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Abstract

We find the exact analytical solution to a Goursat PDE system governing the kernels of a
backstepping-based boundary control law that stabilizes a constant-coefficient 2× 2 system of
first-order hyperbolic linear PDEs. The solution to the Goursat system is related to the solution of
a simpler, explicitly solvable Goursat system through a suitable infinite series of powers of partial
derivatives which is summed explicitly in terms of special functions, including Bessel functions and
the generalized Marcum Q-functions of the first order. The Marcum functions are common in cer-
tain applications in communications but have not appeared previously in control design problems.
The dependence of the explicit solutions with respect to system parameters is analyzed through
several examples, including the stabilization of a constant equilibrium for a quasi-linear plant.

Keywords: Partial Differential Equations, Marcum generalized Q-function, Infinite-Dimensional
Systems, Backstepping, Hyperbolic Systems, Constant Coefficients, Control Kernels

1. Introduction

The class of 2×2 systems of first-order hyperbolic linear PDEs has attracted considerable atten-
tion due to the many examples of physical systems that can be modelled by the class, such as open
channels [1, 2, 3, 4], transmission lines [5], gas flow pipelines [6] or road traffic models [7]. Given
the range of applications, many techniques for stabilization of these systems have been proposed
in the literature. Such methods include the use of the explicit evolution of the Riemann invariants
along the characteristics [8] and the use of control Lyapunov functions [9] (which are also extensi-
ble to n×n systems [10]). Other approaches include [11, 12, 13] (which use a Lyapunov method),
[14, 15, 1] (using a Riemann invariants approach), and [16].

Recently, a new design approach based on the backstepping method [17, 18] has been devel-
oped [19] for 2×2 hyperbolic linear systems. The method allows the design of full-state boundary
control laws, boundary observers and output-feedback control laws, which guarantee L2 stability
of the closed-loop system and convergence of the state estimates. The results have been extended
to include the quasilinear case [20] (making the closed-loop system locally exponentially stable
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in the H2 sense), a disturbance rejection problem [21], and the case of an underactuated hyper-
bolic system consisting of n rightward-convecting equations coupled with one leftward-convecting
equation [22].

In this paper we derive exact analytical expressions for the problem of boundary stabilization
for constant-coefficient 2× 2 system of first-order hyperbolic linear PDEs, with actuation at only
one of the boundaries.

Having explicit stabilizing feedback-laws for infinite-dimensional systems is rare; it allows a
better understanding of the structure of the control law and its dependence with respect to the
different parameters of the system. Also, having an analytical expression makes implementation
simpler and more precise. Most importantly, when the PDE plant parameters are unknown, the only
way to design implementable adaptive controllers [23, 24, 25, 26, 27, 28] is when the control gains
are available as explicit functions of plant parameters. However, explicit laws are seldom found in
the literature, even for 1-D constant-coefficient systems, except in the simplest of cases. The ability
to produce explicit control laws for many non-trivial systems has been the distinguishing quality of
the backstepping approach (see [17] for examples). However, explicit controllers have heretofore
not been available for first-order hyperbolic linear 2× 2 systems. For these systems, the class of
constant-coefficient parameters gives a very wide range of plants, with 7 distinct parameters that
can have any value, with only the speeds of propagation being restricted to be positive. This class
of hyperbolic systems contains linearizations of quasi-linear hyperbolic system around constant
equilibria.

The control kernels obtained in this paper are given in terms of modified Bessel functions of
the first kind (frequently seen in explicit controllers designed by using backstepping), and also in
terms of the generalized Marcum Q-function of first order. This function was developed by Mar-
cum for radar analysis [29] and arises in performance analysis of partially coherent, differentially
coherent, and noncoherent communications [30, 31] and also in statistics [32], but to the best of the
authors’ knowledge it is the first time that it appears in control theory outside specific applications
in communications.

