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Abstract: This paper is concerned with boundary stabilization of thermoacoustic oscillations
in the Rijke tube. This system consists of a vertical tube open in both ends and a heater
placed in the lower half of the tube. A speaker placed under the tube is used as actuator while
a microphone placed near the top of the tube provides the pressure measurement. To study
this problem we consider that the mathematical model takes the form of two interconnected
compartments: one for the cold zone and other for the hot zone. The control input is applied on
the left boundary condition of the cold zone. From this model we derive an irrational transfer
function to design a stabilizing boundary control in the frequency domain. In particular, we
derive necessary and sufficient conditions for the input-output stability through the use of
Nyquist-type test. Experimental results show the effectiveness and real-life applicability of the
method.
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1. INTRODUCTION

In this paper, we investigate boundary stabilization of
thermoacoustic oscillations. First a theoretical model is
rigorously studied to obtain stabilizing control laws, which
are later tested in an experimental setting. The phe-
nomenon of thermoacoustic oscillations is described by
high levels of sound produced due to the feedback between
heat release rate fluctuations and acoustic pressure fluctu-
ations in confined spaces.

The Rijke tube serves as a convenient prototype system
to study thermoacoustic phenomena. A Rijke tube is a
vertical tube, typically made of glass, open on both ends
and with a heating element placed towards the lower end.
A speaker, placed at a slight distance under the tube, is
used as actuator, and a microphone located near the top
of the tube is used as sensor. The mathematical model
of the Rijke tube take a form of two interconnected com-
partments: a cold zone below the heater and a hot zone
above it. These parts are given by the Euler equations of
gas dynamics. The heater is introduced as an interaction
between the pressure and velocity field of these compo-
nents. Furthermore, the control variable is considered as
a boundary condition for the pressure in cold zone. De-
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pending on the steady-state conditions about which the
Euler equations are linearized, the resulting linearization
is a linear first-order partial differential equation (PDE)
that behaves like a wave equation and thus describes
acoustic wave propagation (de Andrade et al., 2016). The
linearization of this model leads to the system considered
throughout this paper.

Many authors contributed to the control of thermoacous-
tic instabilities. The contributions range from phase shift
controllers (Heckl, 1988) to LQG controllers (Murugappan
et al., 2003) or H∞ robust controllers (Campos-Delgado
et al., 2003). Most of these works use a finite dimensional
approximation of the system to design controllers. Recent
approaches took into account distributed feature of the
system, for example either by using a PI controller (Krstic
et al., 1999), or by a Riemann invariant approach (de An-
drade et al., 2016).

In this work we consider a control methodology based on
a frequency domain approach. Starting from the linearized
PDE system in a steady-state regime, we apply the Laplace
transform to consider the linearized PDE in the frequency
domain, and classical frequency domain tools are used
to design the controller in a similar way as for systems
represented by rational transfer functions. Our objective
in this paper is to consider this approach with a rigorous
perspective, and to show what can effectively be guaran-
teed by using such a frequency domain approach for the
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(e-mail: gustavo.artur@posgrad.ufsc.br, daniel.pagano@ufsc.br)
∗∗ Department of Aerospace Engineering, Universidad de Sevilla,

Camino de los Descubrimientos, s.n.,41092 Sevilla, Spain
(e-mail: rvazquez1@us.es)

Abstract: This paper is concerned with boundary stabilization of thermoacoustic oscillations
in the Rijke tube. This system consists of a vertical tube open in both ends and a heater
placed in the lower half of the tube. A speaker placed under the tube is used as actuator while
a microphone placed near the top of the tube provides the pressure measurement. To study
this problem we consider that the mathematical model takes the form of two interconnected
compartments: one for the cold zone and other for the hot zone. The control input is applied on
the left boundary condition of the cold zone. From this model we derive an irrational transfer
function to design a stabilizing boundary control in the frequency domain. In particular, we
derive necessary and sufficient conditions for the input-output stability through the use of
Nyquist-type test. Experimental results show the effectiveness and real-life applicability of the
method.

