behaves like a wave equation and thus
describes acoustic wave propagation. The linearization of
this model leads to the system considered throughout this
paper.

Boundary stabilization of linear first-order PDEs has re-
ceived significant attention in the literature, see for in-
stance Vazquez et al. (2012); Di Meglio et al. (2013);
Xu and Sallet (2014); Bastin et al. (2015); Aamo (2013);
de Andrade and Pagano (2015) and the references therein.

Unfortunately, these methods cannot be used in the system
treated in this work, since the Dirac delta distribution is
a non strict-feedback term 1 .

Therefore, in this paper we propose a stabilizing state
feedback control law based on the interpretation of the an-
alytical solution of the system equations. We reformulate
the system by introducing the characteristic coordinates,
which allow us to convert the system equations to a system
of transport equations which convect in opposite directions
and reflects at the boundaries. As we shall see, in this
framework a discrete transfer function of the system can
be obtained by analysing the periodicity of the solution.
Then, the control law is designed by using classical tools
of discrete time domain systems, guaranteeing exponential
stability of the zero equilibrium-point in the L ∞-norm.
The proposed control strategy was tested via numerical
simulations to show its effectiveness.

The paper is organized as follows. In Section 2, the Rijke
tube and the mathematical model are described. The
control design and the stability analysis of the closed-
loop system with the proposed feedback control law are
developed in Section 3. Simulation results are shown in
Section 4. Finally, we discuss the obtained results and
perspectives for future improvement in Section 5.

1 The control methodologies in literature consider that the right
hand side of the PDE system is given by bounded functions, which
is not the case of the Dirac delta distribution. Therefore, for the
Rijke system, a feedback control law cannot be directly obtained by
applying these control strategies.

2nd IFAC Workshop on Control of Systems Governed
by Partial Differential Equations
June 13-15, 2016. Bertinoro, Italy

Copyright © 2016 International Federation of
Automatic Control

49 49

Boundary Feedback Control of Unstable
thermoacoustic Oscillations in the Rijke

Tube

Gustavo A. de Andrade ∗ Rafael Vazquez ∗∗

Daniel J. Pagano ∗

∗ Department of Automation and Systems, Universidade Federal de
Santa Catarina, 88040-900, Florianópolis, SC, Brazil
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equation with the control variable at one boundary condition. Our control approach is based on
employing characteristic coordinates to convert the system into a system of two delay elements.
Analysing the periodicity of the solution of these equations a discrete transfer function is
obtained. This enable us to employ a discrete time domain control design to guarantee the
exponential stability of the closed-loop system. The performance of the controller is evaluated
through simulation results.

Keywords: boundary control, method of characteristics, thermoacoustic instability, Rijke tube,
stabilization

1. INTRODUCTION

In this paper, we investigate boundary stabilization of
thermoacoustic oscillations in the Rijke tube. This phe-
nomenon is described by high levels of sound produced by
placing a heater release in a vertical tube with open ends.
The mechanisms that cause unsteady heat release fluctu-
ations are described in Lieuwen (2012). These instabilities
also arise in combustors of gas turbines and aero engines
in much more complex levels. These systems can oscillate
in a self-excited way due to coupling between the unsteady
heat release of a source and acoustic waves (generated by
the pressure gradient).

This phenomenon is often modelled by the Euler equations
of gas dynamics, where the control variable appears at one
boundary condition (Epperlein et al., 2015). Remarkably,
the Dirac delta distribution appears in the right hand side
of these equations, implying in the discontinuity of the
system states. Depending on the steady-state conditions
about which these equations are linearized, the resulting
linearization is a linear first-order partial differential equa-
tion (PDE) that behaves like a wave equation and thus
describes acoustic wave propagation. The linearization of
this model leads to the system considered throughout this
paper.

Boundary stabilization of linear first-order PDEs has re-
ceived significant attention in the literature, see for in-
stance Vazquez et al. (2012); Di Meglio et al. (2013);
Xu and Sallet (2014); Bastin et al. (2015); Aamo (2013);
de Andrade and Pagano (2015) and the references therein.

Unfortunately, these methods cannot be used in the system
treated in this work, since the Dirac delta distribution is
a non strict-feedback term 1 .