To derive the explicit solutions, we start from the backstepping design of [19]. The kernels used
in the feedback law are found by solving a well-posed 2×2 system of first-order hyperbolic linear
PDEs in a triangular domain (known as the kernel equations). When the plant model has constant
coefficients, the resulting kernel equations have a very specific structure which can be exploited to
obtain an explicit solution in terms of special functions. The procedure to find analytical solutions
is as follows. First, we apply scaling to reduce the number of constant parameters in the kernel
equations from seven to two. The resulting reduced equation is transformed (by using a series
approach) to an infinite set of equations which are simpler and can be explicitly solved recursively.
Finding the sum of the series solution and reverting the scaling transformations, we finally obtain
explicit expressions for the kernels. The appearance of the generalized Marcum Q-function, which
did not show up previously in explicit expressions of backstepping controllers, is mainly due to a
coupling of the two PDEs in the 2×2 hyperbolic plant.

The paper is organized as follows. In Section 2 we state our main result—the exact analytical
expressions for these feedback laws. The proof of this result is detailed in Section 3. Next we
present some examples in Section 4. We finish in Section 5 with some concluding remarks. We
also include an appendix with some technical lemmas.
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2. Stabilization of constant coefficient 2×2 linear hyperbolic systems

2.1. Main result
Consider the following system

ut = −ε1ux + c1u+ c2v, (1)
vt = ε2vx + c3u+ c4v, (2)

evolving in x ∈ [0,1], t > 0, with boundary conditions

u(0, t) = qv(0, t), (3)
v(1, t) = U(t), (4)

where U(t) is the actuation variable. The initial conditions, denoted as u0 and v0, are assumed to
belong to L2([0,1]).

In (1)–(2), ε1,ε2 are assumed to be positive-valued constants. There are no further assumptions
about the constant coefficients q, c1, c2, c3 and c4. When the coefficients of (1)–(4) are such that
the system is open-loop unstable, it is necessary to design a feedback law for U(t) that results in a
stable closed-loop system.

System (1)–(4) is the most general possible heterodirectional 2×2 linear hyperbolic system
(without including integral or boundary terms). In this context, “heterodirectional” means that
the two state variable (u(x, t) and v(x, t)) evolve in opposite spatial directions (with speeds ε1 and
ε2, respectively) as time moves forward. For this reason, the boundary conditions (3)–(4) are at
opposite boundaries of the domain.

In Section 1 a number of procedures to design feedback laws for 2×2 linear hyperbolic systems
have been reviewed. However, only backstepping is able to deal with (1)–(4) for arbitrary values
of the coefficients. Thus, following [19], we apply the backstepping method, which allows to find
a stabilizing linear full-state feedback law as follows

U(t) =
∫ 1

0
ku(ξ)u(ξ, t)dξ+

∫ 1

0
kv(ξ)v(ξ, t)dξ, (5)

where ku(ξ) and kv(ξ) are the control kernels, which are found by solving an auxiliary set of partial
differential equations. We next state the main result of this paper, which gives explicit formulae for
ku(ξ) and kv(ξ) that stabilize the closed-loop system.

Theorem 1. Consider the system (1)–(4) with initial conditions u0 and v0 and control law (5),
where the control kernels of ku(ξ) and kv(ξ) are explicitly given for q = 0 by

ku(ξ) = c3H(ξ)

(
I0

[
2c̄

ε1 + ε2
µ(ξ)

]
+η

2(ξ)I2

[
2c̄

ε1 + ε2
µ(ξ)

])
, (6)

kv(ξ) = c̄
(

1+
ε2

ε1

)
H(ξ)

ξ

µ(ξ)
I1

[
2c̄

ε1 + ε2
µ(ξ)

]
, (7)

and for q 6= 0 by

ku(ξ) =
ε2

qε1
H(ξ) [F0(ξ)+FΠ(ξ)+η(ξ)F1(ξ)] , (8)

kv(ξ) = H(ξ)

[
F0(ξ)+FΠ(ξ)+

1
η(ξ)

F1(ξ)

]
, (9)
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where

H(ξ) =
−1

ε1 + ε2
exp
[
(c1− c4)(1−ξ)

ε1 + ε2

]
, (10)

η(ξ) =

√
1−ξ

1+ ε2
ε1

ξ
, (11)

µ(ξ) =

√
(1−ξ)

(
1+

ε2

ε1
ξ

)
, (12)

F0(ξ) =
c2

q
I0

[
2c̄

ε1 + ε2
µ(ξ)

]
, (13)