Keywords: Partial differential equations, stabilization, Frequency domain, Irrational transfer
functions, Nyquist stability criterion, Thermoacoustic oscillations

1. INTRODUCTION

In this paper, we investigate boundary stabilization of
thermoacoustic oscillations. First a theoretical model is
rigorously studied to obtain stabilizing control laws, which
are later tested in an experimental setting. The phe-
nomenon of thermoacoustic oscillations is described by
high levels of sound produced due to the feedback between
heat release rate fluctuations and acoustic pressure fluctu-
ations in confined spaces.

The Rijke tube serves as a convenient prototype system
to study thermoacoustic phenomena. A Rijke tube is a
vertical tube, typically made of glass, open on both ends
and with a heating element placed towards the lower end.
A speaker, placed at a slight distance under the tube, is
used as actuator, and a microphone located near the top
of the tube is used as sensor. The mathematical model
of the Rijke tube take a form of two interconnected com-
partments: a cold zone below the heater and a hot zone
above it. These parts are given by the Euler equations of
gas dynamics. The heater is introduced as an interaction
between the pressure and velocity field of these compo-
nents. Furthermore, the control variable is considered as
a boundary condition for the pressure in cold zone. De-

� This work has been partially funded by the following projects:
MTM2015-65608-P financed by Spanish Ministerio de Economı́a
y Competitividad and by CNPq-BRASIL under the grant
438387/2016-3.

pending on the steady-state conditions about which the
Euler equations are linearized, the resulting linearization
is a linear first-order partial differential equation (PDE)
that behaves like a wave equation and thus describes
acoustic wave propagation (de Andrade et al., 2016). The
linearization of this model leads to the system considered
throughout this paper.

Many authors contributed to the control of thermoacous-
tic instabilities. The contributions range from phase shift
controllers (Heckl, 1988) to LQG controllers (Murugappan
et al., 2003) or H∞ robust controllers (Campos-Delgado
et al., 2003). Most of these works use a finite dimensional
approximation of the system to design controllers. Recent
approaches took into account distributed feature of the
system, for example either by using a PI controller (Krstic
et al., 1999), or by a Riemann invariant approach (de An-
drade et al., 2016).

In this work we consider a control methodology based on
a frequency domain approach. Starting from the linearized
PDE system in a steady-state regime, we apply the Laplace
transform to consider the linearized PDE in the frequency
domain, and classical frequency domain tools are used
to design the controller in a similar way as for systems
represented by rational transfer functions. Our objective
in this paper is to consider this approach with a rigorous
perspective, and to show what can effectively be guaran-
teed by using such a frequency domain approach for the

Proceedings of the 20th World Congress
The International Federation of Automatic Control
Toulouse, France, July 9-14, 2017

Copyright © 2017 IFAC 4624

Boundary control of a Rijke Tube using

irrational transfer functions with

experimental validation

Gustavo A. de Andrade ∗ Rafael Vazquez ∗∗

Daniel J. Pagano ∗

∗ Department of Automation and Systems, Universidade Federal de
Santa Catarina, 88040-900, Florianópolis, SC, Brazil
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Rijke tube by considering an infinite dimensional model.
Moreover, we test the proposed control methodology in a
experimental setup to show its effectiveness and real-life
applicability of the method.

The paper is organized as follows. Section 2 presents the
description of thermoacoustic oscillations, the Rijke tube,
its linearized mathematical model and the characterization
of the transfer function. The closed loop system and its
stability is studied in Section 3. The experimental results
are shown in Section 4. Finally, the main conclusions are
presented in Section 5.

Notation The set of real numbers is denoted by R. The
set of positive integers is denoted by N. We denote C as
the set of complex numbers and C+ all complex numbers
with real part larger than or equal zero. By s we denote
the complex variable, that is, s = σ + jω, with σ and ω
real numbers and j2 = −1. By H∞, we denote the Hilbert
space H∞ = {u : C+ → C|u analytic and sup

Re(s)>0

|u(s)| <

∞}, with norm ‖u‖∞ = sup
Re(s)>0

|u(s)|. The Hilbert space of

measurable and square integrable L2-functions is denoted
by L2(0, ∞) =

{
u : [0, ∞) → C|

∫∞
0

|u(t)|2dt < ∞
}
, with

the L2-norm ‖u‖2 =
(∫∞

0
|u(t)|2

)1/2
. The class of continu-

ously differentiable functions from [a, b] to Rn is denoted
by C1([a, b];Rn).

