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SUMMARY

The aim of this paper is to propose a model for the design of a robust rapid transit network. In this paper, a
network is said to be robust when the effect of disruption on total trip coverage is minimized. The proposed
model is constrained by three different kinds of flow conditions. These constraints will yield a network that
provides several alternative routes for given origin–destination pairs, therefore increasing robustness. The
paper includes computational experiments which show how the introduction of robustness influences
network design. Copyright # 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The increased demand for passenger transportation in and around urban areas and the resulting traffic

congestion have leadmany cities to build rapid transit systems and new conventional railway lines (see,

e.g., [1]). Because of the high construction and operating costs of such systems, it is important to pay

attention to issues affecting effectiveness and robustness at the planning stage. A crucial part of the

planning process is the underlying infrastructure network design which consists of two intertwined

problems: the determination of alignments and the location of stops and stations. Because most rapid

transit systems are railways, we will use both terms indiscriminately.

Design decisions are considered at the strategic level, but they must incorporate the traffic behavior

of users. At the upper level the objective is to maximize demand coverage, subject to design and budget

constraints. At the lower level the traffic demand decisions are incorporated in the transit network

design alternatives, considering the traffic cost of private and public modes, based on the system supply

(the network to be constructed) and on assumptions made about the modal traffic costs. The selection

and comparison of these alternatives may be carried out by considering that users choose both a path

and a travel mode.

Several studies have addressed railway or metro network design problems. The location of a single

alignment has been dealt with in the papers by Bruno et al. [2,3] and Dufourd et al. [4]. In the first one

the weighted travel cost of all the users is minimized, while in the other two the coverage of the

population by public network is maximized. The work of Laporte et al. [5], incorporates origin–

destination data in order to maximize the trip coverage. The papers of Hamacher et al. [6] and Laporte

et al. [7] consider the problem of locating stations on a given alignment in different set-ups. The first

one assumes that there already exists a partial alignment on which some stations are located, while the

second one considers a discrete set of candidates to locate the stations. Garcı́a andMarı́n [8,9] study the

mode interchange and parking network design problems using bilevel programing. They address the

multimodal traffic assignment problem with combined modes at a lower level. Laporte et al. [10]
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extend the previous models by incorporating station location and multiple alignments. Their model

maximizes demand coverage, subject to budget constraints. Marı́n [11] studies the inclusion of a free

but bounded number of lines, and each origin–destination (O/D) of the lines is chosen in the rapid

transit network design model.

In a related field, a number of authors (see, e.g., Fortz and Labbé [12], Fortz et al. [13], and Grötschel

et al. [14]) have studied the problem of designing robust low cost communication networks that can

survive the failure of some edges. However, telecommunication and transportation networks operate

differently. In telecommunication networks the routing of signals is decided by the network managers

whereas in transportation networks passengers make their own choices. As a result the same solution

methodology cannot apply to both types of problems.

Online planning in railway and other transportation networks needs to react in the best possible way

to perturbations, and network robustness must be taken into account at the planning stage. Several

sources of uncertainty are present in transportation systems. Stochasticity of demand has been

addressed by many authors, e.g., Lou et al. [15] and Yin and Lawphongpanich [16]. We are concerned

here with uncertainty relative to the network itself (see, e.g., [17]). The review article by Yang and Bell

[18] considers link additions and link improvements in network design problems and casts these

problems in the general framework of bilevel programing.

In the first case robust optimization is considered from a stochastic point of view by Rockafellar and

Wets [19] who identify robust decision by discovering similarities among the optimal solutions for

different scenarios. A framework for robust optimization is analyzed in Malcolm and Zenios [20] and

Mulvey et al. [21]. These papers assess different choices for parameters while penalizing variance of

the cost of deviations from feasibility. A serious difficulty in this approach is to strike a proper balance

between the terms of the objective function. One must achieve a tradeoff between the mean and

variance of the solution, and deviations from feasibility under all scenarios.

In the second case one seeks a solution that remains feasible even for worst-case scenario parameters.

