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Abstract— We investigate the boundary stabilization of a
particular subset of 3×3 linear hyperbolic systems with varying
coefficients on a bounded domain. The system is underactuated
since only one of the three hyperbolic PDEs is actuated at
the boundary. The setup considered in the paper occurs in
control of multiphase flows on oil production systems. We use
a backstepping approach to design a full-state feedback law
yielding exponential stability of the origin.

I. Introduction

We consider the problem of stabilizing a certain type
of 3 × 3 linear hyperbolic systems of transport equations
with spatially varying coefficients. We consider the case
where two uncontrolled PDE states have strictly positive
transport speeds, whereas the controlled PDE state has a
strictly negative speed. In addition, we assume that one of
the uncontrolled states is a Riemann invariant, i.e. it satisfies
a pure transport equation with varying speed.

The stability of hyperbolic systems has been previously
investigated. In [4] using a Lyapunov approach, the authors
consider the stabilization by static output feedback of 2 × 2
linear (with constant and varying coefficients) and quasilinear
hyperbolic systems. Similarly, sufficient conditions for the
stability of 2 × 2 linear systems with varying coefficients
and n × n quasilinear systems are derived in [1] and [5], re-
spectively. However, when these conditions are not satisfied,
more advanced feedback laws are needed.

The stability of these systems is also investigated in [11],
linking the Lyapunov and frequency domain approaches, as
well as in [16], following a Lyapunov approach. Besides,
in [10], sufficient conditions for the exact controllability
of quasilinear hyperbolic systems are given. Interestingly,
they do not apply to the system considered in this paper.
A sufficient condition is that the number of controlled states
is larger than the number of uncontrolled ones, which is not
the case here.

In [14], an output feedback law is introduced, which
allows stabilization of 2 × 2 linear heterodirectional1 hyper-
bolic systems. A backstepping observer-controller structure
is derived, yielding exponential stability in the L2-norm of
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1i.e., where the two states have transport speeds of opposite signs

the origin of the considered system. The result is extended
to the quasilinear case in [15].

In this paper, we extend the state feedback in [14] to a
particular type of 3 × 3 linear systems, arising in modelling
of multiphase flow. In [7], a model for gas-liquid flow
in oil production pipes is proposed, under the form of a
3 × 3 quasilinear hyperbolic system. The model reproduces
an undesirable phenomenon, called slugging, featuring large
oscillations of the pressure, flow rates and mass hold-ups
everywhere inside the pipes. The occurrence of slugging
corresponds to the instability of the equilibrium of the model,
which can be stabilized by feedback actuation of a valve
located at the outlet of the pipes. Remarkably, one of the
states of the model, namely the mass fraction of gas, is
a Riemann invariant (see e.g. [6]). The linearization of
the model proposed in [7] leads to the system considered
throughout this article.

The paper is organized as follows. In Section II, we
describe the system under consideration. In Section III, we
propose a backstepping transformation. The existence of the
kernels directly stems from the results presented in [14]. In
Section IV, we prove exponential stability in the L2-norm
of the target and original systems. Finally, we discuss the
obtained results and perspectives for future improvement in
Section V.

II. System definition

Consider the pipe schematically depicted in Figure 1. It is
filled with gas and oil coming from a reservoir or a manifold.
The geometric distribution of both phases inside the pipes,
referred to as flow regime, depends, among other things,
on the maturation of the oil field, the geometry of the pipe
and the nature of the gas-liquid mixture. One of these flow
regimes, called slugging, features periodic oscillations of all
the physical quantities (such as pressure, flow rates, hold-
ups) inside the pipe. These oscillations are at the birth of
production losses and may damage the facilities. A possible
solution to suppress them is to use feedback control of the
outlet valve, which can be remotely actuated to stabilize
the flow. The model proposed in [7], which is of drift-flux
type [2], [3] takes the following form

∂ζ

∂t
(t, x) + A(ζ)

∂ζ

∂x
(t, x) = S (x) (1)

on the spatial domain [0, 1]. The three distributed state
variables are the gas mass fraction, pressure and gas velocity.
The expressions of the A and S matrices are given in [7].