F1(ξ) = c̄I1

[
2c̄

ε1 + ε2
µ(ξ)

]
, (14)

FΠ(ξ) =

(
c3q

ε1

ε2
− c2

q

)
Π

[
qε1c3

ε2(ε1 + ε2)
(1−ξ),

c2

q(ε1 + ε2)

(
1+

ε2

ε1
ξ

)]
, (15)

Π(x,y) = ex+yQ1

(√
2x,
√

2y
)
, (16)

c̄ =

√
c2c3

ε1

ε2
, (17)

with In denoting the modified Bessel function of the first kind (of order n), and Q1 the generalized
Marcum Q-function of first order [29], which is given by

Q1

(√
2x,
√

2y
)
= 1− ye−x

∫ 1

0
e−syI0 (2

√
sxy)ds = e−(x+y)

∞

∑
n=0

∞

∑
m=0

xnyn+m

n!(n+m)!
. (18)

Then, for any value of the coefficients c1, c2, c3, c4 and q, and under the assumption that u0,v0 ∈
L2([0,1]) and ε1,ε2 > 0, the equilibrium u≡ v≡ 0 is exponentially stable in the L2 sense. Moreover,
the equilibrium is reached in finite time t = 1

ε1
+ 1

ε2
.

The proof of the stability part of Theorem 1 is based on [19] and it is given in detail in Section 3.
The formulae (6), (7) for the case q = 0 are found by letting q→ 0 in (8), (9) and by applying

Lemma A3, thus finding

FΠ(ξ) =−F0(ξ)−η(ξ)F1(ξ)+qc3
ε1

ε2

(
I0

[
2c̄

ε1 + ε2
µ(ξ)

]
+η

2(ξ)I2

[
2c̄

ε1 + ε2
µ(ξ)

])
+O(q2),

(19)
from which (6), (7) follow.

The same kernels of Theorem 1 can be used to locally stabilize (in terms of the H2 norm)
equilibria of quasi-linear 2× 2 systems if the resulting linearization around the equilibrium has
constant coefficients (see [20] for additional details). In particular, this situation happens when sta-
bilizing constant equilibrium profiles of the nonlinear plant (since linearization results in a constant
coefficient system). In Section 4.1 we give a quasi-linear example.

The result stated in Theorem 1 requires full-state knowledge. In [19] a dual method to design
an anti-collocated boundary observer is presented (which was extended to the quasilinear case
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in [35]). The observer only needs measurements of u(0, t) and uses a copy of the plant driven by
output injection to obtain estimates of the state. The design procedure requires solving a set of
partial differential equations to obtain the output injection gain kernels. In the constant-coefficient
case, it can be shown that the observer kernel equations can be directly transformed into the same
set of PDEs that produce the control kernels (8)–(9). Thus, one finds explicit expressions for the
observer kernels which are structurally very similar to (8)–(9). Combining this explicit observer
with the explicit full-state controller of Theorem 1 one can obtain a stabilizing explicit output-
feedback controller which only needs measurements of u(0, t).

2.2. Who was Marcum?
The Marcum Q-function was developed by Jess Marcum to deal with radar communications

just after the second world war [29]. In subsequent years the class of special functions that carries
his name has been frequently used in the analysis of partially coherent, differentially coherent, and
noncoherent communications [30, 31] and also in statistics [32]. There are several papers in the
literature devoted to the computation of these functions, see for instance [33], and commands for
computing the Marcum functions are available in Mathematica and Matlab.

Jess Ira Marcum was a mathematically gifted electrical engineer working at the RAND Corpo-
ration in Santa Monica, California, in the late 1940s. He developed the eponymous class of special
functions for the purpose of analytically calculating radar backscatter from a steady target in a noisy
background. He then spent the 1950s devoting himself to casino gambling, developing the first ever
“card-counting” method for blackjack. Marcum used analytical calculations only, a decade before
the same methods were reinvented with the help of computer calculations. After successfully and
successively applying his method he was first banned from all casinos in Las Vegas and then from
all other casino sites in the US and pre-revolution Havana. Around 1970 Marcum returned to em-
ployment in research but continued with a parallel career as a consultant to casinos, passing away
in 1992 [34].

