
An application of mixture distributions in modelization
of length of hospital stay

N. Atienza1, ∗, †, J. Garcı́a-Heras2, J. M. Muñoz-Pichardo2 and R. Villa3
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SUMMARY

Length of hospital stay (LOS) is an important indicator of the hospital activity and management of health 
care. The skewness exhibited by this variable poses problems in statistical modeling. The aim of this work 
is to model the variable LOS within diagnosis-related groups (DRG) through finite mixtures of 
distributions. A mixture of the union of Gamma, Weibull and Lognormal families is used in the model, 
instead of a mixture of a unique distribution family. Some theoretical questions regarding the model, such 
as the identifiability and study of asymptotic properties of ML estimators, are analyzed. The EM algorithm 
is proposed for performing these estimators. Finally, this new proposed model is illustrated by using data 
from different DRGs. 
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1. INTRODUCTION

Length of stay (LOS) is an easily available indicator of hospital activity. It is used for various 
purposes, such as management of hospital care, quality control, appropriateness of hospital use 
and hospital planning [1, 2]. LOS is an indirect estimator of resources consumption and of the 
efficiency of one of the aspects of hospital patient care: bed management. Lee et al. [3] state 
that ‘comprehensive and accurate information about inpatient LOS should be a high priority for
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health planners and administrators in the strategic planning and deployment of financial, human
and physical resources’.

Since the early 1980s, health-care systems in industrial countries have exhibited deep changes
in order to reduce overspending on health care, particularly hospital expenditures. Among all the
proposed modifications, the hospital stay classification given by Fetter et al. [4] received the widest
approval for assessing hospital output. In this classification, the main diagnosis established at the
end of the stay and the procedures performed during the hospitalization are used to retrospectively
classify a patient into a diagnosis-related group (DRG) that determines the amount of payment
allocated to the hospital. The U.S.A. Congress decided in October 1983 to implement a Medicare
prospective system based on the classification of Fetter et al. [4]. Later on, many countries such
as Australia or France introduced DRGs to reduce the health-care budget. The DRGs provide a
classification system of episodes of hospitalization with clinically recognized definitions, where it
is expected that patients in the same class consume similar quantities of resources, as a result of a
process of similar hospital care. The mean of the LOS is used as an indicator of the consumption
of resources because of its availability and good relation with the raised costs. Hence, we may
say that DRGs have been partially created in order to get homogeneous groups with respect to the
consumption of services and costs, closely related to the LOS. Moreover, the comparison of the
expected LOS by DRG raises conclusions of a given aspect of the management for each specific
kind of patients.

The expectation is only a localization measure of the variable LOS. Therefore, a more complete
study of the distribution of this variable is convenient. To this aim, in the past years, many authors
proposed different technics to analyze the variable LOS. However, the empirical distribution of
LOS is well established to be positively skewed, plurimodal, to contain outliers and to significantly
vary between DRGs [5, 6], etc. This heterogeneity of LOS poses a problem for statistical analysis,
limiting the use of inference techniques based on normality assumptions.

Since a large number of DRGs must be analyzed routinely, automatic procedures are needed for
conveniently treating skewness. Different transformations (e.g. the logarithmic one) of LOS have
been attempted to attain normality, and subsequently to apply the corresponding tests [5, 7, 8],
etc.). However, as Xiao et al. [9] show, these approaches rely on the unrealistic homogeneity
assumption on the entire sample.

Marazzi et al. [6] assessed the adequacy of three conventional parametric models, Lognormal
(long-tailed), Weibull and Gamma (short-tailed), for describing the LOS distribution. But, as Lee
et al. [10] point out, none of them seemed to fit satisfactorily in a wide variety of samples. The
main issue is that the assumption of heterogeneous sub-populations would be more appropriate
than single DRG populations. Mixture distribution analysis can clarify whether or not a skewed
distribution is composed of heterogeneous components [9, 11]. With this new focus, several works
model the LOS variable through finite mixture distributions. For example, Quantin et al. [12]
analyzed the cost and the hospital stay of DRG 589 and 590 (lymphoma and leukemia with or
without complications) using mixtures of Weibull distributions. The same model was also applied
by Quantin et al. [11] to analyze DRG 316 (renal failure). A Gamma mixture was proposed to
analyze heterogeneity of maternity LOS in Lee et al. [10, 13]. The model was applied to different
DRGs related to cesarean delivery (DRG 670, 671, 672 and 687) and to DRGs related to vaginal
delivery (DRG 674, 675, 676 and 688). It is then clear that the proposed mixture model depends
on which DRG or group of DRGs is considered.