A bibliography on this topic, with comments on robustness in combinatorial optimization, can be found

in Nikulin [22]. This optimization approach considers the robust counterpart of the problem, see for

example, Ben-Tal and Nemirovski [23,24] in which a robust solution is sought using ellipsoidal

uncertainty sets for data. The over-conservatism of this strategy is unsuitable for many situations in

which only a low number of parameters are uncertain simultaneously [25,26]. This is in fact the case of

railway network design problems inwhich robustness is considered according to disruptions to the usual

operations [27,28]. In general, the robustness of a system indicates the influence of the perturbations on

the usual functioning. Themore a system is capable of achieving its aim in adverse conditions, the more

robust it becomes. The perturbation on the operations of a railway system can come from internal causes

(signals or rolling stock failures, crew problems, coordination and computer problems, etc.) or from

external causes (extreme weather conditions, a drop in electrical power, etc.). The occurrence of two or

more perturbations at the same time is very infrequent, but since lines use several sections of the network,

a disruption on one arc affects the operation on others, causing secondary or knock-on delays.

Our goal is to design robust transportation networks. We consider that a railway network is robust

when, in the event of arc failures, a high proportion of the passengers will still find the network useful

and faster than other means of transportation. Therefore, we will build networks that provide several

routes to passengers, thus increasing robustness. Although flow variables are introduced in our models,

the reader should note that such variables are used only for modeling purposes, and to define the

different routes available to each O/D pair on the RTN, but users always have the final say when it

comes to deciding which route to take, in accordance with the first Wardrop principle. In principle,

modeling user behavior can be done through the use of variational inequalities or of mathematical

programs with a rather large number of equality constraints (see, e.g., [29]). But given the very high

computational complexity of these models, we have avoided the use of bilevel programing in the

RTNDmodel. This choice is coherent with the assumption that the system capacity is not considered in

our model. Nevertheless, our designs will provide users with several possibilities. Some models can be

used to design networks that maximize trip coverage under normal conditions, i.e., no disruptions

occur. Others maximize trip coverage in the presence of disruptions. We propose a combination of

these two objectives, with the aim of providing a near-optimal network both when no failures occur and

when an arc is inoperative.
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The remainder of this paper is organized as follows. Section 2 presents the model for the core

network design problem. Section 3 is dedicated to the inclusion in the model of the proposed

robustness constraints. Section 4 describes computational experiments. The paper ends with some

conclusions.

2. A MODEL FOR THE RAPID TRANSIT NETWORK DESIGN PROBLEM

In our model for the Rapid Transit Network Design Problem (RTNDP) we assume that the mobility

patterns in a metropolitan area are known. This implies that the number of potential passengers from

each origin to each destination is given. We also assume that the locations of the potential stations are

given. There already exists a different mode of transportation (for example, private cars) competing

with the railway. When deciding which mode each demand is allocated to, the comparison between the

generalized costs of the travelers is used. The aim of the model is to design a network, i.e., to decide at

which nodes to locate the stations and how to connect them, consisting of railway lines, and covering as

many trips as possible. Since resources are limited we also impose a budget constraint on construction

costs.

Similar ILP models have appeared in the literature (see [10,30]). In these models, flow variables on

the routes through the RTN are binary, therefore allowing only to decide whether an O/D pair is

assigned to the RTN or not. In our model we allow these variables to take any value in [0,1] and add

flow variables on the alternative mode. This way we allow that part of the demand of the O/D pair is

routed through the RTN and the rest through the alternative mode, thus allowing our model to become

robust when providing O/D pairs with different alternative routes in the RTN (see Section 3).

2.1. Data and notation

The model uses the following notation:

(1) A set N¼ {ni: i¼ 1,2. . .,n} of potential sites for locating stations.

(2) A set A0 of feasible (bidirectional) arcs linking the elements in N. Therefore, we have a graph

G0 ¼ (N,A0), from which arcs are to be selected to form railway lines. Furthermore, there exists a

graph G00 ¼ (N,A00) representing the network used by the complementary mode (e.g., the street

network). Let G¼ (N,A), where A ¼ A0 [ A00, be the whole network. Denote by

NðiÞ ¼ fnj : 9a 2 A0; a ¼ ðni; njÞg the set of nodes adjacent to ni.