2. SYSTEM DESCRIPTION

2.1 The Rijke tube

In this work, all the experiments were performed on a
simple 1.3 meter long glass tube with an electrical heating
element made of nichrome wire coil. The power is delivered
into the coil using a DC power supply with power output
360 W. The location of the electrical heating element was
chosen to be a quarter of the tube length. The sound
pressure in the tube is measured with a clip-on microphone
with built-in preamplifier. This signal is sent to a control
computer through a data acquisition device. The control
system is implemented as part of a SCADA program
based on a LabVIEW software. In such configuration the
control algorithm is implemented as a Matlab function
executed from the SCADA program. For the closed-loop
experiments it was used a 30 W ceiling speaker as the
actuator together with a linear amplifier. A schematic of
the Rijke tube is depicted in Figure 1.

2.2 The thermoacoustic phenomenon

In the Rijke tube, the heat source transfer heat to the air in
the tube, making the air to rise up and creating an upward
flow. The rising hot air becomes dense by coming in
contact with the cooler walls of the upper half of the tube.
This means that in the lower half of the tube, the air always
experiences expansion, while in the upper part, the air
always experience compression. Moreover, according to the
Rayleigh’s criterion (Rayleigh, 1945), a standing pressure
wave is sustained if heat is added during condensation,
or be taken from it at the moment of rarefaction. On
the other hand, if heat is added during rarefaction, or

Fig. 1. Rijke tube schematic.

abstracted at the moment of condensation, the pressure
wave is discouraged. In mathematical terms, the Rayleigh’s
criterion is formulated in terms of the Rayleigh integral
over the control volume V given by

I =

∮

V

P̃ (t)Q̃(t)dt, (1)

where P̃ is the acoustic pressure fluctuation, Q̃ is the
fluctuation of heat power released in the heater, and t is
time. According to the Rayleigh’s criterion, if I < 0, the
pressure wave will be damped. If I > 0, then the pressure
wave will grow. Otherwise, if I = 0, the pressure wave will
neither be damped out nor amplified.

2.3 Mathematical model

The Rijke tube can be modeled as a heating section
embedded within a network of pipes. We assume that the
fluctuations of pressure and velocity occur only along the
axial direction. Therefore, the system can be described by
the one-dimensional mathematical model of compressible
gas dynamics. Furthermore, the heating release zone is
assumed to be located in a very narrow section.

The Rijke tube is composed of 2 compartments described
by the linearized Euler equations of gas dynamics:

∂tṽi(t, xi) +
1

ρ
∂xi P̃i(t, xi) = 0, (2)

∂tP̃i(t, xi) + γP∂xi ṽi(t, xi) = 0, (3)

i = 1, 2,

where t ∈ [0, +∞) is the time, x1 ∈ (−xu, 0), x2 ∈
(0, xd), xu, xd > 0, γ is the adiabatic ratio, P̃ is the
pressure fluctuation, and ṽ is the velocity fluctuation. The
steady-state density and pressure are denoted by ρ and
P , respectively. It is important to emphasize that in this
work the steady-state density, pressure and velocity are
assumed to be constant along the space. Furthermore,
the steady-state values are considered the same for both
compartments of the tube.

The initial condition is defined by

ṽi(0, xi) = ṽi,0(xi), P̃i(0, xi) = P̃i,0(xi),

i = 1, 2.

We represent the interconnection between the downstream
and upstream part of the system by the following algebraic
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relations, which can be directly obtained by linearizing the
equations conservation of mass, momentum and energy
across the heat zone x = 0,

P̃2(t, 0) + ρvṽ2(t, 0)− P̃1(t, 0)− ρvṽ1(t, 0) = 0, (4)

γ

γ − 1
vP̃2(t, 0) +

(
γ

γ − 1
P + ρv2

)
ṽ2(t, 0)−

γ

γ − 1
vP̃1(t, 0)−

(
γ

γ − 1
P 1 + ρv2

)
ṽ1(t, 0) =

Q̃

A
(t), (5)

where A is the cross-sectional area of the tube and Q̃
is the fluctuation of heat power released in the heater.
Following Epperlein et al. (2015), we assume that the
fluctuation of heat power is expressed by the following
ordinary differential equation (ODE)

thrQ̃
′(t) = −Q̃(t) + hv ṽ1(t, 0), (6)

where thr is the heat release time constant and hv is the
velocity-dependent heat transfer coefficient.