The objective of this work is to analyze the variable LOS unifying the approach given by
Marazzi and this new focus, tackling the problem of the hospital stay through a finite mixture of



distributions in the union of Gamma, Weibull and Lognormal families. This new posing can be
used to model the variable LOS for most of the DRGs. The results obtained in this work prove
the validity of this new approach.

The paper is organized as follows. Section 2 contains a theoretical exposition of the mixture
distributions: the identifiability problem, the asymptotic properties of the maximum likelihood
(ML) estimators and the adaptation of the EM algorithm, needed for the parametric estimation. In
Section 3, a simulation study is presented to analyze the performance of our method. We apply
this method in Section 4 to several DRGs with the aim of illustrating the goodness of fit of the
proposed model. Finally, we have included a short discussion on the proposed methodology.

2. METHODS

A finite mixture distribution can be considered as a convex combination of distribution func-
tions, which can be applied to model two different practice situations, according to Titterington
et al. [14]. One in the case of a variable with several underlying categories or with different sources
of origin (direct application), and the other, when these categories do not exist or are not physically
interpretable. In this case, the finite mixture model is used as a statistical tool to provides more
flexibility in the fittings and get better results (indirect application).

This work deals with the second case. We have obtain a sample of the LOS variables obtained
from patients in a given DRG. Moreover, our distributions have specific parametric forms as
follows.

Let FL, FG and FW be, respectively, the Lognormal, Gamma and Weibull distributions
families:

FL =
{
F : F(x;�, �) =

∫ x

0

1√
2��u

exp

[
−1

2

(
log u − �

�

)2
]
du; �∈ R, �>0, x>0

}

FG =
{
F : F(x; a, b) =

∫ x

0

b−a

�(a)
ua−1 exp

(
−u

b

)
du; a, b>0, x>0

}

FW =
{
F : F(x; c, d)=

∫ x

0

c

dc
uc−1 exp

(
−uc

dc

)
du; c, d>0, x>0

}

We propose to model the LOS variable with a threefold mixture distribution:

Q(x;�) = �1F1(x; �, �) + �2F2(x; a, b) + �3F3(x; c, d)

where �1, �2, �3>0, �1+�2+�3=1, F1∈FL, F2 ∈FG, F3 ∈FW and� = (�1, �2, �, �, a, b, c, d)

is the parametric vector determinate by the given distributions. Let us denote this class of mixture
distributions by C. Obviously, the main problem is the estimation of the parameters. However,
before solving this problem, it is necessary to tackle the problem of identifiability, the question on
the unique representation of the class of models being considered.

Generally, the problem of estimation of parameters is undertaken through the ML method, be-
cause of its desirable statistical properties, such as efficiency, consistency and asymptotic normality
under some uniform integrability assumptions on the mixture and its derivatives.



However, despite the good properties of the ML estimators, in our case it is not possible to
obtain explicit solutions. Hence, numerical methods must be applied. The EM algorithm, proposed
by Dempster et al. [15], is the more used method.

Next, we study these three aspects in the finite mixtures considered: identifiability, asymptotic
properties and the EM algorithm.

2.1. Identifiability

Identifiability problems concerning finite and countable mixtures have been studied widely. Teicher
[16] gave a sufficient condition for a finite mixture to be identifiable. This condition is based on
the existence of a linear and one-to-one mapping defined on the distribution family and a total
ordering on this family. As an application, he proved the identifiability of finite mixtures of
normal distributions and of Gamma distributions by using the bilateral Laplace transform and
the lexicographic order. This sufficient condition was subsequently modified by Chandra [17]
using the moment-generating function of log X . This result was used by Khalaf [18] to prove
the identifiability of finite mixtures of Weibull, Lognormal, Chi-squared and Pareto distributions.
Different modifications with application to specific families of distributions have been proposed
by several authors (see Brandorff-Nielsen [19] or Henna [20]).

Atienza et al. [21] provide a sufficient condition for the identifiability of finite mixtures, which
is applied to the class of all finite mixtures generated by the union of Lognormal, Gamma and
Weibull distributions, where Teicher’s and Henna’s conditions are not applicable. Thus, if we
denote by U=FL ∪FG ∪FW the family obtained by the union of these three families, then the
class HU of all finite mixtures of distributions from U is identifiable. Obviously, since C⊂HU,
the class C is identifiable.