(3) Every feasible arc a ¼ ðni; njÞ 2 A0 has an associated length dij equal to approximate Euclidean

distances if the system to be designed is underground, and to street network distances if it is at

grade. However, forbidden regions will increase distances, and dij can also be interpreted as the

generalized cost (time) of traversing arc a ¼ ðni; njÞ 2 A0.
(4) For every node ni and every arc a2A0 there is an associated cost of constructing the corresponding

infrastructure: ci is the cost of building a station at node ni, and ca is the cost of building link a. A

bound Cmax on the available budget is also given.

(5) The demand pattern is given by a vector (gw): w2W, where W is the set of ordered O/D pairs:

W ¼ fw ¼ ðp; qÞ : np; nq 2 Ng.
(6) The generalized cost of satisfying every demand by the railway network and the complementary

modes are uRNw and uCOMw , respectively. While the cost of using the complementary mode depends

on its network and therefore is an input data, the cost of using the railway depends on the topology

of the network to be constructed. The computation of railway costs uRNw can be done by adding the

lengths of the arcs of the path ofw in the railway network. Let uw be the generalized cost ofw either

by G0 or by G00.

The aim of the model is to design a network consisting of a set L of lines, |L| being a low number.

Since constraints on the total cost will be imposed, we will allow some lines of L to not be included in

the designed network. Note that for the model to be meaningful we need to impose technical

constraints on the data: both the lengths dij on A
0 and the complementary mode cost uCOMw must satisfy

the triangle inequality.
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2.2. Variables

The following variables will be used in the model:

� yli ¼ 1, if node ni is a station of line l; 0 otherwise.

� xlij ¼ 1, if the arc a ¼ ðni; njÞ 2 A0 belongs to line l2L; 0 otherwise.

� xij, if the arc a ¼ ðni; njÞ 2 A0 belongs to the railway network; 0 otherwise.

� ~f wij denotes the proportion the demand of w2W going through arc (ni,nj)2A0, from ni to nj,
~f wij 2 ½0; 1�, if no failure occurs. Note that these variables will define the fastest route for w in

the network to be built.

� ~’w
ij denotes the proportion of the demand of w2W through arc (ni,nj) 2A0, from ni to nj, ~’

w
ij 2 ½0; 1�, if

no failure occurs.

� hl¼ 1, if line l is included; 0 otherwise.

� pw¼ 1, if the demand of w is allocated to the railway network, that is, if its fastest route in the

network takes less time than that of the alternative mode; 0, otherwise.

In practice, variables~f wij and ~’
w
ij often take integer values, unless more than one route take equal time.

2.3. Objective function and constraints

The objective of our model is to maximize the railway demand coverage when no disruption occurs:

z1 ¼
X

w¼ðp;qÞ2W
gwpw:

The constraints are as follows:

� Budget constraints:
X

ðni;njÞ2A0;i<j

cijxij þ
X
l2L

X
hi2N

ciy
l
i � Cmax: (1Þ

� Alignment location constraints:

xlij � yli; ðni; njÞ 2 A0; i < j; l 2 L (2Þ
xlij � ylj; ðni; njÞ 2 A0; i < j; l 2 L (3Þ
xlij ¼ ylji; ðni; njÞ 2 A0; i < j; l 2 L (4Þ
xlij � xlij; ðni; njÞ 2 A0; i < j; l 2 L (5Þ
xlij �

X
l2L

xlij; ðni; njÞ 2 A0; i < j (6Þ
X
j2NðiÞ

xlij � 2; ni 2 N; l 2 L (7Þ

hl þ
X

ðni;njÞ2A0;i<j

xlij ¼
X
ni2N

yli; l 2 L (8Þ

1

2
�

X
ðni;njÞ2A0;i<j

xlij þMðhl � 1Þ � 0; l 2 L (9Þ

1

2
�

X
ðni;njÞ2A0;i<j

xlij þMhl � 0; l 2 L (10Þ

X
ni2B

X
nj2B

xlij � Bj j � 1;B � N; Bj j � 2; l 2 L: (11Þ

�
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Routing demand conservation constraints:
X