Liquid

Gas

Outlet Valve

Inlet

θ

Fig. 1. Schematic view of a pipe conveying oil and gas from a reservoir.

The boundary conditions are expressed as follows(
hl1 (ζ(t, 0))
hl2 (ζ(t, 0))

)
=

(
0
0

)
hr (ζ(t, 1),Z(t)) = 0 (2)

where Z(t) is the opening of the outlet valve, which is
the control input. Considering small variations around an
equilibrium profile ζ̄(x) (corresponding to a given valve
opening Z̄) yields the following linear system with varying
coefficients (see Appendix A for the complete linearization)

u1t(t, x) + λ1(x)u1x(t, x) = 0 (3)
u2t(t, x) + λ2(x)u2x(t, x) + σ21(x)u1(t, x) + σ23(x)v(t, x) = 0

(4)
vt(t, x) − µ(x)vx(t, x) + σ31(x)u1(t, x) + σ32(x)u2(t, x) = 0

(5)

on the domain (t, x) ∈ R× [0, 1]. The transport speeds are C1

functions of space satisfying the following inequalities

∀x ∈ [0, 1] − µ(x) < 0 < λ1(x) < λ2(x)

and we denote

Λ(x) =

λ1(x) 0 0
0 λ2(x) 0
0 0 −µ(x)


Σ(x) =

 0 0 0
σ21(x) 0 σ23(x)
σ31(x) σ32(x) 0


The linearized boundary conditions readu1(t, 0)

u2(t, 0)
v(t, 0)

 = Q0

u1(t, 0)
u2(t, 0)
v(t, 0)

 =

0 0 q1
0 0 q2
0 0 1


u1(t, 0)
u2(t, 0)
v(t, 0)

 (6)

v(t, 1) = U(t) (7)

where U(t) is the new control input, and q1 and q2 are non-
zero. System (3)–(5) with boundary conditions (6), (7) forms,
along with an appropriate initial condition, a well-posed
problem. However, as demonstrated in [7], the equilibrium
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Fig. 2. Schematic view of the control design for 2 × 2 heterodirectional
systems. The backstepping transformation completely removes the internal
coupling between both states. The resulting target system is exponentially
stable.

u1 ≡ u2 ≡ v ≡ 0 may be unstable, especially for large values
of Z̄. In the next sections, we propose a stabilizing feedback
law following a backstepping approach.

III. Backstepping transformation

A. Analogy with 2 × 2 heterodirectional systems

System (3)-(4)-(5) is not the most general form of 3 × 3
hyperbolic systems. Because the first line of matrix Σ(x) is
filled with zeros (the first state is a Riemann invariant), its
structure resembles that of 2 × 2 heterodirectional systems.
In [14], a stabilizing feedback control law is proposed for
these systems, along with observers for both the collocated
and non collocated cases. We propose to exploit the resem-
blance with 2 × 2 heterodirectional systems to design an
controller structure for our 3×3 (2×2 + a Riemann invariant)
system.

In particular, when designing a backstepping transforma-
tion, the kernel equations that allow to suppress the internal
coupling between the last two states (u2 and v) are exactly
the same as the kernel equations in the 2 × 2 case. The
coupling between the first state (u1, the Riemann invariant)
and the last state (v, the controlled state) can be suppressed
by the backstepping design as well. Importantly, the coupling
between the two homodirectional states (u1 and u2) does not
need to be suppressed, since it does not affect the stability of
the target system. This idea can be summarized by Figures 2
and 3. This suggests that a generalization of this result to
(n+1)×(n+1) systems, with n states with positive speeds and
one controlled state with a negative speed may be possible.
We discuss this matter in more detail in Section V.
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Fig. 3. Schematic view of the control design for a particular 3× 3 system
(2× 2 + a Riemann invariant). The backstepping transformation completely
removes the internal coupling between the α2 and β states, and between α1
and β. The coupling between α1 and α2 (u1 and u2 in the original system)
is slightly modified, as there is now an integral source term proportional
to α1 in the propagation equation of α2. The resulting target system is still
exponentially stable.