2.2. Asymptotic properties of ML estimators

In finite mixture models, ML estimators have good properties (efficiency, consistency and asymp-
totic normality) under some uniform integrability assumptions on the mixture and its derivatives
up to the third order.

The problem of consistency has been the center of interest for many authors in the study
of solutions for both general and specific families. The works of Chanda [22] and Redner and
Walker [23] should be cited because of their importance and influence in subsequent works. In
particular, these works establish, for a sample of size n, under two conditions, that there exists in
any sufficiently small neighborhood of the value of the parameter �∗ a unique strongly consistent
solution �n of the likelihood equations and that this solution at least locally maximizes the log-
likelihood function and is asymptotically normally distributed. The first condition establishes the
uniform integrability for the partial derivatives up to the third order of the mixture. The second
condition deals with the positive-definite character of the Fisher information matrix. More precisely,
the Fisher information matrix I (�) given by

I (�) =
∫

[∇� log q(x;�)][∇� log q(x;�)]t q(x;�) dx

has to be well defined and positive definite at �∗, where ∇� denotes the gradient of the first partial
derivatives with respect to the components of �.

Atienza et al. [24] prove that under another two conditions related to the integrability of the
components of the mixtures, for any compact subset �′ of the parametric space � which contains



�∗, with probability 1, �n is a ML estimator in �′ for sufficiently large n. Furthermore, this ML
estimator is unique in �′, that is, there is no other ML estimator besides �n which leads to a
limiting density different from q(x,�∗).

The integrability conditions are proved in Atienza et al. [25] are to be verified for the union
of the so-called W-type families. Since the distribution families FL, FG and FW are W-type
families, the authors establish that the class HU of all finite mixtures of distributions from U
verifies the integrability conditions. The inclusion C ⊂ HU clearly implies that the class C also
verifies these conditions.

It remains to prove that the second condition is also verified, that is, I (�) is well defined
and positive definite at �∗. Applying Proposition 1 (see Appendix), it is easily proved that the
information matrix of any element from the class C is well defined. The definite positive character
is obtained by application of Proposition 2. The density function of the mixture distribution can
be expressed in the form

q(x;�) = �1 f1(x;�) + �2 f2(x;�) + (1 − �1 − �2) f3(x;�)

where

f1(x;�) = 1√
2��x

exp

[
−1

2

(
log x − �

�

)2
]

f2(x;�) = b−a

�(a)
xa−1 exp

(
− x

b

)
and

f3(x;�) = c

dc
xc−1 exp

(
− xc

dc

)
with x>0, �, a, b, c, d>0 and � ∈ R. The set of partial derivatives with respect to the parameter
is provided in Table I. In order to prove its linear independence character, the following partial
order is defined on that set:

g1 ≺ g2 ⇔ lim
x→∞

g2(x)

g1(x)
= 0 and g1 ∼ g2 ⇔ lim

x→∞
g2(x)

g1(x)
∈ R\{0}

The arrangement of the set of partial derivatives {wi (x;�), i = 1, . . . , 8} is provided in
Table II.

Let us consider any linear combination
∑8

i=1 �iwi (x;�) of this set. The linear independence
of the set is proved by showing that the equality

∑8
i=1 �iwi (x;�) = 0 holds provided that all

coefficients �i ’s are zero. Dividing by w4(x;�) and taking limit x →∞ give �4 = 0. We may
continue in this fashion for cases (1), (2) and (4) in Table II to obtain that the rest of the
coefficients are null.

In case (3), an analogous procedure yields �4 = �3 = �1 = �7 = 0. Dividing by w2(x;�) and
taking limit now give

�2 + �8 lim
x→∞

w8(x;�)

w2(x;�)
= 0



Table I. Partial derivatives of q(x;�).

Parameter Partial derivatives of q(x;�)

�1 w1(x;�) = f1(x;�) − f3(x;�)

�2 w2(x;�) = f2(x;�) − f3(x;�)

� w3(x;�) =�1
(
log x−�

�2

)
f1(x;�)

� w4(x;�) =�1

(
(log x−�)2

�3
− 1

�

)
f1(x;�)

a w5(x;�) =�2[log x − log b − �′(a)/�(a)] f2(x;�)

b w6(x;�) =�2
x
b2

f2(x;�)

c w7(x;�) = (1 − �1 − �2)
[
1
c − log x

d − ( x
d

)c log x
d

]
f3(x;�)

d w8(x;�) = (1 − �1 − �2)
(
xc−1

d − c
xd

)
f3(x;�)

Table II. Partial ordering depending on the values of the parameters.