ðni;npÞ2A0

~f wip þ
X

ðni;npÞ2A00
~’w
ip ¼ 0;w ¼ ðp; qÞ 2 W (12Þ

X
ðnp;njÞ2A0

~f wpj þ
X

ðnp;njÞ2A00
~’w
pj ¼ 1;w ¼ ðp; qÞ 2 W (13Þ

X
ðni;nqÞ2A0

~f wiq þ
X

ðni;nqÞ2A00
~’w
iq ¼ 1;w ¼ ðp; qÞ 2 W (14Þ

X
ðnq;njÞ2A0

~f wqj þ
X

ðnq;njÞ2A00
~’w
qj ¼ 0;w ¼ ðp; qÞ 2 W (15Þ

X
ðni;nkÞ2A0

~f wik �
X

ðnk ;njÞ2A00

~f wkj ¼ 0; if k=2fp; qg;w ¼ ðp; qÞ 2 W (16Þ

X
ðni;nkÞ2A00

~’w
ik �

X
ðnk ;njÞ2A00

~’w
kj ¼ 0; if k=2fp; qg;w ¼ ðp; qÞ 2 W (17Þ

~f wij þ ~’w
qj � 1; ðni; njÞ 2 A;w 2 W : (18Þ

� Location-allocation constraints:

~f wij þ pw � 1 �
X
l2L

xlij; ðni; njÞ 2 A0;w 2 W : (19Þ

� Splitting demand constraints:

"þ uw � uCOMw �Mð1� pwÞ � 0;w ¼ ðp; qÞ 2 W : (20Þ
where uw ¼ P

ðni;njÞ2A0
dij~f

w
ij þ

P
ðni;njÞ2A00

uCOMij ~’w
ij ,M is a large real number, e> 0 is a small tolerance, and

uCOMij is the generalized cost of traversing arc (ni,nj) by the complementary mode.

Constraint (1) is the budget constraint. Constraints (2) and (3) ensure that a link is included in the

railway network only if the nodes to which the link is incident are also selected. Constraints (4) allow

edges to be used in both directions. Constraints (5) and (6) state that arc (ni,nj) is built if and only if a

line uses it. Constraints (7) force each node to have at most two associated edges of each line.

Constraints (11) ensure that a line does not contain a cyclic subgraph. Note that these constraints along

with (8) guarantee that the lines to be constructed will induce paths. However, a line of the network

must have at least one edge, which is ensured by constraints (9). If a line l is not considered in the

design then it does not have any edge by (10). Constraints (12)–(18) are the flow conservation

constraints at each node. The incoming flow equals the outgoing flow for both pairs of variables. We

also impose that both outgoing flows and both incoming flows must be equal to 1 at the beginning and

at the end of the paths, respectively. Constraints (19) guarantee that an O/D pair demand is routed on an

edge only if this edge belongs to the railway network. Finally, constraints (20) force the demand to be

assigned to the railway mode if and only if the associated cost of using this network (taking the fastest

route) does not exceed the corresponding cost of the complementary mode. The role of e in these

constraints is to break ties. For the sake of simplicity mode choice was reduced to a 0–1 decision.

However, our model admits a more elaborated mode distribution as that applied in the paper by Marı́n

and Garcı́a-Ródenas [31] where a piecewise linear approximation of a logit function is considered. For

computational reasons, transfer costs are not taken into account in this model since the model is already

rather heavy. A model in which transfers are considered is provided in Garzón et al. [32].

3. INTRODUCING ROBUSTNESS IN THE MODEL

Our model for the design of a railway network does not consider the system capacity. This is

consistent with the assumption that public transportation costs are independent of link passenger

flows, for which we assume that the available capacity is sufficient. This context is one for which
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the user-link assignments are all-or-nothing. This leads to concentrating riders for each O/D pair

in single routes. Since this type of solution usually implies that some parts of the network

are crowded while others are almost empty, the RTNDP model has no robust network solution and

any disruption of service, especially in the most crowded sections of the network, involves a

large number of passengers. The introduction of the robustness constraints not only provides

alternative routes in the event of arc failure, but it also helps avoid congestion on a restricted set of

arcs.