Therefore, in this paper we propose a stabilizing state
feedback control law based on the interpretation of the an-
alytical solution of the system equations. We reformulate
the system by introducing the characteristic coordinates,
which allow us to convert the system equations to a system
of transport equations which convect in opposite directions
and reflects at the boundaries. As we shall see, in this
framework a discrete transfer function of the system can
be obtained by analysing the periodicity of the solution.
Then, the control law is designed by using classical tools
of discrete time domain systems, guaranteeing exponential
stability of the zero equilibrium-point in the L ∞-norm.
The proposed control strategy was tested via numerical
simulations to show its effectiveness.

The paper is organized as follows. In Section 2, the Rijke
tube and the mathematical model are described. The
control design and the stability analysis of the closed-
loop system with the proposed feedback control law are
developed in Section 3. Simulation results are shown in
Section 4. Finally, we discuss the obtained results and
perspectives for future improvement in Section 5.

1 The control methodologies in literature consider that the right
hand side of the PDE system is given by bounded functions, which
is not the case of the Dirac delta distribution. Therefore, for the
Rijke system, a feedback control law cannot be directly obtained by
applying these control strategies.
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2. THERMOACOUSTIC INSTABILITIES IN THE
RIJKE TUBE

The Rijke tube experiment basically consists of a vertical
tube opened in both ends and a heater source in the lower
half. The air that traverses the heating zone expands,
causing a sudden local pressure increase. The pressure
propagates along the tube and reflect at the boundaries,
ultimately influencing itself at the heating area. This
property leads to a thermoacoustic coupling, which makes
the system oscillates. A speaker placed at a slight distance
under the tube is used as actuator, while a microphone
placed near the top of the tube provides the pressure
measurement. The diagram of the Rijke tube is depicted
in Fig. 1.

The nonlinear model describing the dynamics of the gas
inside the tube is given by the Euler equations:

∂tρ+ ∂x(ρv) = 0, (1)

∂t(ρv) + ∂x
(
ρv2 + P

)
= 0, (2)

∂t

(
ρU +

ρv2

2

)
+ ∂x

(
v

(
ρU +

ρv2

2

)
+ Pv

)
= q, (3)

P (t, 0) = P0 + u(t), P (t, L) = P0, (4)

where t ∈ [0,+∞) is the time, x ∈ [0, L] is the space, ρ is
the gas density, P is the pressure, q is the external heat
input, ρv is the momentum, v the velocity, u is the control
input and P0 is the ambient pressure. The internal energy
is denoted by ρU . For a calorically perfect gas that also
satisfies the ideal gas law, the internal energy is expressed
by ρU = (cv/R)/P , where cv is the specific heat capacity
and R is the universal gas constant.

The external heat input is expressed by

q =
1

A
δ(x− x0)Q,

where δ is the Dirac delta distribution, Q is the heat power
released from the coil and A is the tube cross section
area. The heat release process, according to King’s law,
is modelled by

Q = lw(Tw − T )(κ+ κv

√
|v(t, x0)|), (5)

where lw is the wire length, κ is the fluid thermal conduc-
tivity, κv is a empirical constant, and Tw and T are the
wire and fluid temperature, respectively.

Using some algebra and the product rule of differentiation,
system (1)-(3) is rewritten into the quasilinear form:

∂tρ+ v∂xρ+ ρ∂xv = 0, (6)

∂tv + ∂xv +
1

ρ
∂xP = 0, (7)

∂tP + γP∂xv + v∂xP = γq, (8)

where γ = 1 +R/cv, and γ = γ − 1.

2.1 Equilibrium solutions and linearization

In this work, the steady-state solution for system (6)-
(8) is assumed to be constant, i.e., (ρ, v, P ) = (ρ, v, P ),
∀t ∈ [0,+∞), ∀x ∈ [0, L]. This hypothesis is valid
because the important parameter in acoustic dynamics is
the speed of sound, and the buoyancy effects as well as
steady temperature and density variations along the tube
length have relatively minor effect on the speed of sound.