Case Arrangement

(1) c<1 w4 ≺w3 ≺ w1 ≺ w7 ≺w2 ≺ w8 ≺w6 ≺ w5
(2) (c>1) or (c= 1, b>d) or (c= 1, b= d, a>2) w4 ≺w3 ≺ w1 ≺ w6 ≺w5 ≺ w2 ≺w7 ≺ w8
(3) (c= 1, b<d) w4 ≺w3 ≺ w1 ≺ w7 ≺w2 ≺ w8 ≺w6 ≺ w5
(4) (c= 1, b= d, 1<a<2) w4 ≺w3 ≺ w1 ≺ w6 ≺w7 ≺ w5 ≺w2 ≺ w8
(5) (c= 1, b= d, a<1) w4 ≺w3 ≺ w1 ≺ w7 ≺w6 ≺ w2 ≺w8 ≺ w5
(6) (c= 1, b= d, a = 2) w4 ≺w3 ≺ w1 ≺ w6 ≺w5 ≺ w7 ≺w2 ≺ w8

or, equivalently, �8 = (b/(1 − �1 − �2))�2. Consequently,

�2

[
w2(x;�) + b

1 − �1 − �2
w8(x;�)

]
+ �6w6(x;�) + �5w5(x;�) = 0

According to the defined order,[
w2 + b

1 − �1 − �2
w8

]
≺w6 ≺w5

Dividing by w2 + (b/(1 − �1 − �2))w8 and proceeding analogously, we obtain the nullity of the
rest of the coefficients. A similar reasoning can be applied to cases (5) and (6).

Consequently, the information matrix is positive definite and, as a conclusion, we can assure
that ML estimators of finite mixture models of C have good asymptotic properties.

2.3. Estimation through EM algorithm

In the previous subsections, we have analyzed the problem of identifiability and the properties
of ML estimators. The aim of this section is to study their calculation. Mixtures of distributions
under our study constitute a parametric family depending on eight parameters, and the calculation



of ML estimators needs to deal with a quite complex system of nonlinear equations. According to
the recommendations of Mclachlan and Krishnan [26] we have tackled this problem by using the
EM algorithm. We will just sketch the adaptation of this algorithm to our case.

The first problem is the election of the initial values for � (�(0)), in order to assure the
convergence with an acceptable speed to the biggest local maximum. It consists in the election of
the initial weights of the component functions (�(0)

1 and �(0)
2 ) and their parameters (�(0) , �(0), a(0),

b(0), c(0) and d(0)). For �(0)
1 and �(0)

2 , we propose the strategy suggested by Karlis and Xekalaki
[27]: we take several initial values running over the range of possible values, �1, �2 ∈ (0, 1), and
choose those that reach the biggest likelihood. This strategy prevents falling in regions where
the likelihood is nearly constant, and detect, if they exist, several local maxima and choose,
consequently, the global maximum.

For the initial values of the parameters of the component functions, we consider independently
the ML estimators of each family.

• Lognormal estimators:

�(0) = 1

n

n∑
i=1

log xi , �(0) =
[
1

n

n∑
i=1

(log xi − �(0))2
]1/2

• Gamma estimators (following Greenwood and Durand [28]):

a(0) = s

(
log

x

x̃

)
and b(0) = 1

na(0)

n∑
i=1

xi

where x and x̃ are, respectively, the arithmetic and geometric means, and

s(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0.5000876 + 0.1648852t − 0.0544276t2

t
, 0�t<0.5772

8.898919 + 9.05995t + 0.9775373t2

t (17.79728 + 11.968477t + t2)
, 0.5772�t<17

1

t
, 17�t

• Weibull estimators (applying Bain and Antle’s method [29]):

c(0) =
n∏

i=1
x1/n(i)

/
n∏

i=1
�1/nd

(0)

i and d(0) =
∑n

i=1 log �i log x(i) − 1

n

∑n
i=1 log �i

∑n
i=1 log x(i)∑n

i=1 log
2 x(i) − 1

n
(
∑n

i=1 log x(i))2

where �i =∑i
j=1 1/(n − j + 1) and (x(1), x(2), . . . , x(n)) is the ordered sample.

The second problem is to improve the low speed of convergency of the algorithm. We propose
to use the conjugate gradient acceleration method [30].



Finally, the stop criterion is determined by the parameter variation between two consecutive
steps, the variation measured by the sum of the absolute values of each variation parameter.
Following Karlis and Xekalaki [27], the value 10−5 gives an appropriate stop criterion.