Moreover, the system (2)-(3) is subjected to the following
boundary conditions

P̃1(t,−xu) = U(t), P̃2(t, xd) = 0, (7)

where U is the control input.

The operational parameters used in this paper are shown
in Table 1.

Remark 1. In Heckl (1988) it was computed an explicit
estimation for the Rayleigh integral (1) from the equations
(2)-(7). The thermoacoustic oscillations amplitude grows
if the acoustic energy stored in the tube increases in time
average, i.e.,

γ − 1

ρc2
P̃ (0)

Q

A
> P̃ (L)ṽ(L)− P̃ (0)ṽ(0)+

ηLc

(
P̃ 2(0)

ρc2
+ ρũ2(0)

)
, (8)

where • is the mean value (in time) of its argument,

ηLc

(
P̃ 2(0)
ρc2 + ρũ2(0)

)
is the Stokes layer, and η is the

attenuation constant of the sound wave traveling along
the tube.

Well-posedness Without loss of generality, it can be
assumed that, by re-scaling the space variable, the two
counterparts of PDE (2)-(3) evolve in the domain from 0
to 1. Furthermore, in this framework it can be assumed

Table 1. Values of the parameters of the sys-
tem.

Symbol Description Value

ρ Density 1.2 kg/m3

P Pressure 105 N/m2

v Velocity 0.35 m/s
γ Adiabatic ratio 1.4
γ - 0.4
L Tube length 1.3 m

x0 Heater position 1
4
L

d Tube diameter 0.0762 m
Ru Reflection coefficient −0.95
Rd Reflection coefficient −0.95
thr Heat-release time constant 0.002
hv Velocity-dependent heat 200

transfer coefficient

that there are only coupling at the boundaries between
themselves. This leads to express the system (2)-(7) into

∂tξ(t, z) +A∂zξ(t, z) = 0,

ξ(0, t) = ξ0(z),

gL(ξ(t, z), U(t)) = 0, gR(ξ(t, 1)) = 0, (9)

where ξ = (P̃1, ṽ1, P̃2, ṽ2), z ∈ [0, 1] is the re-scaled
space variable, gL and gR are the left and right boundary
conditions, ξ0 is the initial condition and A is a matrix
with real coefficients. We omit the explicit expression of
A, gL and gR due to lack of space.

The existence and uniqueness of the solution of system
(9) can be proved by the method of characteristics, which
enables us to restate the PDE as a set of classical ODEs.
Then, if ξ0 and U are continuously differentiable functions
of their arguments and if ξ0 and the boundary conditions
verify conditions of C1 compatibility, one can show that
the solutions of the system are continuously differentiable
with respect to their arguments, i.e., ξ ∈ C1([0, 1] ×
[0, ∞);R4). Moreover, based on an extension of Litrico
and Fromion (2009), there exist M > 0 and η such
that for any t ∈ [0,∞), any ξ ∈ C1([0, 1];R6) and any
U (t) ∈ L2([0, t];R4) ∩ C1([0, t],R4), there exists Kt such
that

‖ξ(·, t)‖L2([0, 1];R4) +
∣∣∣Q̃(t)

∣∣∣ ≤ Meηt
(
‖ξ0‖L2([0, 1];R4) +∣∣∣Q̃(0)
∣∣∣
)
+Kt

∥∥∥U (t)
∥∥∥
2
,

where U (t) denotes the restriction of U to [0, t].

2.4 Open-loop transfer function

The well-posedness of the solution enables us to use a
frequency domain approach. We start by applying the
Laplace transform to (2)-(7) in order to obtain a transfer
function G(s) from the speaker to the microphone pres-
sure. To derive this transfer function, note that equations
(2)-(3) represent the wave equation. To see that, take
both a time and space derivative in (3) and subtract the
resulting expressions. One obtains

∂ttP̃i(t, xi) = c2∂xixi P̃i(t, xi), i = 1, 2, (10)

where c =
√
γ P

ρ is the speed of sound.