Microphone

P
re

s
s
u

re

w
a

v
e

s

Heating

zone

Speaker

x

Fig. 1. Schematic of the Rijke tube with a heating ele-
ment toward the bottom. The upward and downward
arrows indicate the acoustic motion.

Another important remark about the system is that the
flow satisfies the subsonic condition, i.e., v � c, where

c =
√
γ P

ρ is the speed of sound.

In order to linearize the system (6)-(8) and its boundary
conditions, we define the deviations of the states ρ, v and
P with respect to the steady-states ρ, v and P by

ρ̃(t, x) � ρ(t, x)− ρ,

ṽ(t, x) � v(t, x)− v,

P̃ (t, x) � P (t, x)− P .

Then, the linearized model (6)-(8) around the steady-state
is described by

∂tρ̃+ v∂xρ̃+ ρ∂xṽ = 0, (9)

∂tṽ + v∂xṽ +
1

ρ
∂xP̃ = 0, (10)

∂tP̃ + γP∂xṽ + v∂xP̃ =
γ

A
δ(x− x0)Q̃, (11)

where Q̃ is the linearized expression of (5). In addition, we
consider an additional simplifying hypothesis on system
(9)-(11): taking into account that the upward flow v is
very small if compared to the speed of sound, it is easy
to see that the contribution of v to the gas dynamics is
negligible. Therefore, it is reasonable to set v = 0, which
results in the decoupling of the density equation (9) to
the pressure and velocity dynamics, and then the density
equation can be dropped from consideration. It follows
that the linearization of the gas dynamics is given by

∂tṽ +
1

ρ
∂xP̃ = 0, (12)

∂tP̃ + γP∂xṽ =
γ

A
δ(x− x0)Q̃. (13)

Note that system (12)-(13) results on the wave equation

with the heat fluctuations Q̃ as a source term at x0.

Remark 2.1. We have to stress that the significance of the
steady buoyancy-induced velocity v is different for the heat
release than for the gas dynamics. In the gas dynamics,
v only contributes in form of the steady-state and can be
neglected. For the heat release (5), if the steady-state effect

IFAC CPDE 2016
June 13-15, 2016. Bertinoro, Italy

50



50 Gustavo A. de Andrade et al. / IFAC-PapersOnLine 49-8 (2016) 048–053

of the velocity is neglected, then the linearization would
result invalid, since the derivative of

√
| · | is discontinuous

at 0. The importance of considering v �= 0 in the heat
release lies in moving to the differentiable part of the
square root function.

In turn, the linearization of (5), considering T = P
ρR , is

given by

Q̃ = f(v)
T

ρ
ρ̃+ f ′(v)(Tw − T )ṽ − f(v)

T

P
P̃ , (14)

where f(v) = lw(κ+ κv

√
|v|) and T = P/(ρR).

The above equation shows the influence of each state
variable on the heat transfer process. Performing a change
of variable in ṽ, ρ̃ and P̃ , in order to turn them dimen-
sionless quantities, it is possible to compare the size of
the gain in the above equation 2 . This analysis shows that
the velocity fluctuations are the main driver of the heat
dynamics for subsonic flow. Therefore, it is reasonable to
drop out the density and pressure fluctuations influence of
(14), resulting in

Q̃ ≈ f ′(v)(Tw − T )ṽ.

Besides, the boundary conditions (4) linearized around an
equilibrium point can be written as

P̃ (t, 0) = u(t), P̃ (t, L) = 0. (15)

2.2 Model in terms of characteristic coordinates

In this section, we will reformulate the system (12)-
(13) with boundary conditions (15) by introducing the
characteristic coordinates. This result is presented in the
following lemma, which can be easily proved by direct
computation.

Lemma 2.1. Consider the invertible linear transformation
T : L ∞(0, L)×L ∞(0, L) → L ∞(0, L)×L ∞(0, L) such
that

(
ṽ

P̃

)
= T

(
R1

R2

)
=




1

2
√
γPρ

− 1

2
√
γPρ

1

2

1

2




(
R1

R2

)
.