B. Target system

We want to map the original system (3)–(5) to the follow-
ing target system

α1t(t, x) + λ1(x)α1x(t, x) = 0 (8)
α2t(t, x) + λ2(x)α2x(t, x)

+ σ21(x)α1(t, x) +

∫ x

0
c(x, s)α1(t, s)ds = 0 (9)

βt(t, x) − µ(x)βx(t, x) = 0 (10)

where c is a C0 function to be determined defined on the
triangular domain

T = {(x, ξ) : 0 ≤ ξ ≤ x ≤ 1} , (11)

along with boundary conditions

α(t, 0) = Q0α(t, 0) =

0 0 q1
0 0 q2
0 0 1

α(t, 0) β(t, 1) = 0 (12)

The L2-stability of system (8)-(9)-(10) is investigated in
Section IV. We now propose a state transformation that maps
the original system (3)-(4)-(5) to the target system.

C. Backstepping transformation

To transform system (3)-(4)-(5) into the target system (8)-
(9)-(10), we consider a backstepping transformation of the
following form.

γ(t, x) = w(t, x) −
∫ x

0
K(x, ξ)w(t, ξ)dξ (13)

where w = (u1, u2, v)T and γ = (α1, α2, β)T and the gains of
the kernel matrix

K =

 0 0 0
0 k22 k23

k31 k32 k33



are yet to be determined. Differentiating (13) with respect to
space yields

γx(t, x) = wx(t, x) − K(x, x)w(t, x) −
∫ x

0
Kx(x, ξ)w(t, ξ)dξ

while differentiating (13) with respect to time, and integrating
by parts yields

γt(t, x) = − Λ(x)wx(t, x) − Σ(x)w(t, x)
+ K(x, x)Λ(x)w(t, x) − K(x, 0)Λ(0)w(t, 0)

−

∫ x

0

[
Kξ(x, ξ)Λ(ξ) + K(x, ξ)Λ′(ξ) − K(ξ)Σ(ξ)

]
w(t, ξ)dξ

Using these expressions into the target system equations, and
using the plant equations and the fact that w1(t, x) = α1(t, x)
yields

0 =
[
Σ0(x) − Σ(x) + K(x, x)Λ(x) − Λ(x)K(x, x)

]
w(t, x)

− K(x, 0)Λ(0)w(t, 0) −
∫ x

0

[
Kx(x, ξ)Λ(x) + Kξ(x, ξ)Λ(ξ)

+K(x, ξ)Λ′(ξ) − K(x, ξ)Σ(ξ) + C(x, ξ)
]
w(t, ξ)dξ

where C(x, ξ) =

 0 0 0
c(x, ξ) 0 0

0 0 0

 and Σ0(x) = 0 0 0
σ21(x) 0 0

0 0 0

. Since this has to be verified for all

w(t, x), this yields the following equations to be solved

0 = K(x, 0)Λ(0)Q0 (14)

0 = Σ0(x) − Σ(x) + K(x, x)Λ(x) − Λ(x)K(x, x) (15)
0 = Λ(x)Kx(x, ξ) + Kξ(x, ξ)Λ(ξ)

+ K(x, ξ)Λ′(ξ) + Σ0(x)K(x, ξ) − K(x, ξ)Σ(ξ) + C(x, ξ)
(16)

on the triangular domain T defined by (11). Developing the
equation (16) yields the following 5 PDE

λ2(x)k22
x + λ2(ξ)k22

ξ = −λ′2(ξ)k22 + σ32(ξ)k23 (17)

λ2(x)k23
x − µ(ξ)k23

ξ = σ23(ξ)k22 + µ′(ξ)k23 (18)

−µ(x)k31
x + λ1(ξ)k31

ξ = σ21(ξ)k32 + σ31(ξ)k33 − λ′1(ξ)k31

(19)