It is well known that the solution of (10) is given by the
d’Alambert formula (Evans, 2010). Therefore, the acoustic
pressure in the upstream propagates according to

P̃1(t, x) = f
(
t− x

c

)
+ g

(
t+

x

c

)
, −xu < x < 0, (11)

and similarly to the downstream side

P̃2(t, x) = h
(
t− x

c

)
+ j

(
t+

x

c

)
, 0 < x < xd, (12)

where f , g, h, j are functions which satisfy the boundary
and initial conditions.

Substituting (11)-(12) into (2) and integrating over time,
we get the expression of the velocity fluctuations at the
upstream and downstream part of the tube:
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ṽ1(t, x) =
1

ρc

(
f
(
t− x

c

)
− g

(
t+

x

c

))
, −xu < x < 0,

(13)

ṽ2(t, x) =
1

ρc

(
h
(
t− x

c

)
− j

(
t+

x

c

))
, 0 > x > xd.

(14)

From the boundary conditions (7), we get f(t) =
−g

(
t− 2xu

c

)
+ U(t− xu

c ) and j(t) = −h
(
t− 2xd

c

)
. These

reflections at tube ends are modeled for ideal condition.
A more realistic model should include acoustic reflection
losses at the boundary. Therefore, we introduce the con-
stants Ru, Rd ∈ (−1, 0) to account for acoustic reflection
losses. It follows that these boundary conditions are rewrit-
ten to

f(t) = Rug (t− τu) + U
(
t− τu

2

)
, (15)

j(t) = Rdh (t− τd) , (16)

where τu = 2xu

c and τd = 2xd

c .

The open-loop transfer function required, G(s), is from the
speaker to the microphone pressure. This can be obtained
by considering x = 0 and substituting (11)-(16) into
(4)-(5), and applying the Laplace transform into these
equations. After some algebraic manipulations we obtain
the final expression for the required transfer-function:

G(s) =
Pmic(s)

U(s)
= −2e−(

xu+xmic
c )s

(γ − 1) det(S)
×

(
1 +Rde

2
(

xmic−xd
c

)
s

)
(1 + (γ − 1)φ(s)), (17)

where Pmic and U are the Laplace transform of P̃2(t, xmic)
and U , respectively, xmic ∈ (0, xd) is the location of the
microphone, φ(s) = hv

thrs+1 and

S =




−1−Rue
−τus 1 +Rde

−τds

(1−Rue
−τus)

γ − 1
(1 + (γ − 1)φ(s))

1−Rde
−τds

γ − 1


 .

Poles of the open-loop system The poles of G(s) char-
acterize the open-loop dynamic behavior of the linearized
system. They are given by the solutions of the following
equation:

ψ(s) � (1−Rde
−τus)(1−Rde

−τds)−
(1−Rue

−τus)(τs+ 1 + (γ − 1)hv)(1 +Rde
−τds) = 0.

(18)

In general, this equation has no explicit solution. Numer-
ical resolution for the values in Table 1 leads to the poles
depicted in Figure 2. As can be seen, there is a pair of
unstable complex conjugated poles at the frequency 131
Hz, and infinite poles on the left hand side of the complex
plane. The following proposition provides a closed solution
of (18) to explain the poles behavior for high frequency, in
which the proof was omitted due to lack of space.

Proposition 2. When |s| � 0, the solutions of (18) tend
asymptotically towards

p̃±k =
log(RuRd)

τu + τd
± 2jπk

τu + τd
, (19)

where k ∈ N, and the approximation error is at the first-
order given by:
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Fig. 2. Location of the poles of the open-loop transfer
function (17). They were calculated numerically by
finding roots of (17). Note that there is an unstable
pole at 131 Hz, and infinite stable poles that tend
asymptotically towards (19).

p±k ≈ p̃±k − ψ(p̃±k)

ψ′(p̃±k)
. (20)

Figure 3 shows the open-loop frequency response for the
model (17) and the real experiment described in Section
2 over the frequency range 100− 900 Hz. As can be seen,
by comparing Figure 3(a) and Figure 3(b), the response
of the irrational transfer function (17) and the real system
are very similar in the frequency range of interest.