To incorporate the robustness constraints in the model, we introduce the following variables:

� f wij denotes the proportion of the demand of w2W that goes through arc (ni,nj)2A0, from ni to nj,

f wij 2 ½0; 1�, if a failure occurs.

� ’w
ij denotes the proportion of the demand of w2W that travels through arc (ni,nj)2A00, from ni to nj,

’w
ij 2 ½0; 1�, if a failure occurs.

These variables are created in order to provide O/D pairs with different alternative routes. They just

seem a duplication of the ~f ; ~’ variables, but they are in fact crucial to our definition of robustness.

Although the new variables are defined as percentage of the demand of each O/D pair going through

certain arcs, they should be seen as alternative routes, since users have the power to decide which route

to take.

The objective now consists not only of maximizing demand coverage, but it also takes into account

the effects of possible failures in the network. Therefore, apart from z1, two other customer-oriented

criteria are combined in the objective function:

� The maximization of the railway demand coverage in case of failures:

z2 ¼
X

w¼ðp;qÞ2W
gw

X
j2NðpÞ;ðnp;njÞ2A0

f wpj

0
@

1
A:

Note that
P

j2NðpÞ;ðnp;njÞ2A0
f wpj is the proportion of the demand of the O/D pair w¼ (p,q) that will use

the railway network.

� The minimization of the total routing maximal value:

zDIST ¼
X

w2W;ði;jÞ2A0
f wij dij:

The objective function becomes

z ¼ az1 þ ð1� aÞz2 � bzDIST:

where b is a positive number close to 0, to keep z1 and z2 as primary goals. If a2[0,1] is close to 1, the
objective is to maximize the demand coverage when no arc fails. In contrast, if a is close to 0, the

objective is to maximize the demand coverage when arcs fail. We add the term zDIST to force the

model to choose the shortest of all potential routes (still keeping as primary goal the demand

coverage). The model has the same structure as that of Section 2.3, with the following changes.

Constraints (12)–(18) become

� Routing demand conservation constraints:
X

ðni;npÞ2A0
f wip þ

X
ðni;npÞ2A00

’w
ip ¼ 0;w ¼ ðp; qÞ 2 W (21Þ

X
ðnp;njÞ2A0

f wpj þ
X

ðnp;njÞ2A00
’w
pj ¼ 1;w ¼ ðp; qÞ 2 W (22Þ

X
ðni;nqÞ2A0

f wiq þ
X

ðni;nqÞ2A00
’w
iq ¼ 1;w ¼ ðp; qÞ 2 W (23Þ
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X
ðnq;njÞ2A0

f wqi þ
X

ðnq;njÞ2A00
’w
qi ¼ 0;w ¼ ðp; qÞ 2 W (24Þ

X
ðni;nkÞ2A0

f wik �
X

ðnk ;njÞ2A0
f wkj ¼ 0; if k=2fp; qg;w ¼ ðp; qÞ 2 W (25Þ

X
ðni;nkÞ2A00

’w
ik �

X
ðnk ;njÞ2A00

’w
kj ¼ 0; if k=2fp; qg;w ¼ ðp; qÞ 2 W (26Þ

f wij þ ’w
ij � 1; ðni; njÞ 2 A;w 2 W (27Þ

Mfwij � ~f wij ; ðni; njÞ 2 A;w 2 W : (28Þ
Constraints (21)–(26) are flow conservation constraints (as for variables ~f and ~’). Constraints (28)
state that the fastest route for an O/D pair (defined by variables ~f and ~’) must be among the different

alternative routes chosen for that pair. Constraints (19) become:

f wij þ pw � 1 �
X
l2L

xlij; ðni; njÞ 2 A0;w 2 W :

since we must now build the arcs for every possible route.

3.1. Demand-arc flow constraints

The first kind of robustness constraints to be introduced are called demand-arc flow constraints (DAF)

and allow the demand of every arc to be routed through alternative paths, considering the

complementary mode as an alternative. A disadvantage of multi-path routing lies in the fact that the

demand is split, and therefore a more expensive but more robust solution arises. The user cost

difference between the standard RTNDP and the RTNDP with demand-arc constraints is the price of

robustness [26].

