
Parallel connected-Component-Labeling based on homotopy trees

Fernando Diaz-del-Rio

a, Pablo Sanchez-Cuevas a, Helena Molina-Abril b, ∗, Pedro Real b

a Department of Computer Architecture and Technology. University of Seville. Spain
b Department of Applied Mathematics I. University of Seville. Spain

Keywords:

Connected-Component-Labeling
Computational topology
Adjacency tree

Digital image

Parallelism

a b s t r a c t

Taking advantage of the topological and isotopic properties of binary digital images, we present here a

new algorithm for connected component labeling (CLL). A local-to-global treatment of the topological

information within the image, allows us to develop an inherent parallel approach. The time complexity

order for an image of m × n pixels, under the assumption that a processing element exists for each pixel,

is near O (log(m + n)) . Additionally, our method computes both the foreground and background CCL, and

allows a straightforward computation of topological features like Adjacency Trees. Experiments show that

our method obtains better performance metrics than other approaches. Our work aims at generating a

new class of labeling algorithms: those centered in fully parallel approaches based on computational

topology, thus allowing a perfect concurrent execution in multiple threads and preventing the use of

critical sections and atomic instructions.

1

g

p

c

s

C

s

b

o

o

e

i

8

c

c

o

b

a

(

(

s

T

o

i

l

c

p

t

c

i

c

o

L

t

o

l

a

c

f

b

t

l

C

a

i

r
. Introduction

Connected Component Labeling (CCL) was one of the first al-

orithms of topological nature to be developed within the com-

uter vision field (see [7,12,24,27]). There is a plethora of appli-

ations of this computational topological process in image analy-

is, pattern recognition and image understanding. In most of them,

CL is used as a compulsory stage to achieve semantically correct

egmentations. By a connected component (CC, for short) of a 2D

inary digital image I of m × n pixels, we mean a set of pixels

f the same color (black or white) that are “connected” to each

ther. Working with pixels regularly placed in a square lattice, the

quivalence relationship “to be connected to” is usually understood

n terms of paths of consecutive 4-neighbor (sharing an edge) or

-neighbor (sharing a corner) pixels. Then, CCL is an image pro-

essing algorithm that provides a unique label to each connected

omponent of I . Specifying a conventional two-dimensional matrix

f 0,1-values as initial image data structure, we can classify 2D

inary CCL’s algorithms according to their local/global processing

nd management of the connectivity information into two classes:

a) iterative algorithms based on label-propagation techniques and

b) direct algorithms based on label-equivalence-resolving.

All of them (including the fastest ones) share the same first

tep: to scan the whole binary image or its contours pixel-by-pixel.

herefore, they start by labeling the first pixel and so the sec-
∗ Corresponding author.

E-mail address: habril@us.es (H. Molina-Abril).

a

b

nd one as a function of the first pixel label. This local process-

ng based on neighborhood masks proceeds progressively until the

ast pixel is reached. This fact necessarily implies data dependen-

ies between the labeling of one pixel and the previous one, which

revents these methods from using a pure parallel approach. In

erms of time complexity, this means that linear order O (m × n)

annot decrease independently of the number of available process-

ng units.

After this provisional labeling, a second step solves the so-

alled label equivalence problem , which constitutes a crucial stage

f all modern labeling algorithms. This process can be done: (a)

ocally and iteratively by propagation of labels step by step across

he image until stabilization or (b) globally and directly by means

f an equivalence table holding a graph structure representing the

abel connections, computing the transitive closure of the graph

nd, finally, updating label values with the equivalence table (a

omplete review of the state-of-the-art CCL’s algorithms can be

ound in [8]). An usually employed mechanism to solve the la-

el equivalence problem is the ’union-find’ algorithm, that replaces

hose provisional labels by its representative label, once equiva-

ences (that is, two or more labels that actually belong to the same

C) have been detected. Nevertheless, current union-find propos-

ls are mainly sequential, thus needing critical sections or atomic

nstructions if many processing elements act in this step concur-

ently. The maximum number of provisional labels can be as big

s (m × n /4). Hence, the amount of time for this second step may

e much bigger than for the first one.

https://doi.org/10.1016/j.patrec.2019.11.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2019.11.039&domain=pdf
mailto:habril@us.es
https://doi.org/10.1016/j.patrec.2019.11.039

d

t

n

p

a

d

l

m

l

o

m

j

p

i

t

t

t

h

l

o

l

w

f

T

g

o

v

[

f

o

i

W

C

s

c

o

e

3

a

(

f

c

d

t

p

p

a

s

t

i

a

r

n

1

h

c

i

a

n

c

Using duality properties of digital 2 D topology, a direct CCL al-

gorithm called CCL based on homotopy trees (or HT CCL) is designed

and implemented here. The main idea is to develop a simplified

and refined version in terms of (exclusively) pixels, of the inter-

pixel algorithm described in [20,21] . This method for labeling im-

ages is based on a topologically consistent graph model of a 2 D

binary digital image, called Homological Spanning Forest (HSF , for

short, see [14]). Considering a 2 D binary digital image as an ab-

stract cell complex ([13]), an HSF structure consists of two non-

intersecting trees: one spanning all the cells of dimension 0 (pix-

els) and the other spanning all the cells of dimension 2 (pixel’s

corners). A partition of the complete set of 1-dimensional cells is

made, in such a way that some of them are nodes of the first tree,

and the rest, of the second one. The contractibility of I in this re-

duced topological canvas is maintained, and we benefit from this

property to deduce our conclusions. The advantages of HT CCL are:

- It is a fully parallel procedure for labeling CCs. In our par-

allel framework we can define one processing element (PE) per

pixel, and all subsequent operations can be executed theoretically

at the same time by all the PEs . Real computer restrictions must

be carefully considered so that the real implemented parallelism

approaches the theoretical one. The total amount of memory and

mean number of accesses per pixel must be carefully weighed up,

as it is the most important parameter in CCL execution (see [5]).

- It is one of the fastest CCL algorithms. Its theoretical time

complexity is near the logarithm of the width plus height of

the image. Besides, experimentally compared to other implemen-

tations of the CCL algorithms ([2,4]), HT CLL presents better met-

rics. Additionally, our method computes both the foreground and

background CCL, thus enriching image processing with background

components, and allowing a straightforward computation of topo-

logical features like Adjacency Trees (see last item in this list).

- Our work aims at generating a new class of labeling algo-

rithms: those centered in fully parallel approaches based on com-

putational topology, thus allowing a perfect concurrent execution

in multiple threads and preventing the use of critical sections and

atomic instructions.

- An appropriate modification of HT CCL leads to obtaining ad-

ditional topological, geometric, analytical and statistical features of

the different CC’s of the image, giving rise to a complete CCA (Con-

nected Component Analysis) of the image.

- The result of HT CCL might be understood as an useful and

efficient compressed topological model for recognition tasks and

other high level computer vision applications. The classical Adja-

cency Tree (AdjT for short, also called topological, inclusion or ho-

motopy tree, see [23,25]) is an example of such kind of representa-

tions, which can be automatically obtained from HT CCL , due to the

fact that both foreground (FG) and background (BG) components

are computed at the same time.

The paper is organized as follows: Section 2 contains a sum-

mary of related works. Section 3 introduces the proposed method.

Section 4 focuses on the main part of the algorithm, based on the

concept of “Transports”. Section 5 clarifies some implementation

and time complexity details, and in Section 6 our experimental re-

sults are shown. The paper ends in Section 7 with some conclu-

sions and future work.

2. Related works

As previously mentioned, topological magnitudes can be com-

puted via two main approaches: iterative and direct (or a combi-

nation of both). However, the vast majority of CCL algorithms are

mainly based on raster scan, following the first era of sequential

computation, as in [23,24] .

A classical data partition technique for obtaining parallelism

consists of dividing the image into strips. The counterpart of this
ivision is that it generates more provisional labels (appearing at

he interfaces between each two strips), thus augmenting the time

eeded for the second stage. Even if the second stage uses a so-

histicated union-find technique for the provisional labels, there is

lso some room for parallelism in it, and many works have ad-

ressed different variations (see [6,9,11,16]) including tuning paral-

el algorithms for specific computers (see [1]). However, the great

ajority of CCL methods do not take advantage of important topo-

ogical (duality, homology, ...) and isotopic properties (characteristic

f objects embedded in 2D digital ambiance), which could maxi-

ize the degree of parallelization in managing local/global and ob-

ect/ambiance connectivity information.

Computational topology is the ideal mathematical scenario for

romoting parallelism in a natural way. The nature of topological

nformation is essentially qualitative, having the additional advan-

age that its magnitudes are robust under deformations, transla-

ions and rotations. Nevertheless, the results in the literature in

hat sense are rare. Up to now, the only topological invariant that

as been calculated using a fully parallel computation is the Eu-

er number (see [3]). Other authors have recently proposed some

ther parallel algorithms that compute some aspects of the homo-

ogical properties of binary images ([15]). In addition, some soft-

are libraries of flexible C++ (RedHom, [18]) have been developed

or the efficient computation of the algebraic homology of sets.

hese libraries implements algorithms based on geometric and al-

ebraic reduction methods.

In [20] , a digital framework for parallel topological computation

f 2D binary digital images based on a interpixel scenario was de-

eloped, modeling the image as a special abstract cell complex (see

13] for a clarification of this concept). Following this theoretical

ramework, CCL methods have been designed and implemented in

[19,21] . In relation to these previous works, we adapt here our the-

retical framework on the basis of the two following basic topolog-

cal relationships: “being adjacent to” and “being surrounded by”.

e propose a new and faster design and implementation of the

CL algorithm based on these ideas (code available in [22]). Our

implification allows us to reduce the number of operations for

omputing the global AdjT, reducing computation time and mem-

ry consumption and maintaining the degree of parallelism to ev-

ry single pixel.