3. SIMULATION

This section presents a simulation study to analyze the performance of the proposed method.
Two different strategies have been used:

• Simulation A: For a set of 128 combinations of values of the parameters, 128 samples have
been generated (with size n = 100) and used to apply the proposed methodology.

• Simulation B: Fifteen combinations have been selected from among the 128 previous ones, and
100 samples of size n = 500 have been generated and used to apply the proposed methodology
to each individual combination.

The combinations of values of the parameters have been selected by fitting several samples of
the length of hospital stay variable to each component function separately.

The goal of Simulation A is to get conclusions about the adequacy of the proposed methodology
in a wide range of possible values of the eight parameters of the model, so that the possible values
related to the variable LOS are covered. Simulation B is carried out to analyze the performance
of the proposed EM algorithm.

3.1. Simulation A

The considered mixture model has eight parameters, � = (�, �, a, b, c, d, �1, �2). We have con-
sidered two different values for each of them, obtaining 64 possible combinations:

�= 2, 3; �= 0.5, 0.7; a = 7, 10; b= 2, 3; c= 1, 2; d = 15, 25

For each of these 64 combinations, we have randomly generated two pairs of values for the
weights �1 and �2.

For a given parameter �g = (�g
1, �

g
2, �

g, �g, ag, bg, cg, dg), the associated sample has been
generated using the following procedure.

Consider the intervals I1 =[0, �g
1], I2 = (�g

1, �
g
1 +�g

2] and I3 = (�g
1 +�g

2, 1]; generate n random
values {ui : i = 1, . . . , n} from a uniform distribution on the interval [0, 1], and for each value ui :

• if ui ∈ I1 then generate a random value xi from a Lognormal distribution with parameters �g

and �g;
• if ui ∈ I2 then generate a random value xi from a Gamma distribution with parameters ag

and bg;
• if ui ∈ I3 then generate a random value xi from a Weibull distribution with parameters ag

and bg .

As a discrepancy measure between the original F(x,�g) and the estimated distribution function
F(x, �̂), the uniform measure [31], also called Kolmogorov measure [32], is proposed:

d(�g, �̂) = sup
x∈R

|F(x,�g) − F(x, �̂)|



Figure 1. Discrepancy measure: histogram (Simulation A).

Figure 1 represents the obtained results for the 128 generated samples, which should be con-
sidered satisfactory, since for 93.8 per cent of the samples the discrepancy measure is less than
0.03, and for none of them is this value bigger than 0.05.

3.2. Simulation B

Fifteen among the 128 combinations generated in Simulation A are selected. For each of them:

• the expected value (�) and the variance (�2) of the associated distribution mixture are calcu-
lated. Both values are functions of the parameters � = g1(�) and �2 = g2(�).

• B = 100 samples of size n = 500 are generated. The following statistics are calculated for
each sample:

◦ The ML estimator of � using the method proposed in this paper, {�̂k : k = 1, . . . , B}.
◦ The expected value and the variance of the associated mixture distribution, {( �̂k, �̂2k) :
k = 1, . . . , B}, where �̂k = g1(�̂k) and �̂2k = g2(�̂k).

◦ The absolute deviation b( �̂k) = |̂�k − �| and the variance ratio r( �̂2k ) = �̂2k/�
2.

◦ The discrepancy measure d(�̂k) = d(�̂k, �).

• The following values have been calculated: estimated absolute bias (EAB), maximum deviation
(MD), mean variance ratio (MVR), minimum variance ratio (MINVR), maximum variance



Table III. Fitting measures for Simulation B.

� EAB MD �2 MVR MAXVR MINVR d dmax

1 141 357 0.3559 1.1502 906 499 0.9968 1.1583 0.8043 0.0195 0.0639
2 200 132 0.4877 1.6479 1 813 262 1.0025 1.3038 0.7529 0.0190 0.0307
3 254 135 0.6867 2.1972 3 114 499 1.0066 1.2636 0.6177 0.0191 0.0622
4 114 138 0.3153 1.2740 794 162 1.0175 1.3899 0.6226 0.0241 0.0695
5 158 305 0.4212 1.4823 1 071 434 1.0028 1.2873 0.4346 0.0206 0.0825
6 180 735 0.3916 1.6767 1 185 501 0.9540 1.2497 0.4195 0.0276 0.1072
7 197 650 0.3916 1.6767 946 450 0.9540 1.2497 0.4195 0.0231 0.1257
8 213 800 0.8734 2.2910 1 215 532 1.1327 1.4935 0.7263 0.0197 0.0340
9 204 744 0.4720 1.7014 1 788 800 1.0033 1.2520 0.7001 0.0257 0.1181
10 221 625 0.3851 1.5176 1 019 930 1.0152 1.2946 0.7644 0.0200 0.0695
11 240 987 0.5436 1.7358 1 742 483 0.9802 1.3489 0.7041 0.0216 0.0394
12 244 558 0.7408 2.1343 3 843 060 1.0487 1.7494 0.5714 0.0235 0.0701
13 238 942 0.5934 2.0430 3 342 024 1.0643 1.5241 0.6602 0.0193 0.0366
14 224 377 0.4332 1.8552 1 607 892 1.0510 1.6321 0.6654 0.0236 0.0492
15 270 890 0.7565 2.5476 3 300 545 1.0367 1.5315 0.5284 0.0204 0.0549