These constraints, called demand-arc flow constraints, DAF for short, allow the demand of every arc

of every O/D pair w to use at least rwij different routes. Therefore,

f wij � 1

rwij
; ðni; njÞ 2 A0

DAF � A0;w 2 WDAF � W :

where A0
DAF and WDAF are the sets of selected arcs and O/D pairs, respectively. The limitation can be

uniform so that rwij ¼ r; 8ðni; njÞ 2 A0
DAF;w 2 WDAF. If r is a positive integer, then these constraints

impose that each affected O/D pair will have r different alternative routes in the network (if this is

allowed by the budget constraint).

To illustrate, consider the example of Figure 1 where demand (1,3) takes the direct route f
1;3
1;3 ¼ 1. If

we impose DAF constraints with r¼ 2, this demand now has two possible routes: directly from n1 to n3,

or via node 2 as depicted in Figure 2, that is, f
1;3
1;3 ¼ f

1;3
1;2 ¼ f

1;3
2;3 ¼ 0:5.

3.2. Arc flow constraints

An interpretation of the arc flow constraints, AF for short, is that only a percentage of the total number

of O/D pairs will have their demand routed through the arcs involved. In case of arc failure, only a

percentage of the O/D flows will be affected

X
w2WAF

f wij þ
X

w2WAF

f wji � WAFj j
rij

; ðni; njÞ 2 A0
AF � A0;WAF � W :

where rij plays the same role as rwij and A
0
AF andWAF are the subset of arcs and the subset of O/D pair that

will be considered, respectively. A common situation arises when the upper bound is uniform

rij ¼ r;8ðni; njÞ 2 A0
AF. Note that this constraint relaxes the constraint on demand-arc flow, and may

only affect some arcs, for example, the hub transit network. Another possibility is to consider only a

selected group of O/D pairs, for example, O/D pairs with a long distance between the origin and the

destination, or pairs without private car availability.
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3.3. Arc demand constraints

When imposing arc demand constraints, AD for short, only a percentage of the total traffic may be

routed through the selected arcs. These constraints imply that the O/D demands are spread over a

number of arcs, thus avoiding their concentration and railway congestion.

X
w2WAD

f wij gw þ
X

w2WAD

f wji gw � Sw2Wgw
rij

; ðni; njÞ 2 A0
AD � A0;WAD � W :

where A0
AD and WAD are the subset of arcs and the subset of O/D pairs to be considered, respectively.

As before, it is often the case that rij ¼ r; 8ði; jÞ 2 A0
AD. Also, as for the previous constraints and for the

same reason, a selected group of O/D pairs to which the constraints are applied may be selected. It

should be stressed that the flow variables f and w are only introduced for computational purposes and to

define the different routes on the RTN for each O/D pair, but users are free to choose their route (we

assume they will choose the fastest one available). For instance, in Figure 2 the flow from node 1 to

Figure 2. Lines of the network and flow from n1 to n3 when r¼ 2 and Cmax¼ 40.

Figure 1. Lines of the network and flow from n1 to n3 when r¼ 1 and Cmax¼ 40.
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node 3 is split into two. This does not mean that half of the users go via one route and the other half via

the other route, but only that users can choose either alternative, and, if one of them is not available,

users can still find the RTN attractive.

4. COMPUTATIONAL EXPERIMENTS

Our computational experiments aim to assess to which extent the parameter a affects the objective

function and the resulting network. The model was solved by branch-and-bound, which was

implemented in GAMS 22.2 and CPLEX 10.0. The network depicted in Figure 3 was used for the

experiments. Each node has an associated construction cost ci, and a pair (cij,dij) is associated to each

edge, where cij and dij are the construction cost of the edge and its length. The latter parameter can also

represent the generalized cost of traversing the edge using the railway system.