−µ(x)k32
x + λ2(ξ)k32

ξ = −λ′2(ξ)k32 + σ32(ξ)k33 (20)

−µ(x)k33
x − µ(ξ)k33

ξ = σ23(ξ)k32 + µ′(ξ)k33 (21)

where, for notational convenience, ki j(x, ξ) was abbreviated
to ki j. This also yields the following expression of c(x, ξ)

c(x, ξ) = k22(x, ξ)σ21(ξ) + k23(x, ξ)σ31(ξ) (22)



Equations (14) and (15) give the boundary conditions for
equations (17)-(21) as follows

q2λ2(0)k22(x, 0) = µ(0)k23(x, 0) (23)

k23(x, x) = −
σ23(x)

λ2(x) + µ(x)
(24)

k31(x, x) =
σ31(x)

λ1(x) + µ(x)
(25)

k32(x, x) =
σ32(x)

λ2(x) + µ(x)
(26)

µ(0)k33(x, 0) = q1λ1(0)k31(x, 0) + q2λ2k32(x, 0) (27)

A direct application of [14, Theorem 4] with, on the one
hand

F1 = k22 F2 = k23

and, on the other hand

F1 = k33 F2 = k32 F3 = k31

yields the following lemma.
Lemma 3.1: Consider the hyperbolic system (17)-(21)

with boundary conditions (23)-(27). Under the assumptions

λ1, λ2, µ ∈ C
1([0, 1]), ∀i, j σi j ∈ C

0([0, 1])

there exists a unique continuous solution K.
In particular, c(x, ξ) = k22(x, ξ)σ21(ξ) + k23(x, ξ)σ31(ξ) is a

continuous function on T , and therefore it is bounded on T
which is critical in the proof of stability of Section IV.

D. Inverse transformation

The invertibility of transformation (13) is proved in [12],
along with the boundedness of the inverse transformation
operator. The inverse transformation reads

w(t, x) = γ(t, x) +

∫ x

0
L(x, ξ)γ(x, ξ)dξ (28)

where the inverse kernel L is implicitly defined on T by the
following integral equation

L(x, ξ) = K(x, ξ) −
∫ x

ξ

K(x, s)L(s, ξ)ds (29)

Given the particular form of K, L has the following form

L =

 0 0 0
l2,1 l2,2 l2,3
l3,1 l3,2 l3,3


where the li j are continuous functions on T .

IV. Control law and main result
A. Stability of the target system

Before stating the main result, we prove exponential
stability of the target system in the following Lemma.

Lemma 4.1: Consider system (8)-(9)-(10) with boundary
conditions (12) and initial conditions u0

1, u0
2 and v0. Under

the assumptions

λ1, λ2, µ ∈ C
1([0, 1]), σ21 ∈ C

0([0, 1]), c ∈ C0(T ),

u0
1, u

0
2, v

0 ∈ L2([0, 1]), (30)

the origin is exponentially stable in the L2-norm.

Proof Consider the following candidate Lyapunov function

V(t) =

∫ 1

0
pe−δx

[
α1(t, x)2 + α2(t, x)2

]
+ e−δxβ(t, x)2dx (31)

where p and δ are strictly positive real numbers to be
determined. Differentiating V with respect to time yields

V̇(t) =∫ 1

0

[
−pe−δx (λ1(x)α1(t, x)α1x(t, x) + λ2(x)α2(t, x)α2x(t, x))

− pe−δxσ21(x)α2(t, x)α1(t, x) + eδxµ(x)β(t, x)βx(t, x)

−pe−δxα2(t, x)
∫ x

0
c(x, s)α1(t, s)ds

]
dx

=
[
−pe−δxλ1(x)α1(t, x)2 − pe−δxλ2(x)α2(t, x)2

+eδxµ(x)β(t, x)2
]1

0
+

∫ 1

0

[
p(λ′1(x) − δλ1(x))e−δxα1(t, x)2

+ p(λ′2(x) − δλ2(x))e−δxα2(t, x)2 − (µ′(x) + δµ(x))eδxβ(t, x)2

−2pe−δxσ21(x)α2(t, x)α1(t, x)
]

dx

−

∫ 1

0

∫ x

0
2pe−δxα2(t, x)c(x, s)α1(t, s)dsdx (32)