3. CLOSED-LOOP SYSTEM

3.1 Proposed control law

As shown in Equation (8), the thermoacoustic oscillation
in the Rijke tube occurs when acoustic energy is greater
than the loss. The gain and loss of energy depend on the
acoustic field. However, conditions can change completely
if the field in the tube is disturbed by a different sound
source, which in this work is produced by a loudspeaker.
The inclusion of a sound source changes the difference
between energy gain and loss, which can become larger
or smaller than the unperturbed acoustic field. Therefore,
it is reasonable to consider the control law given by

u(t) = KcP̃ (t− τc, xmic), (21)

where Kc and τc are design parameters. Note that with
this control law the loudspeaker reproduces an amplified
and delayed pressure wave of the tube.

3.2 Stability analysis

In this work, the following definition of stability is adopted.

Definition 3. If a system maps every input u in L2(0, ∞)
to an output y in L2(0, ∞) and

sup
u�=0

‖y‖2
‖u‖2

< ∞,

the system is stable. A system is said to be unstable if it
is not stable.

Remark 4. Stability of systems described by their transfer
functions can be checked by Theorem A.2 of Curtain and
Morris (2009). In this case, a linear system is stable if and
only if its transfer function G belongs to H∞.
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ṽ1(t, x) =
1

ρc

(
f
(
t− x

c

)
− g

(
t+

x

c

))
, −xu < x < 0,

(13)

ṽ2(t, x) =
1

ρc

(
h
(
t− x

c

)
− j

(
t+

x

c

))
, 0 > x > xd.

(14)

From the boundary conditions (7), we get f(t) =
−g

(
t− 2xu

c

)
+ U(t− xu

c ) and j(t) = −h
(
t− 2xd

c

)
. These

reflections at tube ends are modeled for ideal condition.
A more realistic model should include acoustic reflection
losses at the boundary. Therefore, we introduce the con-
stants Ru, Rd ∈ (−1, 0) to account for acoustic reflection
losses. It follows that these boundary conditions are rewrit-
ten to

f(t) = Rug (t− τu) + U
(
t− τu

2

)
, (15)

j(t) = Rdh (t− τd) , (16)

where τu = 2xu

c and τd = 2xd

c .

The open-loop transfer function required, G(s), is from the
speaker to the microphone pressure. This can be obtained
by considering x = 0 and substituting (11)-(16) into
(4)-(5), and applying the Laplace transform into these
equations. After some algebraic manipulations we obtain
the final expression for the required transfer-function:

G(s) =
Pmic(s)

U(s)
= −2e−(

xu+xmic
c )s

(γ − 1) det(S)
×

(
1 +Rde

2
(

xmic−xd
c

)
s

)
(1 + (γ − 1)φ(s)), (17)

where Pmic and U are the Laplace transform of P̃2(t, xmic)
and U , respectively, xmic ∈ (0, xd) is the location of the
microphone, φ(s) = hv

thrs+1 and

S =




−1−Rue
−τus 1 +Rde

−τds

(1−Rue
−τus)

γ − 1
(1 + (γ − 1)φ(s))

1−Rde
−τds

γ − 1


 .

Poles of the open-loop system The poles of G(s) char-
acterize the open-loop dynamic behavior of the linearized
system. They are given by the solutions of the following
equation:

ψ(s) � (1−Rde
−τus)(1−Rde

−τds)−
(1−Rue

−τus)(τs+ 1 + (γ − 1)hv)(1 +Rde
−τds) = 0.

(18)

In general, this equation has no explicit solution. Numer-
ical resolution for the values in Table 1 leads to the poles
depicted in Figure 2. As can be seen, there is a pair of
unstable complex conjugated poles at the frequency 131
Hz, and infinite poles on the left hand side of the complex
plane. The following proposition provides a closed solution
of (18) to explain the poles behavior for high frequency, in
which the proof was omitted due to lack of space.