ratio (MAXVR), mean discrepancy (d) and maximum discrepancy (dmax), where

EAB= 1

B

B∑
k=1

b( �̂k), MD= max
k=1,...,B

b( �̂k)

MVR= 1

B

B∑
k=1

r( �̂2k ), MINVR= min
k=1,...,B

r( �̂2k ), MAXVR= max
k=1,...,B

r( �̂2k )

d = 1

B

B∑
k=1

d(�̂k), dmax = max
k = 1,...,B

d(�̂k)

The obtained results are presented in Table III and drawn in Figure 2 in order to graphically
illustrate the adequacy of this methodology. We should stress the following aspects:

1. In order to study the fitting achieved for the distribution, three interesting features are
considered: the expected value, as a measure of localization of the distribution, the variance,
as a dispersion measure; and the cumulative distribution function. The considered fitting
measures are, respectively, the absolute deviation, the variance ratio and the discrepancy
measure.

2. The EAB for the expected value of the mixture distribution is less than 1 in all cases.
Obviously, EAB grows with the expected value. This growth is, however, not very significant.

3. With respect to the estimation of the variance of the distribution, the MVR is always less
than 10 per cent, except in one case (13.27 per cent).

4. The discrepancy among the cumulative distribution functions is almost insignificant. In all
cases, the mean discrepancy is less than 3 per cent.

These results confirm the goodness of fit of the proposed procedure for the fitting of a mixture
distribution in the class of mixtures considered in this paper.



Figure 2. Plots of fitting measures for Simulation B.

4. APPLICATION OF LENGTH OF HOSPITAL STAY

To illustrate the adequacy of this mixture model to the hospital stay, we present the results obtained
by applying it to different sets of data of hospital stay obtained from the University Virgen Macarena
of Sevilla Hospital (Spain), from different DRGs during fixed periods of time.

The considered DRGs are: DRG 14, ‘Specific cerebrovascular disorders except transient ischemic
attack’, from 1999 to 2002; DRG 88, ‘Chronic obstructive pulmonary disease’, from 1995 to
1998; DRG 122, ‘Circulatory disorders with acute myocardial infarction without cardiovascular
complications, discharged alive’, from 1995 to 1998; DRG 127, ‘Heart failure and shock’, from



Table IV. Modelization of LOS variable for several DRGs: MLE and discrepancy measure 
with empirical distribution.

DRG Model n d3 � � a b c d �1 �2

14 1579
Lognormal 0.105 2.51 0.76
Gamma 0.097 8.35 1.56
Weibull 0.096 1.64 17.4
Mixture 0.038 2.29 1.08 4.96 4.23 3.33 13.5 0.343 0.244

88 1156
Lognormal 0.069 2.15 0.78
Gamma 0.076 6.10 1.51
Weibull 0.085 1.60 12.2
Mixture 0.045 3.41 0.49 2.61 3.52 35.6 18.7 0.086 0.899

122 1086
Lognormal 0.101 2.41 0.56
Gamma 0.101 3.89 3.27
Weibull 0.124 2.22 14.3
Mixture 0.052 2.27 1.01 6.22 2.39 4.22 10.6 0.156 0.443

127 1639
Lognormal 0.076 2.13 0.706
Gamma 0.058 4.59 2.05
Weibull 0.075 1.77 11.7
Mixture 0.039 1.99 0.80 4.40 2.66 7.71 9.64 0.378 0.374

541 1528
Lognormal 0.068 2.4 0.73
Gamma 0.083 6.85 1.73
Weibull 0.096 1.71 15.3
Mixture 0.038 3.08 0.15 1.92 13.3 2.25 11.1 0.064 0.233

1999 to 2002; DRG 541, ‘Respiratory diseases except infection, bronchitis and asthma’, from 1999
to 2002.