. The CCL algorithm based on homotopy tree

Correctness of the proposed HT CCL is based on the fact that 8-

djacency is considered for FG pixels and 4-adjacency for BG pixels

(8,4)-adjacency pair). In this way, we take advantage of the power-

ul duality and isotopic properties that the topological invariants of

onnected components and holes have in the context of 2D binary

igital images based on square pixels. These properties arise from

he fact that this (8,4)-adjacency pair allows the image’s cell com-

lex to admit a partition onto cell complexes (of black and white

ixels) fully embedded in R

2 . Note that for 2 D binary digital im-

ges, there are holes of two dimensions: (a) 0-holes that can be

een as FG 8-CCs or BG 4-CCs in which we distinguish a pixel as

heir representative element; (b) 1-holes that can be seen as dig-

tal closed curves at inter-pixel level that constitute the border of

 given CC. We select two adjacent pixels of this curve, to rep-

esent 1-holes. From now on, the representative pixel of each con-

ected components is labelled (in the Figures) using capital letters.

-holes, will be pictured using white X symbols for 8-connected

oles, and black X symbols for 4-connected ones. These two con-

epts can be reduced to a single one within the context of binary

mages since a hole can be seen as a CC that is surrounded by

nother CC of different color. Note that due to duality, each con-

ected component will have its corresponding hole in the opposite

olor (except for the outer components of the image border).

Fig. 1. Up, left: A binary image pixel tree ˜ HSF where black pixel arrows (and distances) take the N-NE-E direction by default, whereas white ones the S-W direction. Up,

right: Local distance matrix Bottom, left: Global jump distance matrix. Bottom, right: CCL of the image.

t

f

t

F

a

i

a

a

a

r

l

p

N

p

p

p

o

H

r

H

a

s

(

f

d

T

t

a

r

S

n

t

e

o

p

H

d

d

v

a

i

Fig. 2. (1),(2) and (3) Graphical interpretations of the GJM (I) matrix corresponding

to Fig. 1 in terms of topological equivalences. (4) Graphical representation of the

AdjT model of the image I shown in Fig. 1 (up, left).

L

c

c

p

s

a

t

t

b

c

p

i

r

t

m

d

i

t

a

b

v

b

b

s

t
Roughly speaking, HT CLL is based on the idea of the computa-

ion of a global Adjacency or Homotopy Tree at CC’s level starting

rom a local Homotopy Graph at pixel’s level.

To get the big picture, let us start with a simple example of

he proposed method, applied to the 5 x 6 binary digital image I of

ig. 1 (up, left). The different steps of the proposed HT CCL (Fig. 3)

re briefly explained for this example. Given a binary digital 2 D

mage, a rooted tree that connects all the pixels can be built using

 particular direction for each color (those cases leading to graphs

re to be explained in the next section). Specifically for this im-

ge, each CC is connected by just one arrow to the CC it is sur-

ounded by. More concretely, the following rules have been estab-

ished in our method for the construction of such graph: For white

ixels: first South, then West (in short S-W); for black pixels, first

orth, then Northeast; then East (in short N-NE-E). Section 5 ex-

lains in detail the reasons (related to computing performance and

arallelism) for building the tree of black pixels following the op-

osite direction as for white pixels. Therefore, the first step (J init ()

f Fig. 3) consists of the generation of a directed spanning graph
˜ SF (I) over the pixels of the given image I , following certain di-

ection criteria. This concept appears as an important part on the

SF topologically consistent graph model of a 2 D binary digital im-

ge (see [14]).

The ˜ HSF (I) graph, can be directly represented by a matrix of

pecific jump distances. In fact, the process J init returns this matrix

see Fig. 1 (up, right)), that will be called Local Jump Matrix (LJM (I),

or short), and is computed as follows: For each pixel, the local

istances (those to the pixel that it is connected to) are computed.

hese distances depend on the chosen adjacency and direction cri-

erion; in our example in Fig. 1 , BG local distances can be defined

s: −1 (west connection) and −6 (south connection) (because each

ow counts for a distance of 6, which is the number of columns).

imilarly, local distances for FG pixels result to be: +6 (north con-

ection), +7 (N-E connection), +1 (East connection). At the same

ime, we can mark with a 0 those nodes that connect two differ-

nt colors. These are to be called “attractors”, that are the roots

f the subtree of each CC. In other words, a FG attractor is a FG

ixel vector-connected (that is, by a single arrow) to a BG pixel in
˜ SF (I) . The definition of a BG attractor is completely analogous.

Then, using attractors as a reference, we can compute global

istances to them, and therefore obtaining a matrix of global jump

istances, that is the Global Jump Matrix GJM (I), in which each

alue corresponds to the distance of a given pixel to its farthest CC

ttractor (see Fig. 1 , (bottom, left)). The transformation of LJM (I)

nto GJM (I) corresponds to the second step of Fig. 3 , J computation ().

b

et us emphasize that the final CCs of the image have not yet been

omputed at this stage.

A third phase (called Transports() in Fig. 3) implies some

hanges on the GJM (I) matrix, which are necessary when cycles ap-

ear after using the previous direction criterion. This is the crucial

tep of the method, and it is focused on erasing false FG and BG

ttractors, by pairing them following certain criteria (see next sec-

ion for further details).