Proposition 2. When |s| � 0, the solutions of (18) tend
asymptotically towards

p̃±k =
log(RuRd)

τu + τd
± 2jπk

τu + τd
, (19)

where k ∈ N, and the approximation error is at the first-
order given by:
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Fig. 2. Location of the poles of the open-loop transfer
function (17). They were calculated numerically by
finding roots of (17). Note that there is an unstable
pole at 131 Hz, and infinite stable poles that tend
asymptotically towards (19).

p±k ≈ p̃±k − ψ(p̃±k)

ψ′(p̃±k)
. (20)

Figure 3 shows the open-loop frequency response for the
model (17) and the real experiment described in Section
2 over the frequency range 100− 900 Hz. As can be seen,
by comparing Figure 3(a) and Figure 3(b), the response
of the irrational transfer function (17) and the real system
are very similar in the frequency range of interest.

3. CLOSED-LOOP SYSTEM

3.1 Proposed control law

As shown in Equation (8), the thermoacoustic oscillation
in the Rijke tube occurs when acoustic energy is greater
than the loss. The gain and loss of energy depend on the
acoustic field. However, conditions can change completely
if the field in the tube is disturbed by a different sound
source, which in this work is produced by a loudspeaker.
The inclusion of a sound source changes the difference
between energy gain and loss, which can become larger
or smaller than the unperturbed acoustic field. Therefore,
it is reasonable to consider the control law given by

u(t) = KcP̃ (t− τc, xmic), (21)

where Kc and τc are design parameters. Note that with
this control law the loudspeaker reproduces an amplified
and delayed pressure wave of the tube.

3.2 Stability analysis

In this work, the following definition of stability is adopted.

Definition 3. If a system maps every input u in L2(0, ∞)
to an output y in L2(0, ∞) and

sup
u�=0

‖y‖2
‖u‖2

< ∞,

the system is stable. A system is said to be unstable if it
is not stable.

Remark 4. Stability of systems described by their transfer
functions can be checked by Theorem A.2 of Curtain and
Morris (2009). In this case, a linear system is stable if and
only if its transfer function G belongs to H∞.
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With control law (21), the closed-loop transfer function is
given by

Gcl(s) =
G(s)

1− C(s)G(s)
, (22)

where C(s) = Kce
−τcs.

For the stability result we will use the following necessary
and sufficient condition (Desoer and Vidyasagar, 1975).

Theorem 5. The closed-loop system is stable if and only if

(1) inf
Re(s)>0

|1− C(s)G(s)| > 0

(2) C(pi) �= 0, i = 1, . . . , n0, where pi are the poles

of G in C+.

Condition 1 of Theorem 5 can be checked through the
graphic Nyquist criteria. In our case, the open-loop is non
strictly proper, and the application of the graphic Nyquist
criteria is more delicate (Desoer and Vidyasagar, 1975).
Condition 2 of the previous theorem corresponds to a
condition preventing an instability due to the cancellation
of an unstable pole of G by a zero of C.

Since the proposed control law (21) is not strictly proper,
we have to take into account the behavior of the Nyquist
plot at infinity. We propose below a way to circumvent

100 200 300 400 500 600 700 800 900
-40

-20

0

20

40

M
ag
n
it
u
d
e
(d
b
)

100 200 300 400 500 600 700 800 900
Frequency (Hz)

-1260

-900

-540

-180

P
h
as
e
(0
)

(a) Open-loop frequency response of model (17).
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(b) Open-loop frequency response obtained by applying
a sine sweep, over the range 100 − 900 Hz, into the real
experimental plant.

Fig. 3. Open-loop frequency response of model (17) and
the experimental plant.

this problem by analyzing the closed-loop poles for high
frequencies. First, consider that the system fulfills the
following assumption

Assumption 6. The set

r = {xu + xd, cτc + xd + xmic, cτc + 3xd − xmic} ,
is rationally independent 1 .