In Table IV, the values of the uniform measure ds between the distribution determined by
the estimated parameters and the empirical distribution of the sample are shown. Furthermore, the
estimated parameters for each individual model (Lognormal, Gamma and Weibull) and for
the mixture model are also given.

It can be observed that the discrepancy measure ds is significantly smaller for the mixture model
than for each of the individual models. Besides, as pointed out by Marazzi et al. [6], the adequate
individual model depends on each DRG. For example, a Weibull distribution seems to be the most
adequate model for DRG 14, a Lognormal distribution for DRGs 88 and 541, and a Gamma model
for DRGs 122 and 127, whereas the mixture of these three distributions gives us the best result in
all cases.

The histogram and density function of the estimated mixture model are presented in Figure 3
which shows an adequate level of fitting. In Table V we summarize a comparative analysis of
the proposed mixture and finite mixtures of one of the three considered families (Lognormal,
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Figure 3. Graphics on the modelization of LOS variable for several DRGs.

Table V. Measure ds between the estimated distribution and the empirical distribution.

Mixture model DRG 14 DRG 88 DRG 122 DRG 127 DRG 541

Lognormal 0.038 0.050 0.061 0.065 0.037
Gamma 0.039 0.049 0.056 0.044 0.038
Weibull 0.039 0.050 0.055 0.041 0.038
Proposed model 0.038 0.045 0.049 0.038 0.038

Gamma and Weibull). More specifically, for each family of distributions, mixtures of two or three
components have been considered. In Table V and Figure 3, the discrepancy measures for mixtures
of three components are shown.



A comparative graphic of these results is presented in Figure 3 which shows that the proposed
model is, in general, the most optimal one. Furthermore, from Figure 3, and Table V, we can infer
several aspects:

• In the proposed model, the discrepancy measure remains below 0.05.
• The adequate individual mixture model depends on each DRG (Lognormal mixtures for DRGs
14 and 541, Gamma mixture for DRG 88, Weibull mixtures for DRGs 122 and 127).

• The proposed mixture model improves the results obtained for the considered DRGs.

Consequently, our model (three components and eight parameters) improves the results obtained
with mixtures of three distributions from the same family (with the same number of components
and parameters as in the proposed model).

It can be seen that the following three distributions:

• the distribution (A) that determines the most adequate individual model,
• the distribution (B) that determines the most adequate individual mixture model,
• the most prevalent distribution (C) in the proposed mixture model,

do not coincide.
For example, for DRG 127, these distributions are, respectively, Gamma, Weibull and Log-

normal. This situation can be explained as follows: distribution A solves an optimization problem
in all individual distributions; distribution B solves an optimization problem in the individual
mixture distributions; and distribution C is the one with the biggest weight in the result of the
optimization problem in a different family of mixture distributions. Therefore, each distribution
is the result of three different optimization problems. Consequently, this situation should not be
considered as contradictory or atypical.

5. DISCUSSION

LOS is an easily available indicator of hospital activity. It is an indirect estimator of resources
consumption and of the efficiency of a Hospital, so that the mean of the LOS is used as an
indicator of the consumption of resources. With respect to this, Marazzi et al. state textually:
‘unfortunately, LOS distributions are skewed and contain outliers, making the use of this simple
statistic questionable’. Therefore, the fitting of an asymmetric distribution is a more global and
optimal solution. This solution allows one to obtain estimations of expected value, dispersion
measures, median, quartiles and other percentiles. Accordingly, we consider this approach as a
good method for the statistical analysis of this kind of data, where the main goal is to determine
measures of resource consumption of groups of patients.

In the scientific literature, some families of distributions have been proposed to model this
variable. The most used asymmetric distributions are Lognormal, Gamma and Weibull. But as Lee
et al. [10] point out, it is more convenient to tackle the problem by means of mixture distributions.
However, the family determined by the most adequate mixture distribution depends on the given
DRG. Consequently, a useful general model for all DRGs is not available.

The objective of this work is to analyze the variable LOS by means of a general model: a finite
mixture of distributions in the union of Lognormal, Gamma and Weibull families. This approach
can be used to model the variable LOS for most of the DRGs.



This paper has firstly analyzed the theoretical study of the model, tackling the classic problems in
mixture distributions: identifiability, asymptotic properties of the ML estimators and the adaptation
of the EM algorithm. The adequacy of the algorithm has been analyzed through two simulation
procedures. Finally, the obtained results for different DRGs, improving upon other procedures,
show the validity of the proposed methodology.