The transformed linear system from (12)-(13) with bound-
ary conditions (15) is written as follows

∂tR1 + λ∂xR1 = βδ(x− x0)Q̃R, (16)

∂tR2 − λ∂xR2 = βδ(x− x0)Q̃R, (17)

R1(t, 0) = −R2(t, 0) + 2u(t), (18)

R2(t, L) = −R1(t, L). (19)

with λ =
√

γP
ρ , Q̃R = R1 −R2 and β = γf ′(v)(Tw−T )

2A
√

γPρ
.

Note that in this new framework, the wave equation (12)-
(13) is represented as two transport PDEs convecting in
opposite directions at the speed of sound. The boundary

2 Define m̃ � ṽ/c, r̃ � ρ̃/ρ, ψ̃ � P̃ /P . Then, Eq. (14) rewritten to
Q̃ = f(v)T r̃+cf ′(v)(Tw −T )m̃−f(v)T ψ̃. Comparing the gains of r̃,

m̃ and ψ̃ leads to
f(v)T

cf ′(v)(Tw−T )
= 2 T

(Tw−T )

(
κ

κv

√
v
+ 1

)
v
c

≈ v
c
.

Therefore, the velocity fluctuations have, by a factor of approxi-
mately v

c
, greater influence on the heat transfer than the pressure

and density.

conditions (18)-(19) account for the reflection of the wave
at x = 0 and x = L, respectively.

2.3 Solutions and stability analysis

The solution of (16)-(19) can be obtained by applying the
method of characteristics. To do that, we first restate these
equations by changing the status of t and x, in order to
obtain a solution parametrized w.r.t. space:

1

λ
∂tR1 + ∂xR1 =

β

λ
δ(x− x0)Q̃R, (20)

1

λ
∂tR2 − ∂xR2 =

β

λ
δ(x− x0)Q̃R. (21)

Consider any initial condition (R0
1, R

0
2)

T ∈ L ∞((0, L);R2)
and define the characteristic curves (τ1(t, x; ·), τ2(t, x; ·))
corresponding to equations (20)-(21) as

dτ1
ds

(x, t; s) =
1

λ
, s ∈ [0, L], τ1(x, t; 0) = τ01 ,

dτ2
ds

(x, t; s) = − 1

λ
, s ∈ [0, L], τ2(x, t; 0) = τ02 .

Then, integrating (20)-(21) along these characteristic lines
and plugging the boundary conditions yields, for t > L

λ , in
the following expressions:

• For x < x0

R1(t, x) = u∗
(
t− x

λ

)
(22)

R2(t, x) = −R1

(
t+

x− L

λ
,L

)
+

β

λ
Q̃R

(
t+

x− x0

λ

)

(23)

• For x ≥ x0

R1(t, x) = u∗
(
t− x

λ

)
+

β

λ
Q̃R

(
t− x− x0

λ

)
(24)

R2(t, x) = −R1

(
t+

x− L

λ
,L

)
(25)

where u∗(t) = −R2 (t, 0) + 2u (t).

From the explicit solution shown above we have that, for
x ∈ [0, x0), R1(t, ·) is a delay of its boundary condition,
but at the point x0 there is a jump (discontinuity) in the
solution of R1, which will propagate for x ∈ (x0, L] without
change of shape. The same behavior occurs for R2, but
with opposite direction. As we shall see in the following
proposition, the system can becomes unstable depending
on the amplitude of this jump.

Proposition 2.1. Consider the system (16)-(18) with initial
condition (R0

1, R
0
2)

T ∈ L ∞((0, L);R2). Then, if u∗(t) = 0,

the zero equilibrium-point of (16)-(18) is unstable if β
λ > 1,

stable if β
λ < 1 and neutrally stable if β = λ.

Proof. It is sufficient to concentrate our analysis in the
behavior of the term Q̃R(t) = (R1 (t, x0)−R2 (t, x0)) to
conclude about the stability of (16)-(19). Notice that we

can write Q̃R as a function of the boundary values, i.e.,

Q̃R(t) = u∗
(
t− x0

λ

)
+R1

(
t+

x0 − L

λ
, L

)
.