Then, using Theorem 2.2 and Corollary 2.4 of Hale and
Lunel (2002) we have the following necessary condition of
stability:

Proposition 7. Let τc, xmic > 0 such that

r = (xu + xd, cτd + xd + xmic, cτc + 3xd − xmic) ,

is rationally independent. Then, the following inequality is
a necessary condition of closed-loop stability:

|Kc|(1 + |Rd|) < 1−RdRu (23)

Proof. For |s| � 0, the closed-loop poles can be approxi-
mated as the solution of

1−RuRde
−(τu+τd)s −Kce

−
(

cτc+xd+xmic
c

)
s

−KcRde
−
(

cτc+3xd−xmic
c

)
s
= 0. (24)

Then, choosing τc, xmic > 0 such that

r = (xu + xd, cτd + xd + xmic, cτc + 3xd − xmic) ,

is rationally independent we can apply Theorem 2.2 and
Corollary 2.4 of (Hale and Lunel, 2002) to obtain the
inequality (23). This concludes the proof.

Using this result we can restrict the test of the Nyquist
criterion to a finite range of frequencies, as stated in the
corollary bellow.

Corollary 8. If Proposition 7 is verified, then there exists
s0 > 0 such that condition 1 of Theorem 5 needs only be
tested on a finite range |s| < s0.

The version of the Nyquist theorem which accomodates in-
finite dimensional systems can be seen in Theorem A.1.14
of Curtain and Zwart (1995). In the next proposition we
show the conditions that the Nyquist contour must obey
in this finite range of frequencies in order to guarantee the
stability of the closed loop system.

Proposition 9. Let nu be the number of open-loop poles of
(17) in C+. Denote the Nyquist contour of

Ψ(s) � 1 +
2Kce

−( cτc+xu+xmic
c )s

(γ − 1) det(S)
(1 +Rde

2
(

xmic−xd
c

)
s
)×

(1 + (γ − 1)φ(s)) (25)

by ΓΨ(s). Then the transfer function Gcl is

(1) Unstable if ΓΨ(s) does not encircles the origin nu

times in the clockwise direction.
(2) Stable if ΓΨ(s) encircles the origin nu times in the

clockwise direction.

In the limiting case that ΓΨ(s) does not encircle but crosses
−1, the stability is undetermined.

1 We say that the real numbers a1, . . . , an are rationally indepen-
dent if the only n-tuple of integers k1, . . . , kn such that k1a1+ · · ·+
knan = 0 is the trivial solution in which every ki, i = 1, . . . , n is
zero.
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Fig. 4. Nyquist plot of ΓΨ(s) showing two clockwise en-
circlements of the origin as ω decreases from +∞ to
−∞. This graphic was obtained experimentally on the
Rijke tube configuration described in Section 2.

We skip the proof of Proposition 9 since it follows from
standard arguments.

In sum, the necessary and sufficient conditions developed
in this section can be checked by the algebraic equation
(23) and by choosing τc and xmic such that Assumption 6
and the Nyquist criterion are satisfied.

4. EXPERIMENTAL RESULTS

In this section, we present results of experiments in the
Rijke tube configuration described in Section 2 with con-
trol law (21). We choose Kc = 0.002 and τc was designed
in order to ΓΨ(s) encircles the origin twice in the clockwise
direction since, as shown in Figure 3(b), the system has a

pair of complex conjugate poles in C+. The Nyquist plot
of ΓΨ(s) for τc = 0.001 is depicted in Figure 4. There are
two clockwise encirclements of the origin as ω decreases
from +∞ to −∞.

Figure 5 shows the sound pressure at the microphone
location and the control signal with the control law (21).
At the beginning of the experiment, no controller is active,
and the system is in the limit cycle. At t = 3.5 s the
controller is activated. It can be noted that the oscillations
are suppressed and the system remains in the operating
point. At t = 12 s the control is deactivated and as
expected, the system comes back to the oscillatory regime.

5. CONCLUSIONS

We have addressed the issue of boundary stabilization of
thermoacoustic oscillations of the Rijke tube by a fre-
quency domain approach. We have used some properties of
the system transfer function to derive necessary and suffi-
cient conditions for input-output stability of the boundary
controlled system. Experimental results for a Rijke tube
prototype shows the effectiveness of the approach.
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cient conditions for input-output stability of the boundary
controlled system. Experimental results for a Rijke tube
prototype shows the effectiveness of the approach.
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