Finally, and using the modified GJM (I) matrix, this process leads

o an AdjT and therefore to a correct CCL of the initial image (La-

elling () in Fig. 3). Then, the final GJM (I) matrix represents a tree,

alled Connected Component Labeling Tree (CCLT for short).

Additionally, further CCA can be directly extracted from the out-

ut of the Transport () stage (OtherFunctions () in Fig. 3). The result-

ng CCL of the image in Fig. 1 (up, left) is shown in Fig. 1 (bottom,

ight). The AdjT can be straightforwardly extracted as the connec-

ions among white and black color attractors when following the

odified GJM (I) matrix. Going back to the duality concepts intro-

uced at the beginning of this section, this matrix is interpreted

n terms of holes, and thus obtaining the corresponding AdjT of

he image. Fig. 2 (1) shows the topological equivalence between

 black 0-hole (FG attractor labelled as B) and the corresponding

lack 1-hole (black cross) of the same 8-connected CC that ob-

iously surrounds a white CC. This fact is pictured using a dou-

le dotted path. Fig. 2 (2) shows the correspondence between the

lack 1-hole (paired with the CC labelled B) and the white CCs it

urrounds. This connection can be automatically detected within

he GJM (I). Fig. 2 (3) pictures all the topological pairings that can

e translated to the AdjT model in Fig. 2 (4).

Fig. 3. Phases involved in the parallel CCLT building, labelling and other possible output results (i.e. AdjT and CC geometric information).

Fig. 4. The two unique possible patterns for attractors. Left: BG attractor (named

B) that is connected to a 8-adj FG set of pixels. Right: FG attractor F connected to a

4-adj BG set of pixels. Crosses represent 1-holes. Grey star represents a pixel of any

color.

fi

n

B

F

e

o

i

j

e

s

c

(

o

a

c

b

a

a

n

t

a

d

l

c

p

f
The key point here is the complete parallelization of this whole

process, that will be explained in the following sections. For the

rest of the paper let us suppose a binary image I (x, y) having

m rows and n columns. Rows (resp. columns) of the matrix as-

sociated to I are numbered from top-to-bottom (resp. from left-

to-right), starting from 0. A pixel can be identified by a pair

of integers (x, y), with x being the column number and y be-

ing the row number. The adjacency types can be defined accord-

ing to pixel coordinates. For pixel P = (x, y) , pixels with coordi-

nates N(P) = (x, y − 1) , E(P) = (x − 1 , y) , S(P) = (x, y + 1) , W (P) =
(x + 1 , y) are its 4-adjacent; these four in addition with the four

pixels NE(P) = (x − 1 , y − 1) , SE(P) = (x − 1 , y + 1) , NW (P) = (x +
1 , y − 1) , SW (P) = (x + 1 , y + 1) complete the rest of its 8-adjacent

pixels.

4. Attractor’s cancellation for building the CCLT via Transports

It is worth to mention that all the processes and data struc-

tures (including the concept of ˜ HSF graph) of our method are only

represented by two matrices: the original binary I and the jump

matrix J . Using these two matrices, many other structures can be

straightforwardly obtained (labelling, AdjT matrix, etc.) as shown

in the following. Due to the fact that the two first steps J init () and

J computation () are simply based on matrix distance calculus among

pixels, we consider that no further explanation is needed. There-

fore, we focus here on the Transport() stage. This process is based

on the “crack transport” method defined in [20] . This crack trans-

port technique consists of interchanging connectivity information

between two trees, by moving edges between them. This inter-

change, is only possible if certain conditions are satisfied. In this

previous work, the initial image was represented as a cell complex

(see [13] for a complete description of this concept) and two dif-

ferent HSF trees were used.

In the simplified scenario of HT CCL , in which the topological

canvas is reduced to a single graph

˜ HSF , these conditions can be

enunciated in terms of attractors. After building the GJM (I) matrix,

and due to the concrete directions taken when building the initial
˜ HSF , all the attractors follow one of the two very specific patterns,

shown in Fig. 4 . Note that the crosses in the Figure representing

1-holes, are not intrinsically implemented within the matrix data

structure, but they are shown in order to emphasize the natural

pairing (due to duality) among opposite color 0-holes (attractor)

and 1-holes.
With previous considerations, a false FG attractor can be de-

ned as a pixel whose north and east adjacent BG pixels are con-

ected through

˜ HSF to two different BG attractors. Likewise, a false

G attractor is a pixel whose south, southwest and west adjacent

G pixels are connected to two different FG attractors. Hence, the

dges in the ˜ HSF graph are transported, in such a way that a pair

f false FG and BG attractors disappears (according to the follow-

ng Transport method). Any transport implies the updating of two

ump matrix elements (or equivalently, redirecting two edges for

ach pair of false attractors). An example of these changes are

hown in Fig. 5 . Note that finally the remaining BG attractor is lo-

ated on the SW corner of the image. However, a black attractor

representative of a false white hole) must be cancelled with only

ne of the white attractors (which means that the remaining white

ttractors must find another black attractor). Thus, in the general

ase we cannot ensure that cancellation of false attractor pairs can

e done in parallel. As it is depicted in Fig. 7 (Right), several white

ttractors (likewise for black attractors) may select the same black

ttractor (white attractor, resp.) to try the cancellation. Hence, we

eed a stronger condition (specified in the next Transport method)

o cancel false attractors in parallel. This is the key-point of our

pproach and justifies building tree of black pixels in the opposite

irection to that of white pixels.