Using (24) and the fact that u∗(t) = 0 by hypothesis, the
above equation is rewritten to
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of the velocity is neglected, then the linearization would
result invalid, since the derivative of

√
| · | is discontinuous

at 0. The importance of considering v �= 0 in the heat
release lies in moving to the differentiable part of the
square root function.

In turn, the linearization of (5), considering T = P
ρR , is

given by

Q̃ = f(v)
T

ρ
ρ̃+ f ′(v)(Tw − T )ṽ − f(v)

T

P
P̃ , (14)

where f(v) = lw(κ+ κv

√
|v|) and T = P/(ρR).

The above equation shows the influence of each state
variable on the heat transfer process. Performing a change
of variable in ṽ, ρ̃ and P̃ , in order to turn them dimen-
sionless quantities, it is possible to compare the size of
the gain in the above equation 2 . This analysis shows that
the velocity fluctuations are the main driver of the heat
dynamics for subsonic flow. Therefore, it is reasonable to
drop out the density and pressure fluctuations influence of
(14), resulting in

Q̃ ≈ f ′(v)(Tw − T )ṽ.

Besides, the boundary conditions (4) linearized around an
equilibrium point can be written as

P̃ (t, 0) = u(t), P̃ (t, L) = 0. (15)

2.2 Model in terms of characteristic coordinates

In this section, we will reformulate the system (12)-
(13) with boundary conditions (15) by introducing the
characteristic coordinates. This result is presented in the
following lemma, which can be easily proved by direct
computation.

Lemma 2.1. Consider the invertible linear transformation
T : L ∞(0, L)×L ∞(0, L) → L ∞(0, L)×L ∞(0, L) such
that

(
ṽ

P̃

)
= T

(
R1

R2

)
=




1

2
√
γPρ

− 1

2
√
γPρ

1

2

1

2




(
R1

R2

)
.

The transformed linear system from (12)-(13) with bound-
ary conditions (15) is written as follows

∂tR1 + λ∂xR1 = βδ(x− x0)Q̃R, (16)

∂tR2 − λ∂xR2 = βδ(x− x0)Q̃R, (17)

R1(t, 0) = −R2(t, 0) + 2u(t), (18)

R2(t, L) = −R1(t, L). (19)

with λ =
√

γP
ρ , Q̃R = R1 −R2 and β = γf ′(v)(Tw−T )

2A
√

γPρ
.

Note that in this new framework, the wave equation (12)-
(13) is represented as two transport PDEs convecting in
opposite directions at the speed of sound. The boundary

2 Define m̃ � ṽ/c, r̃ � ρ̃/ρ, ψ̃ � P̃ /P . Then, Eq. (14) rewritten to
Q̃ = f(v)T r̃+cf ′(v)(Tw −T )m̃−f(v)T ψ̃. Comparing the gains of r̃,

m̃ and ψ̃ leads to
f(v)T

cf ′(v)(Tw−T )
= 2 T

(Tw−T )

(
κ

κv

√
v
+ 1

)
v
c

≈ v
c
.

Therefore, the velocity fluctuations have, by a factor of approxi-
mately v

c
, greater influence on the heat transfer than the pressure

and density.

conditions (18)-(19) account for the reflection of the wave
at x = 0 and x = L, respectively.

2.3 Solutions and stability analysis

The solution of (16)-(19) can be obtained by applying the
method of characteristics. To do that, we first restate these
equations by changing the status of t and x, in order to
obtain a solution parametrized w.r.t. space:

1

λ
∂tR1 + ∂xR1 =

β

λ
δ(x− x0)Q̃R, (20)

1

λ
∂tR2 − ∂xR2 =

β

λ
δ(x− x0)Q̃R. (21)

Consider any initial condition (R0
1, R

0
2)

T ∈ L ∞((0, L);R2)
and define the characteristic curves (τ1(t, x; ·), τ2(t, x; ·))
corresponding to equations (20)-(21) as

dτ1
ds

(x, t; s) =
1

λ
, s ∈ [0, L], τ1(x, t; 0) = τ01 ,

dτ2
ds

(x, t; s) = − 1

λ
, s ∈ [0, L], τ2(x, t; 0) = τ02 .

