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Abstract: The prediction of time series data applied to the energy sector (prediction of renewable
energy production, forecasting prosumers’ consumption/generation, forecast of country-level con-
sumption, etc.) has numerous useful applications. Nevertheless, the complexity and non-linear
behaviour associated with such kind of energy systems hinder the development of accurate algo-
rithms. In such a context, this paper investigates the use of a state-of-art deep learning architecture in
order to perform precise load demand forecasting 24-h-ahead in the whole country of France using
RTE data. To this end, the authors propose an encoder-decoder architecture inspired by WaveNet, a
deep generative model initially designed by Google DeepMind for raw audio waveforms. WaveNet
uses dilated causal convolutions and skip-connection to utilise long-term information. This kind
of novel ML architecture presents different advantages regarding other statistical algorithms. On
the one hand, the proposed deep learning model’s training process can be parallelized in GPUs,
which is an advantage in terms of training times compared to recurrent networks. On the other
hand, the model prevents degradations problems (explosions and vanishing gradients) due to the
residual connections. In addition, this model can learn from an input sequence to produce a forecast
sequence in a one-shot manner. For comparison purposes, a comparative analysis between the most
performing state-of-art deep learning models and traditional statistical approaches is presented:
Autoregressive-Integrated Moving Average (ARIMA), Long-Short-Term-Memory, Gated-Recurrent-
Unit (GRU), Multi-Layer Perceptron (MLP), causal 1D-Convolutional Neural Networks (1D-CNN)
and ConvLSTM (Encoder-Decoder). The values of the evaluation indicators reveal that WaveNet
exhibits superior performance in both forecasting accuracy and robustness.

Keywords: time series forecasting; energy consumption forecasting; deep learning; machine learning;
convolutional neural networks; artificial neural networks; causal convolutions; dilated convolutions;
encoder-decoder

1. Introduction

An accurate load forecasting is the basis of energy investment planning. It plays a vital
role in the decision making and operation of the energy market. While the overestimation
of energy consumption leads to wasted financial resources, the underestimation causes
power outages and failures throughout the electrical grid. Authors in [1] conclude that a 1%
increase in load forecasting error can increase about a 10 $ million in annual operation costs.

Given the previous context, the authors aim to introduce and propose a novel Deep-
Learning algorithm in order to improve the current results achieved by other state-of-art
solutions. Specifically, an encoder-decoder WaveNet model, usually applied to othertime-
series forecasting fields, is proposed. To such an end, this paper is focused on demonstrat-
ing the performance of the proposed approach on a macroscopic level (French National
Consumption) of power forecasting in the short term (one day ahead).

Short-Term load forecasting is attracting widespread interest among researchers due to
its increased importance in smart-grids and micro-grids [2]. Classical short-term time series
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forecasting includes a number of techniques to create parameterised models of different
types of stochastic processes, whose performance is highly sensitive to the forecast horizon
and the quality of the available data. H. Al-Hamadi et al. proposes the use of Kalman filter
for short-term load forecasting to a forecast horizon of 24 h ahead [3]. P. Vähäkyla et al.
presented a Box-Jenkins time series analysis using Auto-regressive Integrated Moving
Average (ARIMA) model fort load short-term forecasting [4]. The presented method led to
a simple, fast and accurate forecasting algorithm. P. Sen et al. proposes an ARIMA model
for forecasting energy consumption and GHG emissions in Indian [5]. In [6], the usage of
other statistical methods (such as linear regression or Seasonal Auto-Regressive Moving
Averaged (SARIMA) have also been contemplated and studied. Some authors report the
limitations of ARIMA deling with outliers and long-terms forecast horizons [7].