Another aspect that must be discussed is that the proposed model is more complicated than any
individual one. However, being a scientific research, we have to make a decision between ‘the
complexity of the model and the computation procedure’ and ‘the model fitting’. We decide to
take the second option, since the computational effort and the complexity should not be considered
as excessive. Furthermore, this methodology seems more adequate for most of the DRGs. The
model based on a unique family of distributions is less complex but has two other aspects. First,
the necessity of previously selecting the family among the most usual asymmetric distributions.
Second, the results provided are less optimal. Therefore, the study of a simpler model does not
imply either a significative reduction of the computational effort or better results.

In conclusion, we believe that this work contributes to the development of the statistical analysis
of LOS distributions and other consumption variables in health services. Also this approach can
be applied to other asymmetric data (for instance, the length of wait for surgical procedures or for
medical attention).

APPENDIX A

Proposition 1
Let F={ f (·, h) : h= (�1, . . . , �d)t ∈ �} be a family of density functions for which there exist
the partial derivatives with respect to each �i and they are integrable with respect to x for all
i ∈ {1, . . . , d}. If

∫ (
� f (x, h)

��i

)2

f (x; h) dx<+∞

then the Fisher information matrix of any finite mixture q(x;�) =∑K
h=1 �h f (x; hh) of elements

from F is well defined.

Proof
The information matrix is well defined provided that there exist the partial derivatives of log q(x;�)

and the products(
� log q(x;�)

�	i

)(
� log q(x;�)

�	 j

)
q(x;�) = 1

q(x;�)

(
�q(x;�)

�	i

)(
�q(x;�)

�	 j

)
are integrable with respect to x for every pair i, j . The previous quotient can be expressed as a
sum of functions of one of the forms:

fh(x, hh) fl(x, hl)

q(x;�)
,

fh(x, hh)�l

(
� fl(x, hl)

��lr

)
q(x;�)

,

�h�l

(
� fh(x, hh)

��hs

)(
� fl(x, hl)

��lr

)
q(x;�)



Using the bound

q(x;�)��h fh(x, hh), h = 1, . . . , K (A1)

yields ∣∣∣∣ fh(x, hh) fl(x, hl)q(x;�)

∣∣∣∣� 1

�h
fl(x, hl)∣∣∣∣ fh(x, hh)�lq(x;�)

∣∣∣∣ ∣∣∣∣� fk(x, hl)

��lr

∣∣∣∣� �l
�h

∣∣∣∣� fl(x, hl)

��lr

∣∣∣∣
and both of the right-hand functions are integrable. Finally, using the inequality ab�(a2 + b2)/2,
a, b∈ R, we obtain

�h�l

(
� fh(x, hh)

��hs

)(
� fl(x, hl)

��lr

)
q(x;�)

� �h�l
2q(x;�)

[(
� fh(x, hh)
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)2

+
(

� fl(x, hl)

��lr

)2
]

applying inequality (A1) again, we can bound it by

1

2

⎡⎢⎢⎢⎣
(

� fh(x, hh)

��hs

)2

fh(x, hh)
+

(
� fl(x, hl)
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fl(x, hl)

⎤⎥⎥⎥⎦
which is integrable by hypothesis. �

Proposition 2
Let f (x; h) be a density function. Its Fisher information matrix in h0 ∈ Rd , I (h0), is positive
definite if and only if the set of functions

{w1(x, h
0), . . . , wd(x, h

0)}
is linear independent a.e. in the set S f ={x : f (x; h) �= 0}, where wi (x, h

0) = (�/��i ) f (x; h)|h= h0 .

Proof
Let M(x; h) denote the matrix [∇h log f (x; h)][∇h log f (x; h)]t , with components

mi j (x; h)=
(

� log f (x, h)

��i

)(
� log f (x, h)

�� j

)
Then, ft I (h)f= 0 if and only if

∑
i, j 
i
 jmi j (x; h) f (x; h) = 0 for almost all x ∈ Rp. It means that

there exists a null set Z ⊂ Rp such that for x /∈ Z , (ft M(x; h)f) f (x; h) = 0. The latter is equivalent
to ft M(x; h)f=0 for x ∈ S f \Z . Now, this equality is equivalent to ((1/ f (x; h))ft [∇h f (x; h)])2=0,
which finally is

∑
i 
iwi (x; h) = 0. Taking into account that ft I (h)f�0, the conclusion of the

proposition follows. �
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