Transport method to remove false attractors.

We define this method for the FG attractor, and it is equiva-

ent for BG attractors. For every FG attractor and in parallel, we

heck two possible conditions (in an orderly fashion). For clarity

urposes, the process is explained using the notation of Fig. 6 .

• For each FG attractor (for instance, F), we select the adjacent

East BG pixel (F ′
E

) and follow the BG tree (downward dashed

line), which goes to some BG attractor (F ′
ES

). Then the West ad-

jacent FG pixel F ES , is chosen and the FG tree is followed until

a new FG attractor is reached (F). Only if this last FG attrac-

tor were the same as the initial one, the transport would be

done. Doing a transport implies removing a pair of false (FG

and BG) attractors: Those edges that previously connected false

attractors with pixels of different color, are moved now so that

they end up connecting these false attractors with another at-

tractor of its same color. In Fig. 6 , F must be connected now

to the black attractor G (that can be found simply by follow-

ing the tree of G NW

, which is at the south of F ′
ES

). Likewise, for

the transport of the false BG attractor F ′ ES , which must finally

be connected to F ′
NW

. These new edges are drawn with discon-

tinuous arcs.
• For each FG attractor (for instance, F), we select the adjacent

North BG pixel (F ′
N

) and follow the BG tree (downward dashed

line), which goes to some BG attractor (F ′
NW

). Then the South

adjacent FG pixel F NW

, is chosen and the FG tree is followed

until a new FG attractor is reached (F). Only if this last FG at-

tractor were the same as the initial one, the transport would be

done (similarly to the previously mentioned one).

Perfect concurrency in executing transports is guaranteed since

or each transport there are two directed paths up to their cor-

Fig. 5. Left: A simple image containing a pair of false attractors A, D and its jump matrix. The two 0 s in italic bold are the attractors to be cancelled when the cycle D, D E ,

A, A W is detected (see the Transport method). Right: The result after the transport (where changes are indicated by dashed arcs), and its corresponding jump matrix. Note

that the two 0 s have been changed for new jump distances that reveal where the false attractors A, D point now (that is, to B and C resp.). Bottom: jump matrix before and

after the transport (changes are highlighted in bold).

Fig. 6. Left: A black stair like shape with several FG attractors (upward arrows)

and BG attractors (downward arrows). Relevant pixels for the transport method are

drawn with circles. Right: Resulting pointers after the complete cancellation (using

the East white pixel for each false FG attractor) are drawn with discontinuous arcs.

Fig. 7. Left: A spiral like shape where cancellation of false FG/BG attractors cannot

be done in just one iteration. Right: Example of black attractors selecting the same

white one.

r

T

t

c

t

t

l

F

n

u

o

t

t

r

s

d

t

f

t

t

i

r

i

5

d

a

W

o

f

a

F

p

b

b

t

O
esponding roots (attractors), through the sub-trees in the GJM (I).

he condition that the starting pixel must be the same as the des-

ination after in both paths ensures the unicity of the pair to be

ancelled. Hence, transport phase has no need for any critical sec-

ion or atomic clause (see [10]).

For more complex shapes we will not be able to cancel all

he false attractors as straightforwardly as in the simple stair-

ike image of Fig. 6 . For instance, this happens for the shape in

ig. 7 (left), where the cancellation of false FG/BG attractors can-

ot be done in just one iteration. Here, the only possible transport

sing the BG tree is marked with a continuous arrow, and the rest

f dotted arrows does not fulfill the transport requirements. Once

he first set of transports is done, we can proceed with a new set

o cancel other FG/BG attractor pairs.

This transport phase transforms the jump matrix so as to rep-

esent the correct CCLT. It is equivalent to fusing those parts of a

ame CC, and somewhat similar to the classic ’Union-Find’ proce-

ure but benefiting from parallel computation, when using both

he BG and FG trees. Obviously, the cancellation of some pairs of

alse attractors do not guaranteed the complete deletion of all of

hem. Nevertheless, experiments with hundreds of images reveal

hat, after a few number of transport iterations, the returned CCL

s correct (it contains the same number of labels than other algo-

ithms like those of [4]). The theoretical demonstration of this fact

s left for future work.

. CCLT implementation and time complexity order

The question is now, what parts of a CCLT building can be

one in parallel? According to the proposed framework, the par-

llel CCLT building can be divided into four main phases (Fig. 3).

e refer the reader to [19] for a detailed matrix-based description

f this process. The time degree order supposing p PEs was also

ully illustrated in this work.