In previous years, Artificial Intelligence (AI) methods have received considerable
attention from researches because of their powerful modelling abilities. As a result of
this growing expectation, different traditional Machine-Learning algorithms (e.g., Feed-
Forward Networks (FFNs), Support Vector Machines (SVM), Random Forest, Multi-Layer
Perceptrons (MLP), etc.) have been widely investigated in the last decade within the
energy load forecasting field. However, although the main outcomes of such studies
were promising, it was found that one of the major drawbacks of using these methods
was their low performance when managing time-series problems. On the one hand, the
network treats the data as a bunch of data without any specific indication of time. On the
other hand, the traditional ML algorithms suffer when processing long sequences which
results on degradation problems in the network (e.g., vanishing or exploding gradients) [8].
Consequently, the research in traditional Machine-Learning algorithms remained relatively
limited because of the aforementioned bottlenecks produced when using large datasets [9].

In such a context, the search for alternative and more powerful methods to address the
energy load forecasting problems has become crucial. In addition, the latest advancements
in computing resources (e.g., GPUs and TPUs) have paved the way for the implementation
of Deep-Learning methods in order to outperform the results obtained by the traditional
algorithms. A clear evidence of such growing expectation about the applications of AI
algorithms can be found in the huge impact that Deep Neural Networks (DNN), includ-
ing Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) or
Transformers, have recently had in multiple fields (computer vision, natural language
processing, etc.). An example of a successful application could be GPT-3 (an autoregressive
language model with 175 billion parameters based on Transformers), which is able to
perform multiple NLP-related tasks [10]. These recurrent models can be understood as
Feed-Forward networks whose architecture has changed between one sequence to another
and their main advantage is that they have specifically been designed for working with
sequence problems. However, the use of deep learning methods for energy load forecasting
has remained relatively limited and, only in recent years, the interest in such application is
growing [9].

As a proof of this interest, the bibliography reports several state-of-the-art Deep-
Learning approaches related to the field of energy demand forecasting. For instance,
Zeng. et al. proposes a back-propagation neural network for energy consumption predic-
tion, which reported better performance with respect to other methods [11]. H. Hu. et al.
presented DeepESN for forecasting energy consumption and wind power generation by
introducing the deep learning framework into the basic echo state network [12]. DeepESN
shows better results than Back-Propagation Neural-Networks (BPNN) and Echo State
Networks (ESN).

H. Li et al. combine a CNN, LSTM, and GRU algorithms to ultra-short-term load
forecasting using historical data [13]. The major defect in this study is that the significant
hyperameter’s combination possibilities to consider to find the best network architecture.
Seq2seq approach has been demonstrated to be a robust model in other Deep-Learning
fields (e.g., Natural Language Processing (NLP)). Various approaches have been put for-
ward seq2seq in the time series forecasting field, demonstrating promising results. Authors
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in [14] present a seq2seq approach based on RNN to make medium-to-long term predictions
of electricity consumption in a commercial and residential building at hourly resolution. D.
L. Marino et al. investigates in [15] two LSTM based architectures (standard and seq2seq
architecture) to predict the electricity consumption from one residential customer. The
results show that the seq2seq approach performed well in a minutely and hourly forecast,
while LSTM shows a poor performance at one-minute resolution data. Convolutional neu-
ral networks were employed in time series forecasting in [16] and time series classification
in [17]. However, thanks to the advances in Natural Language Processing (NLP) field has
appeared novel networks that could be successfully applied to the time series forecasting
field, e.g., Temporal Dilated Causal Convolutional Neural Networks (TDCCNN). The
causality refers to there is no information “leakage” from the future to the past, and the
output sequence has the same length as the input sequence. In the case that it desired to
forecast an output length different from an input length using this architecture, it is needed
to implement a seq2seq approach. Dilated convolutions increase the receptive field by
uniformly sampling from the receptive fields the examples, helping in dealing with data
sparsity, long-term sequence relationships, and multi-resolution [18]. Using the encoder
and decoder to enhance the performance is now a key trend in the designing process in
CNN architecture [19].