Denoting

‖c‖∞ = max
(x,s)∈T

|c(x, s)|,

the last term can be upper-bounded as follows

−

∫ 1

0

∫ x

0
2pe−δxα2(t, x)c(x, s)α1(t, s)dsdx

≤ p‖c‖∞

(∫ 1

0

∫ x

0
e−δxα2

1(t, s)dsdx

+

∫ 1

0

∫ x

0
e−δxα2(t, x)2dsdx

)
= p‖c‖∞

(∫ 1

0
α2

1(t, s)
∫ 1

s
e−δxdxds

+

∫ 1

0

∫ x

0
e−δxα2(t, x)2dsdx

)
= p‖c‖∞

(∫ 1

0
α1(t, x)2 e−δx − e−δ

δ
dx

+

∫ 1

0

∫ x

0
e−δxα2(t, x)2dsdx

)
≤ p‖c‖∞

(∫ 1

0
α1(t, x)2 e−δx

δ
dx +

∫ 1

0

∫ 1

0
e−δxα2(t, x)2dsdx

)
= p‖c‖∞

(∫ 1

0
α1(t, x)2 e−δx

δ
dx +

∫ 1

0
e−δxα2(t, x)2dsdx

)
(33)

Plugging (33) into (32) and using the boundary conditions
yields

V̇(t) ≤
[
pλ1(0)q2

1 + pλ2(0)q2
2 − µ(0)

]
β2(t, 0)

+

∫ 1

0

(
α1(t, x)
α2(t, x)

)T

P(x)
(
α1(t, x)
α2(t, x)

)
e−δxdx +

∫ 1

0
ρ(x)eδxβ(t, x)2dx

(34)



with

P(x) =

(
p(λ′1(x) − δλ1(x)) +

p‖c‖∞
δ

−pσ21(x)
−pσ21(x) p(λ′2(x) − δλ2(x)) + p‖c‖∞

)
(35)

and

ρ(x) = (µ′(x) + δµ(x)) (36)

We now seek 2 parameters p and δ such that the following
inequalities are satisfied

p
[
λ1(0)q2

1 + λ2(0)q2
2

]
− µ(0) < 0 (37)

and, for all x ∈ [0, 1]

λ′1(x) − δλ1(x) +
‖c‖∞
δ

< 0 (38)

λ′2(x) − δλ2(x) + ‖c‖∞ < 0 (39)
(µ′(x) + δµ(x)) < 0 (40)[

λ′1(x) − δλ1(x) +
‖c‖∞
δ

] [
λ′2(x) − δλ2(x) + ‖c‖∞

]
−σ21(x)2 > 0

(41)

First, we pick

0 < p <
µ(0)

λ1(0)q2
1 + λ2(0)q2

2

so that (37) is satisfied. Besides, inequalities (38)-(39)-(40)-
(41) rewrite

λ1(x)δ2
− λ′1(x)δ − ‖c‖∞ > 0 (42)

λ2(x)δ − λ′2(x) − ‖c‖∞ > 0 (43)
µ(x)δ + µ′(x) > 0 (44)

λ1(x)λ2(x)δ3
−

[
λ1(x)λ′2(x) + ‖c‖∞λ1(x) + λ′1(x)λ2(x)

]
δ2

+
[
‖c‖∞λ′1(x) − ‖c‖∞λ2(x) + λ′1(x)λ′2(x) − σ21(x)2

]
δ

+ ‖c‖∞
[
λ′2(x) + ‖c‖∞

]
> 0. (45)