1) J init (). The matrix J , containing the jump distances to the

ttractor, is initialized, thus resulting the LJM (I). For instance, if

G pixels were traveled using the criterion N-NE-E (in order of

riority), the distances to be stored at each element of J would

e (according to previous order): n, n +1, +1 , being n the num-

er of columns of I . For BG pixels (criterion S-W), the initial dis-

ances would be: −n, −1 . Time complexity of this phase is clearly

 (mn / p), due to the fact that each pixel can write its jump dis-

Fig. 8. Mean speedup between BBDT and HT CCL for random images of [4] . Up: dif-

ferent sizes (in pixels). Bottom: densities from 0.1 to 0.9.

d

o

p

a

F

p

t

s

t

t

b

t

c

t

t

d

A

a

w

n

b

m

s

b

tance independently of the rest, and only based on the values of

its adjacent pixels.

2) J computation (). Here the total jump distances to the farthest

Northeast FG attractor (southwest BG attractor, resp.) must be

computed, thus resulting the GJM (I). To promote parallelism, ex-

ponentially distance growing accesses can be executed indepen-

dently for each pixel. As far as we know, the first work that pro-

posed a similar parallel scheme was [26] with the purpose of

producing highly efficient Monte Carlo simulations for two and

three-dimensional critical Ising models. Further details for apply-

ing this phase to binary images can be found in our previous pa-

per [19] , where it is shown that this phase can be executed in

log2(m + n − 1) iterations at most, due to the exponential nature.

Their complexity is O ((mn/p) log (m + n)) , thus being this phase

usually the most time consuming.

3) Transports() . In this phase pairs of false attractors are can-

celled mutually, this means a transport of edges until a unique tree

is obtained: the CCLT. This stage must execute several pairs of cycle

searching. Because we use FG attractors to detect cycles, directions

for each pair must be first South, and secondly West. This crucial

third phase requires a deeper explanation (see Fig. 7 (Left)). Ac-

cording to the transport method, each iteration k can be computed

fully in parallel for all the remaining attractors, which supposes a

complexity of O (n FGatt (k)/ p), being n FGatt the number of FG attrac-

tors that still remain at iteration k . In [19] , it was found that the

number of iterations reached a maximum of six pairs even for the

most problematic images, which were big random images (until

16 Mpixels) having a 50% of black pixels. Conversely, it was only

one for the real images tested (sizes until 2 Mpixels). Although

this phase seems to be tricky, if there were more PE than FG at-

tractors, its time complexity is reduced to a few iterations. The

worst case scenario of this phase is left for future research. How-

ever, shapes designed to stress algorithms that has been proved

as a near worst-case scenario for several connected-component la-

belling, like Fig. 14 of [5] , and the spiral image or the Hilbert

space-filling curve (both in Fig. 8 of [17]) are solved in just one

and two pairs of iterations of this transport phase, resp.

4) Labelling () (and other CCA functions in parallel). Once matrix

J represents the true CCLT, final label matrix L can be straightfor-

wardly obtained for each pixel, making each pixel look for its true

attractor. Hence, this phase can be done in a fully parallel way for

every pixel. As the final matrix comprises all the connectivity infor-

mation of a binary image, other characteristic and geometric mea-

sures can be computed at the same time, like AdjT, CC perimeters

and areas, etc.

Some details about implementation: A complete (YACCLAB-

compliant [4]) C++/OpenMP code was written ([22]). Although pre-

vious phases count theoretically for a time complexity order near

the O (log(m + n)) (under the assumption that a PE exists for each

pixel), there were many optimizations needed for handling with

real machines. The most relevant ones were related to memory

management in order to improve cache access locality. For a better

understanding of the real code, and because of the high impact on

actual performance, a short description follows:

- When building LJM (I), direction for FG CCs was East-then-

Southeast-then-South. For BG CCs North-then-West. At the same

time, a list of attractors was recorded in this phase, to ease the

transport phase (see below).

- Although all for loops can be parallelized by simply adding

OpenMP directives to row loops, actual implementation contains

parallel sections with # pragma omp parallel because a little addi-

tional speed-up is achieved. Moreover, when building GJM (I), that

is, when computing total jump distances, instead of the theoret-

ical log2(m + n − 1) number of iterations, only one iteration was

actually done. That is, two row loops were implemented with only

one column loop inside. The first incremented row and column in-
exes (thus promoting West directions for BG pixels), but the sec-

nd decremented both indexes (promoting East directions for FG

ixels). With these two loops, apart from benefiting for a stronger

ccess locality, each jump value inherits the previous pixel jump.

or example, if the image had a completely black row, the first

ixel jump would contain a value equal to the number of columns,

hus pointing directly to the attractor on the most East pixel. The

uppression of all the theoretic iterations reduced considerably to-

al time of this stage but supposed that the total jump distance to

he attractor was not fully computed. Hence jump distances had to

e updated in the next phase.

- Transports were done using the previous recorded list of at-

ractors. During each searching, jump values of the previously can-

eled false attractors were also updated. This was useful to reduce

he number of hops on subsequent transport iterations.

- In the final labelling phase, there were yet some jump dis-

ances that had not been plenty updated. Thus, in order to find the

efinitive attractor of each pixel, some final updating was needed.

dditionally, the label assigned to each pixel was the index of its

ttractor, which is a unique identifier for every CC.