Then, integrating (20)-(21) along these characteristic lines
and plugging the boundary conditions yields, for t > L

λ , in
the following expressions:

• For x < x0

R1(t, x) = u∗
(
t− x

λ

)
(22)

R2(t, x) = −R1

(
t+

x− L

λ
,L

)
+

β

λ
Q̃R

(
t+

x− x0

λ

)

(23)

• For x ≥ x0

R1(t, x) = u∗
(
t− x

λ

)
+

β

λ
Q̃R

(
t− x− x0

λ

)
(24)

R2(t, x) = −R1

(
t+

x− L

λ
,L

)
(25)

where u∗(t) = −R2 (t, 0) + 2u (t).

From the explicit solution shown above we have that, for
x ∈ [0, x0), R1(t, ·) is a delay of its boundary condition,
but at the point x0 there is a jump (discontinuity) in the
solution of R1, which will propagate for x ∈ (x0, L] without
change of shape. The same behavior occurs for R2, but
with opposite direction. As we shall see in the following
proposition, the system can becomes unstable depending
on the amplitude of this jump.

Proposition 2.1. Consider the system (16)-(18) with initial
condition (R0

1, R
0
2)

T ∈ L ∞((0, L);R2). Then, if u∗(t) = 0,

the zero equilibrium-point of (16)-(18) is unstable if β
λ > 1,

stable if β
λ < 1 and neutrally stable if β = λ.

Proof. It is sufficient to concentrate our analysis in the
behavior of the term Q̃R(t) = (R1 (t, x0)−R2 (t, x0)) to
conclude about the stability of (16)-(19). Notice that we

can write Q̃R as a function of the boundary values, i.e.,

Q̃R(t) = u∗
(
t− x0

λ

)
+R1

(
t+

x0 − L

λ
, L

)
.

Using (24) and the fact that u∗(t) = 0 by hypothesis, the
above equation is rewritten to
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Fig. 2. Block diagram of the closed-loop system with the
proposed control strategy. Note that this diagram
has the only purpose of showing the variables used
to calculate the control law. In the Rijke tube is
not possible to directly measure Q(t). 3.1 gives some
comments to overcome this issue.

Q̃R(t) =
β

λ
Q̃R

(
t− 2

L− x0

λ

)
. (26)

From the above equation, it follows that the right hand
side will decrease if β

λ < 1, and therefore the zero
equilibrium-point of the system is asymptotically stable.
On the other hand, if β

λ > 1, the right hand side of (26)
will keep amplifying and therefore the zero equilibrium-
point is unstable. In the special case where β = λ the
system is neutrally stable. This conclude the proof.

3. CONTROL DESIGN

In this section, we describe the proposed control system
to stabilize the thermoacoustic phenomenon in the Rijke
tube. Based on Proposition 2.1, we want to set u∗, such
that Q̃R and u∗ converge to zero as time grows. Then, the
order of the transport speeds of system (16)-(17) yields
that R1 goes to zero and therefore R2 goes to zero. Note
that our design considers u∗, but ultimately the control

law would be u(t) = u∗(t)+R2(t,0)
2 . The block diagram of

the proposed control structure is illustrated in Fig. 2.

Remark 3.1. the proposed control strategy requires the
measurement of the system states at the point x0, which is
not a realistic scenario since the Rijke tube is only equiped
with a pressure sensor located near the top of the tube (see
Section 2). Therefore, a state observer together with the
control law would have to be used in practice.

For the proposed control strategy, we consider the follow-
ing a priori assumption for the heat release position, which
is typically fulfilled in practice.

Assumption 3.1. The heater position satisfies the inequal-
ity x0 < 2

3L.

As we shall see, this assumption is crucial to guarantee the
causality of the proposed control system. If the assumption
is not verified, it is possible to construct a more complex

control law that stabilizes the system following a similar
procedure.

In the following lemma, we present the open-loop discrete
transfer-function between u∗ and Q̃R, which allow us to
design the control law in the discrete time domain.

Lemma 3.1. Consider the system (16)-(19) and let z−1

be the delay operator associated with the sampling time
Ts = 2L−x0

λ . Then, the discrete transfer-function G(z)

relating u∗ and Q̃R is given by

G(z) =
1 + z−1

1− β
λz

−1
.