Inequalities (42)-(43)-(44)-(45) are satisfied for a sufficiently
large δ. Indeed, since assumptions (30) hold, all the transport
speeds, their derivatives, and the source terms are upper-
bounded in absolute value, and there exists ε such that

∀x ∈ [0, 1] µ, λi(x) > ε > 0 i = 1, 2

Thus, for all x ∈ [0, 1], P(x) in (35) is positive definite, ρ(x)
in (36) is strictly positive and there exists ε such that (34)
yields

V̇ ≤ −εV(t) (46)

B. Control law and main result

From transformation (13) evaluated at x = 1, one gets

U(t) = v(t, 1)

−

∫ 1

0
k31(1, ξ)u1(t, ξ) + k33(1, ξ)u2(t, ξ) + k33(1, ξ)v(t, ξ)dξ

(47)

We now state the main result of the paper
Theorem 4.2: Consider system (3)-(4)-(5) with boundary

conditions (6)-(7), initial conditions u0
1, u0

2, v0, and the control
law defined by (47). Under the following assumptions

λ1, λ2, µ ∈ C
1([0, 1]), ∀i, j σi j ∈ C

0([0, 1]),

u0
1, u

0
2, v

0 ∈ L2([0, 1])

the origin is exponentially stable in the L2 sense.

Proof From the continuity of the inverse backstepping
transformation, we have the following upper bound (see,
e.g., [13])

‖w(t, ·)‖2
L2([0,1]) ≤ (1 + ‖L‖∞) ‖γ(t, ·)‖2

L2([0,1])

Besides, from (46), one gets

‖γ(t, ·)‖2
L2([0,1]) ≤ e−εt ‖γ(0, ·)‖2

L2([0,1])

which concludes the proof.

V. Discussion and perspectives

We have presented a backstepping control design for
a particular 3 × 3 linear hyperbolic system with varying
coefficients, yielding exponential stability of the origin in
the L2 sense. As explained in Section III-A, the result
may be generalized to (n + 1) × (n + 1) systems where the
controlled state has a negative transport speed and the n other
states have a positive speed. Such a result would exploit the
fact that, no matter how strong the coupling is,2 an n × n
homodirectional system with 0 input at the inlet boundary is
always stable. This can be seen by considering a Lyapunov

function of the form V(t) =
∫ 1

0

n∑
i=1

e−δx piu(t, x)2dx, with

sufficiently small pi and sufficiently large δ. The coupling
between the controlled states and the n uncontrolled states
would be suppressed by the backstepping transformation.
This is a direction for future work.

Importantly, the proposed feedback law requires full-state
measurement. This assumption is not realistic for the consid-
ered application, where sensors are expensive and difficult
to install, and even more difficult to maintain. Boundary
measurement is a much more likely scenario. Usually, oil
production facilities are relatively well equipped at their out-
let, where pressure, flow and density measurements may be
available. When bottom pressure sensors are installed, these
are used in relatively simple feedback loops (PI controllers)
to stabilize the flow, with success [8], [9]. Thus, the case of
interest for the design of more advanced control law, is the
one where the sensors are located at the outlet, i.e. at the
right boundary of the domain.

Unfortunately, we have not been able yet to design a
collocated controller for this 3 × 3 system because the
approach we have followed in this paper, relying on the
2 × 2 case, does not seem to extend to the observer design.
However, according to [10], a sufficient condition for exact
observability of the quasilinear system is that the sensor is

2as long as the transport speeds are C1 and the coupling terms are C0

functions.



located where the most quantities “exit” the domain. In our
case, it is the right boundary, and the condition is fulfilled.
This gives us confidence that it may possible to design an
observer for the 3 × 3 linear case with varying coefficient.
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Appendix

A. Linearization of the drift-flux model for gas-liquid flow

Consider a small variation δζ(t, x) around an equilibrium
profile ζ̄(x). Neglecting second-order terms in δζ, System (1)
becomes

∂δζ

∂t
+ A(ζ̄(x))

∂δζ

∂x
+ S̃ (x)δζ = 0 (48)

with

S̃ (x) =

(
∂A

∂ζ1
(ζ̄)ζ̄′(x)

∂A

∂ζ2
(ζ̄)ζ̄′(x)

∂A

∂ζ3
(ζ̄)ζ̄′(x)

)
In (48), A(ζ̄(x)) is diagonalizable, i.e.