In the last few years, the use of dilated temporal convolutional networks as forecast
model has been increasing in the field of time series forecasting for numerous applications.
However, the energy sector applications of such technology are still barely studied. R.
Wan et al. presents in 2019 a novel method based on Temporal Convolution Network
(TCN) for time series forecasting, improving the performance of LSTM and ConvLSTM
in different datasets. S. Rizvi et al. presented in 2019 a time series forecasting method
of Petrol Retail using Dilated Causal Convolutional Networks (DCCCN), outperforming
the results by LSTM, GRU, and ARIMA [18]. O. Yazdanbakhsh et al. propose in [20]
a dilated convolutional neural network for time series classification, showing that the
used architecture can be effective as a model working with hand-crafted features such as
spectrogram and statistical features. Yan et al. presented in 2020 a TCN model for weather
predictions task [21]. In this research, a comparative experiment was carried out between
LSTM and TCN, where TCN outperforms LSTM using various time-series datasets.

Nevertheless, recent studies reveal promising results using WaveNets in the field
of time series forecasting, where such novel ML algorithms are improving the results
obtained by the aforementioned Deep Learning methods. WaveNet is a complex deep
convolutional architecture based on dilated temporal convolution and skip-connections.
A. Borovykh et al. presented in [22] an adaptation of WaveNet for multiples time series
forecasting problems. WaveNet consistently outperforms the autoregressive model and
LSTM in metrics errors and time in the training process. D. Impedovo presents TrafficWave,
a generative Deep Learning architecture inspired by Google DeepMind’ Wavenet network
for traffic flow prediction [23]. The proposed approach shows better results than other
state-of-the-art techniques (LSTM, GRU, AutoEncoders). S. Pramono et al. presented a
novel method for short-term load forecasting that consists of a combination of dilated
causal residual convolutional neural network and LSTM to forecast four hours-ahead [24].
The long sequences are fed to the convolutional model while the short data sequences are
fed to the LSTM layer.

Given the previous context and based on the promising results achieved in other areas,
the authors propose to apply these novel techniques to the energy load forecasting field
by developing a cutting-edge Deep-Learning architecture, for a forecast horizon of 24 h-
ahead, with the main objective of outperforming other state-of-art methods. Specifically, the
proposed architecture consists of an Encoder-Decoder approach using WaveNets, which are
based on dilated temporal convolutions. The list of advantages that this kind of algorithm
presents can be found below:

• There is no “leakage“from the future to the past.
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• Employing dilated convolutions enable an exponentially large receptive field to pro-
cess long input sequences.

• As a result of skip-connections, the proposed approach avoids degradation problems
(explosions and vanishing gradients) when the depth of the networks increases.

• Parallelisation on GPU is also possible thanks to the use of convolutions instead of
recurrent units.

• Potential performance improvement.

The rest of this document is organised as follows: Section 2 details the elements that
comprises the proposed method, data preparation and the steps performed during the
training stage. Section 3 presents the results of the proposed approach and comparison
methods. Section 4 concludes this research work with future research directions.

2. Materials and Methods
2.1. Proposed Approach: Encoder-Decoder Approach Using WaveNets

WaveNet (Figure 1) is a deep generative model originally proposed by DeepMind
which was designed for generating raw audio waveforms [25]. The WaveNet model
can be extrapolated beyond the audio in order to be applied to any other type of time
series forecasting problem, providing an excellent structure for capturing the long-term
dependencies without an excessive number of parameters.
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WaveNet contains stacks of temporal dilated causal convolutions (TDCCN) that allow
it to access a broad range of history of past values when forecasting; By using causal
convolution networks (TCNs), the model cannot violate the order in which the data is fed
to the algorithm. One of the problems of the basic design of TCNs is that they required
many layers or larges filters to process long sequences. To address this problem, the
authors of WaveNets suggest the use of a dilated causal convolutional network (DCCN) in
combination with causal convolutions [25]. A dilated convolution is a convolution where
the filter is applied over an area large than its length by skipping input values with a certain
step. This network architecture effectively allows the network to operate on a coaster scale
than with traditional convolutions [25]. One of the advantages of dilated convolutions is
that they reduce the number of deep neural networks’ parameters. Furthermore, it enables
a faster training process and, consequently, lower hardware and energy consumption
derived cost. ReLU is used as activation function applying multiple convolutional filters
in parallel. The dilated convolution splits the input into two different branches which are
recombined later via element-wise multiplication. This process depicts a gated activation
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unit, where the tanh activation branch acts as the learning filter and the sigmoid activation
branch works as a learning gate that controls the information flow through the network.
It is a very similar process that the one explained above for the internal gates of the
RNNs. Some of the biggest limitations of deep neural networks are degradations problems
(exploding/vanishing gradient) during training process. This occurs as a consequence
of either too small or too large derivatives in the first layers of the network, causing
the gradient to increase or decrease exponentially, which leads to a rapidly declining
performance of the network. In order to address the degradation problem, WaveNets make
use of residual connections between layers. This type of deep neural network is based
on short-cut connections, which turn the network into its counterpart residual versions.
Two options could be considered in Residual Networks (ResNets) [26]: adding new layers
would not impact on model’s performance (these layers would skip over them if those
layers were not useful) and if the new layers were useful, the layer’s weights would be
non-zero, and the model’s performance could increase slightly.