Proof. For sake of simplicity in the following calculations,
define α = 2L−x0

λ . Note that for any t = τ+ x0

λ , where τ is
any fixed value in the closed interval [0, α], the expression

of Q̃R can be written as

Q̃R (τ + (n+ 1)α) = u∗
(
τ − x0

λ
+ (n+ 1)α

)
+

u∗
(
τ − x0

λ
+ nα

)
+

β

λ
Q̃R (τ + nα) .

where n ∈ N.

Define un �
(
τ − x0

λ + (n+ 1)α
)
and Q̃R,n � Q̃R(τ +

(n+1)α). Then, the above equation can be rewritten as a
sequence with sampling time Ts = α:

Q̃R,n = û∗
n + û∗

n−1 +
β

λ
Q̃R,n−1. (27)

Applying the Z-transform into (27) we obtain

Q̃R(z) = u∗(z) + z−1u∗(z) +
β

λ
z−1Q̃R(z),

or

G(z) =
Q̃R(z)

u∗(z)
=

1 + z−1

1− β
λz

−1
. (28)

This concludes the proof.

Using the transfer function (28) we can apply a pole-
placement design to fix a discrete controller u∗ = C(z)
which give us:

• a stable closed-loop system Gc(z) =
G(z)

1−G(z)C(z) ;

• a stable controller response (C(z) is stable).

In this work, we choose the controller structure C(z) =
az−1

1+bz−1 , where the controller stability condition is that b is
inside the unit circle, i.e., −1 < b < 1. For this case, the
closed-loop transfer-function is

Gc(z) =
z2 + (1 + b)z + b

z2 +
(
b− β

λ − a
)
z −

(
a+ bβλ

) .

Then, supposing the desired closed-loop characteristic
polynomial given by (1 − kz−1)2, with k ∈ (−1, 1), we
can write a and b as

b = 1− (k + 1)2

β
λ + 1

, a = −
(k − β

λ )
2

β
λ + 1

. (29)

To guarantee the stability of C we need b ∈ (−1, 1), and
at the same time k ∈ (−1, 1). But,
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(a) Evolution of ṽ(t, x), for x ∈ [0, x0), under the boundary feedback
controller.

(b) Evolution of ṽ(t, x), for x ∈ (x0, L], under the boundary feedback
controller.

(c) Evolution of P̃ (t, x), for x ∈ [0, x0), under the boundary feedback
controller.

(d) Evolution of P̃ (t, x), for x ∈ (x0, L], under the boundary feedback
controller

Fig. 3. Time evolution of the state profiles ṽ and P̃ . The boundary feedback controller is turned on after t = 0.0045 s.

−1 < 1− (k + 1)2

β
λ + 1

< 1 ⇔ −2 < − (k + 1)2

β
λ + 1

< 0.

Since β
λ + 1 > 0, then −(k + 1)2 < 0 is verified. In turn,

the first inequality is reduced to k <
√
2(βλ + 1)−1, which

certainly can be satisfied by choosing k as close to −1 as
necessary.

The control law is then

û∗(z) =
az−1

1 + bz−1
Q̃R(z),

or

û∗
n = −bû∗

n−1 + aQ̃R,n−1, (30)

which translates into

u∗(t) =




0, t < α− x0

λ
−bu∗(t− α) + aQ̃R

(
t− α+

x0

λ

)
, t ≥ α− x0

λ
.

(31)

Remark 3.2. The control law (31) is causal if and only if
α−x0/λ is positive, i.e., x0 < 2

3L, which is satisfied thanks
to the Assumption 3.1.

Remark 3.3. Note that the discrete transfer functions
G(z) and C(z) are valid for any real value of τ ∈ [0, α].
Therefore using a continuity argument in τ we can trans-
late the control law (30) to the continuous time domain
(31), and consequently the analysis of stability of Gc in
continuous time domain.