The O/D demands gw and the cost u
COM
w for each O/D pair w2W are given by the following matrices:

G ¼

0 9 26 19 13 12 6 6 4

11 0 14 26 7 18 3 7 9

30 19 0 30 24 8 3 9 11

21 9 11 0 22 16 21 18 16

14 14 8 9 0 20 12 18 9

26 1 22 24 13 0 11 28 21

7 5 6 19 15 13 0 16 14

5 9 11 16 17 25 17 0 21

6 8 10 18 11 20 14 20 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

uCOMw ¼

0 1; 6 0; 8 2 1; 6 2; 5 4 3; 6 4; 6
2 0 0; 9 1; 2 1; 5 2; 5 3; 2 3; 5 4; 5
1; 5 1; 4 0 1; 3 0; 9 2 3; 3 2; 9 3; 9
1; 9 2 1; 9 0 1; 8 2 2 3; 8 4; 1
3 1; 5 2 2 0 1; 5 3 2 3

2; 1 2; 7 2; 2 1 1; 5 0 2; 5 3 2; 5
3; 9 3; 9 3; 9 2 3 2; 5 0 2; 5 2; 5
5 3; 5 4 4 2 3 2; 5 0 2; 5
4; 6 4; 5 4 3; 5 3 2; 5 2; 5 2; 5 0

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA

;

As usual, subtour elimination constraints (11) where initially relaxed and gradually imposed, except

in the case of circular lines.

Table I summarizes our results. We have used Cmax¼ 40, and we have imposed the three different

robustness constraints separately, over the central arcs, (2,3), (2,4), (3,4), (3,5), (4,5). The resulting

networks are: R1¼ {(1,3,4,7,6,8), (3,5,6,9)}, and R2¼ {(4,6,7), (6,8), (1,2,3,1), (3,5,6,9)}.

4
3

7
2

2
3

Figure 3. Test network.

Copyright # 2010 John Wiley & Sons, Ltd. J. Adv. Transp. 2011; 45:54–65

DOI: 10.1002/atr

62 G. LAPORTE ET AL.



Figure 4 shows the asymptotic behavior of trip coverage with respect to budget when imposing DAF

constraints for different values of r. One can see that in certain cases it is not worth investing more

money in the network, since the increase in trip coverage is too low. Other observations are:

� The higher the value of r, the lower the covered traffic.

� The higher the value of r, the smoother the increase of the covered traffic. Thus, increasing

robustness makes the network less profitable in terms of trip coverage.

� The maximum curvature decreases as the robustness of the network increases. The value of the

budget which a larger starts triggering of trip coverage increases with r.

We are aware that our experiments are limited by the size of the instances that can be solved

optimally. Our aim was not to solve large-scale instances, but rather to illustrate the feasibility of

integrating robustness considerations in a planning model. Metaheuristics should likely be used for

larger instances. Work along these lines is presented in Garzón et al. [33]. Another possibility is to use

decomposition methods [30].

5. CONCLUSIONS

An integer linear programing model for building railway networks in competition with previously built

networks was developed. Three ways of introducing robustness by capacity constraints were also

studied. Experiments on robustness constraints were conducted on a small network. Further research

avenues include improving the RTNDP model in different ways, namely by considering the

multinomial logit mode demand distribution (see [31]) or constructing stochastic assignment model

Table I. Traffic covered by the railway network when no failure occurs and when failures occur, and resulting
networks imposing the three different robustness constraints for different values of a.

a DAF,r¼ 2 AF,r¼ 10 AD,r¼ 10

z1 z2 R z1 z2 R z1 z2 R

0 792 792 R1 792 716.2 R1 792 659.16 R1
0.25 792 792 R1 792 716.2 R1 831 652.1 R2
0.5 792 792 R1 831 683.02 R2 831 652.1 R2
0.75 792 792 R1 831 683.02 R2 831 652.1 R2
1 831 658.9 R2 831 683.02 R2 831 652.1 R2

Figure 4. Demand-arc flow constraints for r¼ 1(þ), r¼ 2 (&), r¼ 3 (^).
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including the possibility of arc failure in the arc travel time stochasticity [34]. In addition, powerful

metaheuristics could be developed to handle realistic size instances.
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