Some modifications were performed in order to adapt the architecture, so the solution
is able to generate predictions for the desired forecast horizon and reduce the noise at
the output. Originally, WaveNet was trained using the next step prediction, so the errors
were accumulated as the model produces a long sequence in the absence of conditioning
information [27]. The encoder performs dilated temporal convolutions with a filter bank to
generate a set of features of the input sequences. These learned features are comprised into
a fixed-vector, also known as context-vector. The decoder network generates an output
sequence forecast based on the learned feature of the encoder input sequence, allowing
us to generate a direct output forecast for the desired forecast horizon. This modification
permits the decoder to handle the accumulative noise when producing a long sequence as
output. A generic scheme of the proposed architecture is as follows (Figure 2):
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2.2. Data Analysis

As mentioned above, the main objective of the proposed approach is to forecast the
power consumption a day ahead by using historical past values. That is, both the input
and the output are the same parameter: the power consumption. To this end, macroscopic
power consumption data of French has been downloaded from the official RTE website [28].
The data uses for this problem ranges from 2016 to 2020. The data analysis and visualisation
were performed by using Pandas, Numpy, and Matploblib Python’s libraries. The first
visualisation of the available data is illustrated in Figure 3, which shows a seasonal pattern
on power consumption.
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2.3. Data Preparation

The process of data preparation is a key aspect when training Deep-Learning models
since the quality of data affects many parameters: it reduces the modelling errors, speeds
up the training process, and simplifies the whole system [29]. In order to carry out the
data preparation process for the proposed case, different steps have been carried out, as
detailed below.

First, it is interesting to pre-process the data in order to delete outliers, clean unwanted
characters and filter null values. As a result of this analysis, it was found that there are no
outliers nor any NaN value present in the RTE data, which indicates that RTE provides
the data after processing it. Regarding the size of the data, there are 26.280 rows (8.700
elements per year), but it is needed to transform this data into a sequence format.

It is also important to stress that the input and output data sequences have different
dimensions. While the input data has a horizon of one week in the past, the prediction
horizon for the output data is 24 h ahead. Thus, the dimensions for each one depend on
the following parameters: [number of time steps, sequence length, number of features].

In addition, it is well known that machine learning algorithms usually benefit from
scaling all their inputs variables to the same range, e.g., normalise all variables into the
range [0, 1]. As a result, the network will have a more stable and quick learning process.
Besides, it is useful to avoid floating-point number precision due to the different scales of
input data. On a time series forecasting problem, where a numerical sequence must be
predicted, it can also help to perform a transformation on the target variable. The method
that has been used to normalise the data is known as MinMax normalisation:

xnorm =
x− xmin

xmax − xmin
(1)

Different statistical parameters were calculated to obtain more information about the
given data. The data shows a Skewness of 0.53 that indicates that the distribution has
more weight in the left tail of the distribution. Some authors suggested in [30] that better
predictions are achieved if the target data is linearised through a logarithmic transform.
While normalising the target data does not affect the model performance, it helps to reduce
their Skewness. In the proposed approach, a log-transformation has been applied to the



Energies 2021, 14, 2524 7 of 16

target data. The Skewness of the dataset after the log-transformation is 0.08, which indicates
that the data is now much closer to a normal distribution.