From the linear control theory, we have guaranteed that
Q̃R(t) → 0 and u∗(t) → 0 as t → ∞. Therefore, using (22)-

(25) to bound R1 and R2 in terms of u∗ and Q̃R, and from
the stabilization properties of the control law, it is easy to
show that there exist positive constants C, ν such that,
for any initial condition (R0

1, R
0
2)

T ∈ L ∞((0, L);R2), the
solution of (16)-(19), under the control law (31) satisfies

‖ (R1(t, ·), R2(t, ·))T ‖L∞((0,L);R2)≤
C exp(−νt) ‖ (R0

1, R
0
2)

T ‖L∞((0,L);R2) . (32)
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α−x0/λ is positive, i.e., x0 < 2

3L, which is satisfied thanks
to the Assumption 3.1.

Remark 3.3. Note that the discrete transfer functions
G(z) and C(z) are valid for any real value of τ ∈ [0, α].
Therefore using a continuity argument in τ we can trans-
late the control law (30) to the continuous time domain
(31), and consequently the analysis of stability of Gc in
continuous time domain.

From the linear control theory, we have guaranteed that
Q̃R(t) → 0 and u∗(t) → 0 as t → ∞. Therefore, using (22)-

(25) to bound R1 and R2 in terms of u∗ and Q̃R, and from
the stabilization properties of the control law, it is easy to
show that there exist positive constants C, ν such that,
for any initial condition (R0

1, R
0
2)

T ∈ L ∞((0, L);R2), the
solution of (16)-(19), under the control law (31) satisfies

‖ (R1(t, ·), R2(t, ·))T ‖L∞((0,L);R2)≤
C exp(−νt) ‖ (R0

1, R
0
2)

T ‖L∞((0,L);R2) . (32)
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Table 1. Values of the parameters of the sys-
tem.

Symbol Description Value

ρ Density 1.2 kg/m3

P Pressure 105 N/m2

v Velocity 0.5 m/s
γ Adiabatic ratio 1.4
γ - 0.4
R Ideal gas constant 290 J/(kg K)
L Tube length 1.219 m
d Tube diameter 0.0762 m

x0 Heater position 1
4
L

β
λ

- 1.1

With this result, we have proved the following theorem.

Theorem 3.1. Consider the system (16)-(19), with initial
condition (R0

1, R
0
2)

T ∈ L ∞((0, L);R2) and under the
control law (31), where k ∈ (−1, 1), and a and b are defined
by (29). Then, there exist constants C, ν > 0 such that the
inequality (32) is satisfied.

4. SIMULATION RESULTS

This section shows the simulation results obtained when
using the proposed controller to stabilize the linear model
(16)-(19). To find the numerical solution of these equa-
tions, the HPDE solver for Matlab (Shampine, 2005) was
used. The Rijke system parameters used in the simulation
are shown in Table 1. Moreover, it was considered that the
values of the states at the point x0 are available for the
control law, since the design of a state observer is out of
the scope of this work. The control parameters are k = 0.5,
a = −0.17 and b = −0.07.

Figures 3 and 4 depict the time domain simulation of the
system with the proposed control law. At t = 0.0045 s, the
control law was switched on. As can be seen the system
converges asymptotically to zero as time goes to infinity
after an initial overshoot.

5. CONCLUSIONS

In this paper we have addressed the issue of boundary
feedback stabilization of thermoacoustic oscillations in the
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Fig. 4. Control input. The controller is turned on at
t = 0.0045 s.

Rijke tube. Using characteristic coordinates allowed us to
rewrite the system in a system of two delay elements.
Interestingly, in this framework a discrete transfer function
relating u∗ and QR can be obtained by analysing the
periodicity of the solution. Then, a control law based on
the discrete time domain was proposed, where explicit
sufficient conditions to achieve exponential stability in
L ∞-norm have been provided.

Future works include the design of a state observer, which
will allow us to consider an output-feedback controller.
Moreover, we assumed that the heater position satisfies
the inequality x0 < 2

3L. This assumption is crucial to
guarantee the causality of the proposed control law. The
general case will be covered in a future work.

Other directions of future work includes the improvement
of the heating release model used in this work by adding
a phase lag on its expression. The presented model can
induces non-modeled sources of uncertainty in the control
law when tested on practice. For this reason, further
analysis is required to quantify the impact of modelling
errors and the robustness of the proposed approach.
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