L(x)A(ζ̄(x)) = Λ(ζ̄(x))L(x)

where L(x) is a matrix of left eigenvectors and Λ(x) = λ1(ζ̄(x)) 0 0
0 λ2(ζ̄(x)) 0
0 0 µ(ζ̄(x))

 the matrix of transport

speeds. Thus, considering the change of variables

χ = L(x)δζ

and left-multiplying (48) by L(x) yields
∂χ

∂t
+ Λ(x)

∂χ

∂z
= −Σ̃(x)χ (49)

with

˜Σ(x) = L(x)
(
S̃ (x)L−1(x) + A(ū(x)(L−1)′(x)

)
The expression of Σ̃(x) is too complicated to be written in
details. Remarkably, the third line of Σ̃ is only filled with 0.
Indeed, the original state variable ζ1 is a Riemann invariant.
This structure is preserved by the preceding transformation,
and χ1 = u1 is also a Riemann invariant for (49)3. Thus, we
denote

Σ̃ =

 0 0 0
σ̃2,1 σ̃2,2 σ̃2,3
σ̃3,1 σ̃3,2 σ̃3,3


Finally, following [1], we define the following expressions

ϕ2(x) = exp
(∫ z

0

σ̃2,2(s)
λ2(s)

ds
)
, ϕ3(x) = exp

(
−

∫ z

0

σ̃3,3(s)
µ(s)

ds
)
,

ϕ(x) =
ϕ1(x)
ϕ2(x)

and make the following change of variables

u1 = χ1, u2 = ϕ2(x)χ2, v = ϕ3(x)χ3

This yields system (3)-(4)-(5) with 0 0 0
σ2,1 0 σ2,3
σ3,1 σ3,2 0

 =

 0 0 0
ϕ2(x)σ̃2,1(x) 0 ϕ(x)σ̃2,3(x)
ϕ3(x)σ̃3,1(x) ϕ−1(x)σ̃3,2(x) 0


Denoting δζ(t, 0) = δζ(0), the linearized boundary conditions
read

∂hl

∂ζ1
(ζ̄(0))δζ1(0) +

∂hl

∂ζ2
(ζ̄(0))δζ2(0) +

∂hl

∂ζ3
(ζ̄(0))δζ3(0) = 0

∂hl

∂ζ1
(ζ̄(L))δζ1(L) +

∂hl

∂ζ2
(ζ̄(L))δζ2(L) +

∂hl

∂ζ3
(ζ̄(L))δζ3(L)

+
∂hl

∂ζ3
(ζ̄(L))δZ(t) = 0

Thus,

∂hl

∂ζ
(ζ̄(0))L−1(ζ̄(0))

 1 0 0
0 ϕ−1

2 (0) 0
0 0 ϕ−1

3 (0)

 w(t, 0) = 0

∂hr

∂ζ
(ζ̄(L))L−1(ζ̄(L))

 ϕ−1
1 (L) 0 0

0 ϕ−1
2 (L) 0

0 0 1

 w(t, L) =

−
∂hl

∂ζ3
(ζ̄(L))δZ(t)

3This can be verified by computing explicitly Σ or, simply, by linearizing
the following equation, verified by ζ1: ∂ζ1

∂t (t, x) + λ1(t, x) ∂ζ1
∂x (t, x) = 0.



Eventually, the boundary conditions can be expressed as
follows 

(
u1(0)
u2(0)

)
=

(
q1
q2

)
v(0)

u2(L) =
(

q q′
) ( u1(L)

u2(L)

)
+ kδZ(t)

Setting U(t) =
(

q q′
) ( u1(L)

u2(L)

)
+ kδZ(t) yields equa-

tions (6)-(7).