To sum up, the unique CCLT process having real dependences

ith previous steps is the iterations of the transport stage, and the

umber of hops needed to find a true attractor. Still, these num-

ers are not very elevated: it has been empirically shown ([19]) a

aximum of four pairs for the first, and maximum of 176 for the

econd when processing 4Mpixel random images having a 50% of

lack pixels.

Fig. 9. Up: Mean speedup for 2 to 8 threads when testing the random images of

different sizes of [4] . Bottom: Mean speedup for 2 to 8 threads when testing ran-

dom images of densities from 0.1 to 0.9 (1 thread is the base time).

6

w

8

5

P

a

t

d

t

a

p

m

t

o

w

i

s

t

T

l

u

a

C

u

i

s

f

w

s

d

a

m

b

h

o

7

g

i

w

p

t

o

t

b

i

c

e

m

a

l

C

p

t

c

c

D

A

P

E

R

. Testing results

Tests were carried out on an Intel Xeon E5 2650 v2 server

ith: 2.6 GHz, 8 cores, 8x32 KB data caches, Level 2 cache size

x256 KB, Level 3 cache size 20 MB, maximum RAM bandwidth:

9.7 GB/s. Experiments were run following the procedure of the

roject [4] for random images of different sizes (in a nutshell, tests

re run 10 times, the minimum execution time for each image was

aken, which allows to achieve more reproducible results and re-

uce delays produced by other running processes). It is important

o mention that comparison between a classical CCL algorithms

nd our method is not fair since our method computes a com-

lete topological representation of the image, whereas classical CCL

ethods return only black CC labels, which impedes them to ex-

ract other topological representations like the AdjT. That is to say,

ur proposal computes both the foreground and background CCLs,

hich supposes processing the double quantity of pixels (approx-

mately, this obviously depends on the image black density). De-

pite this, for multicore processors HT CLL presents better metrics

han the fastest CCL algorithm in YACCLAB project (BBDT by [4]).

hus, only this fastest algorithm is compared with ours in the fol-

owing figures. Fig. 8 (up and bottom) shows timing ratios when

sing random images with different sizes and densities (percent-

ge of FG pixels), using the collected timings as generated by YAC-

LAB project. Likewise, Fig. 9 (up and bottom) shows the speed-

ps when launching different number of threads (same images as

n previous figure). Speedups (time ratios between one thread and

everal ones) are satisfactory for all image sizes and densities. Only

or little images, the extra overhead time, introduced by OpenMP

hen creating the threads, hinders speedup. This supposes that
peedups are also decreased for medium images. Finally, an ad-

itional advantage of HT CLL is that it presents lower deviation for

 same size and different densities than the BBDT method. This is

anifest when processing images of very different textures (Fig. 8 ,

ottom). Taking into account the satisfactory scalability and the in-

erent parallelism, we expect for our method to run even faster in

ther architectures (massive multicore processors, GPUs, etc.).

. Conclusions and future work

The HT CCL algorithm can be seen as a refined version of the al-

orithm of [19,20] in the following senses: (a) Instead of consider-

ng an HSF-model of I as a two-dimensional set of physical pixels,

e work with the simplified HSF-model of I as a two-dimensional

uzzle of pieces of four mutually adjacent pixels. Due to the con-

ractibility of I and the duality properties of the (8,4)-adjacency,

ur topological canvas is reduced here to a single graph

˜ HSF ; (b)

he crack transport technique of [20] is here substantially modified

y suitably defining FG and BG attractor patterns and performing

n parallel steps its corresponding pairings. The theoretical time

omplexity of our CCL computation is logarithmic, and performed

xperiments show that the proposed method obtains performance

etrics that improve other approaches. Additionally, our method

llows a straightforward computation of the Adjacency Tree topo-

ogical model, and computes both the foreground and background

CL, thus enriching image processing. Further improvements of the

roposed method will be addressed in the future: (a) Extension

o nD dimensions, (b) Extension to color images and Region Adja-

ency Graphs and (c) Inclusion of additional (geometrical, statisti-

al, analytical, topological, etc.) CCA.

eclaration of Competing Interest

None.

cknowledgements

Work supported by the Spanish projects MTM2016-81030-

 (AEI/FEDER,UE) and TEC2012-37868-C04-02 of Ministerio de

conomía y Competitividad and the VPPI of the US.

eferences

[1] P. Bhattacharya , Connected component labeling for binary images on a recon-
figurable mesh architecture, Syst. Archit. 42 (4) (1996) 309–313 .

[2] F. Bolelli, M. Cancilla, L. Baraldi, C. Grana, Toward reliable experiments on the

performance of connected components labeling algorithms, J. Real-Time Image
Process.1–16.

[3] F. Chiavetta , V. Di Gesu , Parallel computation of the euler number via connec-
tivity graph, Pattern Recognit. Lett. 14 (1993) 849–859896 .

[4] C. Grana , F. Bolelli , L. Baraldi , R. Vezzani , YACCLAB - Yet Another Connected
Components Labeling Benchmark, in: 23rd International Conference on Pattern

Recognition, 2016 .