In order to train the proposed model, a training, a validation and a testing set have
been extracted from the original data. On the one hand, the training set is the sample of
data used to fit (adjust the weigths) the model. On the other hand, the validation set is
the sample of data used to provide an unbiased evaluation of a model fit on the training
dataset while tuning model hyperparameters. Finally, the testing set is the sample of data
used to provide an unbiased evaluation of the final model configuration.

The problem under modelling model consists of a time series problem. Accordingly,
the data must be divided sequentially. Taking this criterion, the test set only provides
the error metrics that correspond with a number of weeks in a year. It does not provide
robust metrics to make conclusions about the model’s performance. Thus, different training
sessions for each data division have been performed, each with different training, valida-
tion, and test sets corresponding with different seasons for each year, in order to obtain
representative and reliable metrics. The starting and end date for each training session are
presented below. Figures 4–6 shows the power consumption in France for data division
1,2,3, respectively.
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• Data division 1:

# Training set: 2017-01-01 00:00:00 to 2017-12-31 23:00:00.
# Validation set: 2018-01-01 00:00:00 to 2018-01-28 07:00:00.
# Testing set: 2018-01-28 08:00:00 to 2018-02-24 15:00:00.

• Data division 2:

# Training set: from 2017-01-01 00:00:00 to 2018-07-02 11:00:00.
# Validation set: from 2018-07-02 12:00:00 to 2018-07-29 19:00:00.
# Testing set: from 2018-07-29 20:00:00 to 2018-08-26 03:00:00.

• Data division 3:

# Training set: from 2017-01-01 00:00:00 to 2019-11-06 07:00:00.
# Validation set: from 2019-11-06 08:00:00 to 2019-12-03 15:00:00.
# Testing set: from 2019-12-03 16:00:00 to 2019-12-31 23:00:00.

2.4. Deep Learning Architecture
Design of the Architecture

A grid search process was performed in different training sessions to find the optimal
hyperparameter’s configuration (Table 1). To such an end, several network architecture
configurations were trained using the same data division for training, validation, and
testing. These experiments were performed using an i7-8770 processor with 16 GB RAM
and Nvidia 1080 RTX with Nvidia CUDA drivers and Tensorflow GPU (2.2.3) as Deep-
Learning library. As reported in [31], the use of GPU to train models can be up to 4 train
faster than CPU. For this reason, the different training stages for the proposed approach
and the comparison techniques have been carried out on GPU Tensorflow is an open-source
software library developed by Google brain team for numerical computation [32]. Different
models were trained repeatedly, changing the learning parameters (as the learning rate) to
find the optimal ones. The following table shows the different tests that have been done to
find the best hyper-parameters configuration.
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Table 1. Tested hyperparameter’s combination. The highlight parameters are the parameters combined with the lowest
error in the validation set.

Input
Length

Learning
Rate Epochs Batch

Size Optimiser Dilation Rates Kernel
Sizes Filters Fully Connected

Layer’s Neurons

168 0.01 100 8 RMSprop [1,2,4,8] 2 12 16

256 0.001 150 16 Adam [1,2,4,8,16] 4 32 32

0.0001 200 32 [1,2,4,8,16,32,64,64,128] 64 64

1000 [1,2,4,8,16,32,64,64,128,128,256] 128

It is important to remark that the dilation rates exponentially increase as the depth n
of the network increases.

drates = 2i, 1 ≤ i ≤ n (2)

where i represents the i-th layer and n represents the total number of dilated causal convo-
lution layers.

Both Encoder and Decoder share the same hyperparameters configuration. Never-
theless, while the encoder transforms the past time series values into a feature vector, the
decoder uses the feature vector as an input to generate an output sequence for 24 h-ahead.
Once all the results were obtained, the objective was to find the model with the least bias
error (error in the training set) and a low validation error. Accordingly, the selected model
has the following configuration:

• Input length: 168 h
• Learning rate: 0.001
• Epochs: 1000
• Batch size: 32
• Optimiser: Adam
• Dilation Rates: [1,2,4,8,16]
• Kernel sizes: 2
• Number of filters: 32
• Fully connected neurons: 32

In Section 3, the performance of the previous configuration with the testing set is
presented and analysed.

2.4.1. Training

The training process consists of learning the best values of the weights and biases in
the training set, so the structure was able to correlate its output sequence with respect to
the input sequence. The difference between a Deep-Learning time series approach from a
traditional one is the handling of the generalisation error. This error is defined as the error
when new input sequences are fed into the trained model. Typically, the usual approach
consists of estimating the generalisation error by the metric error in the validation set which
is independent of the training set. Two facts determine how well the deep learning model
performs: its capabilities to reduce the training error to the lowest level and to keep the
gap between the training error and the validation error as smaller as possible.

The rest of the training parameters were selected as follows:

• β1 parameter: 0.9. The exponential decay rate for the first moment estimates (momentum).
• β2 parameter: 0.99. The exponential decay rate for the first moment estimates (RMSprop).
• Loss function: Mean Squared Error (MSE).

The learning curves on the three data division are presented below.
When analysing the learning curves (Figure 7), it can be appreciated that the error of

the proposed solution is slightly higher in validation sets 1 and 3. These datasets correspond
to the winter months, where the error is usually a bit higher as can be observed in the
results presented below. Regarding the learning curve corresponding to data division 2,
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which elapses the summer months, the validation error is even smaller than the training
error, since it encompasses a lot of data combining several months.
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3. Results

Different error metrics were computed in order to evaluate the model’s performance
for a forecast horizon of 24 h ahead. These metrics have been calculated by comparing
the actual power consumed in France in MW with the power predicted by each of the
proposed models. Training, validation, and testing sets have been extracted from the three
data partition divisions. Specifically, Mean Squared Error (MSE), Root Mean Squared Error
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(RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Bias
Error (MBE), Mean Bias Percentage Error (MBPE) were calculated for each trained model.

MSE (MW) =
1
n ∑|y− ŷ|2 (3)

RMSE (MW) =

√
1
n ∑|y− ŷ|2 (4)

MAE (MW) =
1
n ∑|y− ŷ| (5)

MAPE (%) =
100
n ∑

∣∣∣∣y− ŷ
y

∣∣∣∣ (6)

MBE (MW) =
1
n ∑ y− ŷ, (7)

MBPE (%) =
100
n ∑

y− ŷ
y

(8)

where y is the real measure of power consumption and ŷ is the estimated measurement
of power consumption. Table 2 reports the results obtained on the three data division for
training, validation, and testing datasets.

Table 2. Performance comparison metrics for each data division in training, validation, testing datasets.

Data
Division Set MSE (MW) RMSE (MW) MAE (MW) MAPE (%) MBE (MW) MBPE (%)

1
Training Set 3.815 × 106 1953.212 1366.707 2.488 −558.947 −1.114

Validation Set 7.432 × 106 2726.292 1979.027 3.096 −907.611 −1.511
Testing Set 7.743 × 106 2782.677 2119.104 2.953 79.439 0.004

2
Training Set 2.972 × 106 1724.011 1225.774 2.167 327.089 0.573

Validation Set 2.487 × 106 1577.155 1084.796 2.338 477.346 0.913
Testing Set 2.685 × 106 1638.709 1117.471 2.626 18.018 0.061

3
Training Set 3.560 × 106 1889.346 1352.111 2.477 395.462 0.656

Validation Set 6.717 × 106 2591.814 1743.703 2.785 129.694 0.122
Testing Set 6.666 × 106 2581.991 1889.944 3.064 185.531 0.219

The results reveal similar error metrics for the first two tests, corresponding for
the data division 1 and 2. The difference between the testing set and the training set is
most significant for the data division 3, where the testing set corresponds to December’s
month. This increase in error may be due to multiple things: based on data analysis, it
has been observed that the standard deviation of consumption is higher in the winter
months (Figure 3. This may be due to multiple public holidays, cold days where heating
consumption spikes, etc.