[5] C. Grana , D. Borghesani , R. Cucchiara , Optimized block-based connected com-
ponents labeling with decision trees, IEEE Trans. Image Process. 19 (6) (2010)

1596–1609 .
[6] S. Gupta , D. Palsetia , M. Patwary , A. Agrawal , A. Choudhary , A new parallel

algorithm for two-pass connected component labeling, IEEE IPDP Symposium
(2014) 1355–1362 .

[7] R. Haralick, Some neighborhood operations. in real-time parallel computing

image analysis (1981) 11–35.
[8] L. He , X. Ren , Q. Gao , X. Zhao , B. Yao , Y. Chao , The connected-component label-

ing problem: a review of state-of-the-art algorithms, Pattern Recognit. 70 (1)
(2017) 25–43 .

[9] A. Hennequin , L. Lacassagne , L. Cabaret , Q. Meunier , A new direct connected
component labeling and analysis algorithms for, Gpus (2018) 76–81 .

[10] J.L. Hennessy , D.A. Patterson , Computer Architecture: A Quantitative Approach,
6th Edition, 19, The Morgan Kaufmann Series, 2017 .

[11] O. Kalentev , A. Rai , S. Kemnitz , R. Schneider , Connected component labeling on

a 2d grid using cuda, J. Parallel Distrib. Comput. 71 (2011) 615–620 .
[12] T. Kong , A. Rosenfeld , Topological algorithms for digital image processing, 19,

1996 .
[13] V. Kovalevsky , Algorithms in digital geometry based on cellular topology, 10th

IWCIA, Springer Berlin Heidelberg 3322 (2004) 366–393 .

https://doi.org/10.13039/501100003329
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0001
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0001
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0002
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0002
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0002
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0003
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0003
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0003
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0003
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0003
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0004
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0005
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0006
http://refhub.elsevier.com/S0167-8655(19)30359-9/othref0003a
http://refhub.elsevier.com/S0167-8655(19)30359-9/othref0003a
http://refhub.elsevier.com/S0167-8655(19)30359-9/othref0003a
http://refhub.elsevier.com/S0167-8655(19)30359-9/othref0003a
http://refhub.elsevier.com/S0167-8655(19)30359-9/othref0003a
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0007
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0007
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0007
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0008
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0009
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0009
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0009
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0010
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0010

[

[

[14] H. Molina-Abril , P. Real , Homological optimality in discrete morse the-
ory through chain homotopies, Pattern Recognit. Lett. 11 (2012) 1501–

1506 .
[15] A. Murty , V. Natarajan , S. Vadhiyar , Efficient homology computations on mul-

ticore and manycore systems, 20th Annual International Conference on High
Performance Computing (2013) 333–342 .

[16] M. Patwary , M. Ali , P. Refsnes , F. Manne , Multi-core spanning forest algorithms
using the disjoint-set data structure, In 26th IEEE IPDP Symposium (2012)

827–835 .

[17] D. Playne , K. Hawick , A new algorithm for parallel connected-component la-
belling on gpus, IEEE TPDS 29 (6) (2018) .

[18] REDHOM 2017.
[19] F. Díaz del Río , H. Molina-Abril , P. Real , Computing the component-labeling

and the adjacency tree of a binary digital image in near logarithmic-time,
Computational Topology in Image Context, LNCS, Springer 11382 (2019) 82–95 .
[20] F. Díaz del Río , P. Real , D. Onchis , A parallel homological spanning forest frame-
work for 2d topological image analysis, Pattern Recognit. Lett. 83 (2016) 49–58 .

[21] F. Díaz del Río , P. Real , D. Onchis , Labeling color 2d digital images in theoretical
near logarithmic time, LNCS 10425 (2017) 391–402 .

22] F. Díaz del Río, P. Sánchez-Cuevas, H. Molina-Abril, P. Real., https://www.
mathworks.com/matlabcentral/fileexchange/71597-labeling _ ht _ ccl.

23] A. Rosenfeld , A. Kak , Digital Picture Processing, Morgan Kaufman (1982) .
[24] A. Rosenfeld , J. Platz , Sequential operator in digital pictures processing, J. ACM

13 (4) (1966) 471–494 .

[25] J. Serra , Image Analysis and Mathematical Morphology, Academic Press, Inc.,
1982 .

[26] R.H. Swendsen , J. Wang , Nonuniversal critical dynamics in monte carlo simu-
lations, Phys. Rev. Lett. 58 (1987) 86–88 .

[27] F. Veillon , One pass computation of morphological and geometrical properties
of objects in digital pictures, Signal Process. 1 (3) (1979) 175179 .

http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0011
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0011
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0011
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0012
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0013
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0014
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0015
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0016
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0017
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0017
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0017
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0017
http://www.mathworks.com/matlabcentral/fileexchange/71597-labeling_ht_ccl
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0018
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0018
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0018
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0019
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0019
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0019
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0020
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0020
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0021
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0021
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0021
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0022
http://refhub.elsevier.com/S0167-8655(19)30359-9/sbref0022

	Parallel connected-Component-Labeling based on homotopy trees
	1 Introduction
	2 Related works
	3 The CCL algorithm based on homotopy tree
	4 Attractor’s cancellation for building the CCLT via Transports
	5 CCLT implementation and time complexity order
	6 Testing results
	7 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgements
	References