Additionally, the error metrics of state-of-art deep learning architectures and other ad-
vanced statistical time-series methods:Autoregressive-Integrated Moving Average
(ARIMA) [32–34], Multilayer Perceptron Network (MLP) [35,36], Convolutional Neural
Network (CNN) [37,38], Long-Short Term Memory (LSTM) [39–46], Stacked LSTM [47],
Gated-Recurrent Unit (GRU) [48], and Stacked-GRU [47,49] are also presented in Table 3
in order to make a fair-comparison between approaches. The criteria to select each of the
models is the same as the one previously described for the proposed approach. For each
deep-learning architecture, different hyperparameters configuration has been tested. The
model that provides the lowest error in each training session’s validation set has been
selected to calculate the testing set’s errors. The results confirmed that the proposed model
outperforms the other deep learning techniques, achieving the lowest error in the three
data division for a forecast horizon of 24 h-ahead.
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Table 3. Error metrics of the proposed models and comparison techniques for each data division in the testing set.

Data
Division Model MSE (MW) RMSE (MW) MAE (MW) MAPE (%) MBE (MW) MBPE (%)

1

Proposed Approach 7.743 × 106 2782.677 2119.104 2.953 79.439 0.004
ARIMA 2.409 × 108 15,524.138 13,701.994 18.170 13,564.961 17.9248

MLP 1.050 × 107 3240.606 2542.002 3.517 258.806 0.3205
CausalConv1D 9.700 × 106 3115.109 2336.889 3.230 413.027 0.5484

ConvLSTM 9.006 × 106 3001.072 2321.472 3.211 283.711 0.356
LSTM 4.428 × 107 6654.573 5439.153 7.614 237.031 −0.235
GRU 4.476 × 107 6690.945 5498.788 7.649 935.558 0.603

StackedLSTM 4.414 × 107 6644.195 5317.568 7.416 617.804 0.326
StackedGRU 1.976 × 107 4445.943 3513.181 4.859 779.914 0.842

2

Proposed Approach 2.685 × 106 1638.709 1117.471 2.626 18.018 0.061
ARIMA 3.584 × 107 5987.222 4974.551 12.352 −1745.694 −5.961

MLP 3.294 × 106 1815.062 1402.886 3.296 −353.854 −1.031
CausalConv1D 2.809 × 106 1676.236 1139.331 2.644 −147.862 −0.465

ConvLSTM 2.814 × 106 1677.679 1233.298 2.870 −246.956 −0.707
LSTM 3.103 × 107 5570.446 4585.232 11.243 −956.642 −3.908
GRU 2.793 × 107 5284.928 4316.504 10.554 −726.990 −3.297

StackedLSTM 8.562 × 106 2926.257 2328.889 5.487 −43.796 −0.556
StackedGRU 2.967 × 106 5447.697 1775.300 4.183 −524.327 −1.480

3

Proposed Approach 6.666 × 106 2581.991 1889.944 3.064 185.531 0.219
ARIMA 9.082 × 106 9530.107 7598.771 11.525 5884.41 8.136

MLP 8.566 × 106 2926.846 2211.715 3.673 −659.786 −1.311
CausalConv1D 7.472 × 106 2733.633 1895.930 3.076 −637.183 −1.167

ConvLSTM 6.880 × 106 2623.061 1894.860 3.129 −206.603 −0.437
LSTM 2.458 × 107 4958.222 3883.119 6.366 −442.154 −1.161
GRU 3.706 × 107 6087.658 4904.714 8.113 −811.686 −2.036

StackedLSTM 3.415 × 107 5843.829 4719.721 7.760 −176.051 −1.074
StackedGRU 9.504 × 106 3082.936 2346.052 3.862 −357.712 −0.769

It is interesting to stress that the CNN-based methods yield better results than recurrent
methods, indicating that the causal convolution structure effectively extracts the feature
of ever-changing power demand patterns. Contrary to the outcomes achieved by other
research carried out in this area, any significant recurrent based model was found to
provide the closest results with respect to the convolutional approaches. Only the results
from a complex architecture stacking more Gated-Recurrent-Unit (GRU) layers are most
comparable to the rest of the methods.

The following images depict the power prediction at instant k for the next 24 h. For
better visualisation, only one forecast by day is presented in the subsequent illustrations.
Additionally, Table 4 shows a better description of the absolute error’s statistical error in
each test set.

Table 4. Statistics description of the absolute error in each test set.

Test
Set

Mean
(%)

Median
(%)

5th Percentile
(%)

25th
Percentile (%)

75th
Percentile (%)

95th
Percentile (%)

1 2.966 2.642 1.328 1.971 3.732 5.616
2 2.997 2.800 1.438 2.017 3.646 5.588
3 3.239 2.848 1.470 2.181 3.910 6.474

4. Discussion

This research has offered a novel Deep-Learning structure commonly used for audio
synthesis applied for time series forecasting. Despite this paper’s focus on the French
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load forecasting, the proposed approach could be replicated for a wide range of fields that
involve time series forecasting.

It was demonstrated that the proposed encoder-decoder WaveNet, based on dilated
temporal causal convolutions, exhibits better results than the other comparison techniques.
Our proposed model shows the best performance in different test sets compared to other
state-of-art Deep-Learning models in terms of MSE, RMSE, MAE, MAPE, MBE, MBPE.
Specifically, Multi-Layer Perceptron Network (MLP) and Causal Convolution 1-D (1D-
CNN), Autoregressive-Integrated Moving Average (ARIMA), Long-Short-Term-Memory
(LSTM), Gated-Recurrent-Unit (GRU) and some combination of them have been imple-
mented to make a fair comparison between approaches.

The errors were uniformly distributed through the different test sets, which corre-
sponds with different seasons in 2018–2019 (Figure 8). Although the error metrics are
uniformly distributed, it can be appreciated that it is slightly higher in test set 3, corre-
sponding to December of 2019. This variation in the error metrics also occurs in the other
comparison techniques, probably due to the holidays and non-school period this month.
Although the improvements of the proposed model over other approaches may seem to be
slight, it is more than enough to improve the energy usage efficiency allowing significant
savings inmoney and resources since, as D. Bunn et al. claim in [1], a 1% of improvement
of an electricity forecasting model can result in up to 10M £ of savings.
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Figure 8. Performance of the power foecasting model on the three different test sets. (Left column) Real and prediction of
the power consumption in the three different testing sets. (Right column) Box-Plot of the absolute error in each test set. The
coloured lines within the box represent the mean (dashed green) line and the median (orange) line.
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The performance achieved in this research represents promising results for those
researches interested in time series forecasting. This study proved the good learning
capabilities of dilated temporal convolutions networks. One of the significant advantages
of the proposed method, respectively, traditional recurrent methods, is the possibility of
parallelising the training process in GPUs, enabling the training process in less time even if
the amount of data increases a lot.

Further research will focus on considering multiples sources of data to improve the
proposed network’s performance, e.g., weather data and calendar information. Addition-
ally, it can be helpful a better adjustment of the hyperparameter configuration, performing
more training sessions. Another possible aspect is ensemble forecasting, where the final pre-
diction forecast will be a linear or non-linear combination of the predictions from different
models. A pre-processing stage could be further added to decompose the input sequence,
e.g., Wavelet Transforms (WT) or Empirical Mode Decomposition (EMD), whereas each
decomposed sequence will be treated as a new feature of the model. Another possible
neural network modification consists of replacing the context vector with an attention
mechanism to focus on the most important parts in the input sequence with respect to the
output sequence.

Anyone interested in the code can write an email to the addresses of the first page in
order to be provided with the code.
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