3. Proof of Theorem 1

To prove Theorem 1 we introduce three steps. First, we follow the backstepping method as
outlined in [19], arriving at a control law that requires the solution of a set of kernel PDEs. Next,
we simplify and reduce the equations as much as possible arriving at a set of reduced equations
that contain a minimal set of parameters. Then, we solve the reduced equations by posing a series
solution which allows us to formulate the problem as an infinite chain of PDEs whose solution
can be formally stated as derivatives of an initial function (itself the solution of a simpler PDE,
explicitly solvable). Finally, we also apply some technical lemmas (contained in the Appendix)
to express the result in terms of the generalized Marcum Q-function of first order instead of as a
series.

3.1. Backstepping stabilization laws for 2×2 linear hyperbolic systems
Following [19], to apply the backstepping method, system (1)–(4) needs first to be put in the

proper (anti-diagonal) form, which requires eliminating the c1 term in (1) and the c4 term in (2).
For that, define new variables y and z by exponentially scaling u and v as follows

y(x, t) = e−c1/ε1xu(x, t), (20)

z(x, t) = ec4/ε2xv(x, t). (21)
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Computing the spatial derivative of these new variables, we find

yx(x, t) = −c1

ε1
e−c1/ε1xu(x, t)+ e−c1/ε1xux(x, t), (22)

zx(x, t) =
c4

ε2
ec4/ε2xv(x, t)+ ec4/ε2xvx(x, t). (23)

Thus, we obtain

yt + ε1yx = e−c1/ε1x (ut + ε1ux)− c1e−c1/ε1xu(x, t) = e−c1/ε1xc2v = c2e−
(

c1
ε1
+

c4
ε2

)
xz(x, t), (24)

zt− ε2zx = ec4/ε2x (vt− ε2vx)− c4ec4/ε2xv(x, t) = ec4/ε2xc3u = c3e
(

c1
ε1
+

c4
ε2

)
xy(x, t). (25)

Using the boundary conditions (3)–(4) to find boundary conditions for y and z, we finally reach the
system expressed in y-z variables

yt = −ε1yx + c2e−
(

c1
ε1
+

c4
ε2

)
xz(x, t), (26)

zt = ε2zx + c3e
(

c1
ε1
+

c4
ε2

)
xy(x, t), (27)

y(0, t) = qz(0, t), (28)
z(1, t) = V (t), (29)

where we have defined
V (t) = ec4/ε2U(t). (30)

The backstepping method can now be applied to (26)–(29), and following [19], the closed-loop
system is exponentially stable if we set

V (t) =
∫ 1

0
Kvu(1,ξ)y(ξ, t)dξ+

∫ 1

0
Kvv(1,ξ)z(ξ, t)dξ, (31)

where Kvu(x,ξ) and Kvv(x,ξ) are the solution to the following kernel equations

ε2Kvu
x (x,ξ)− ε1Kvu

ξ
(x,ξ) = c3e

(
c1
ε1
+

c4
ε2

)
ξKvv(x,ξ), (32)

ε2Kvv
x (x,ξ)+ ε2Kvv

ξ
(x,ξ) = c2e−

(
c1
ε1
+

c4
ε2

)
ξKvu(x,ξ), (33)

evolving in the triangular domain T = {(x,ξ) : 0≤ ξ≤ x≤ 1}, with boundary conditions

Kvu(x,x) = −c3e
(

c1
ε1
+

c4
ε2

)
x

ε1 + ε2
, (34)

Kvv(x,0) =
qε1

ε2
Kvu(x,0). (35)

The system (32)–(35) is guaranteed by [19] to have a unique solution. Once the solution is com-
puted, we recover the feedback law for U(t) in terms of the original variables u and v just by using
(20)–(21) and (30), reaching (5) with

ku(ξ) = Kvu(1,ξ)e−c4/ε2−c1/ε1ξ, kv(ξ) = Kvv(1,ξ)ec4/ε2(ξ−1). (36)

6



3.2. Reducing the kernel equations
Next we simplify the system of PDEs (32)–(35). In the first place, looking at the structure of the

equations, we find that it is not a constant coefficient system. However it is possible to transform
it to a constant coefficient case by defining new kernel variables; as before, this is carried out by
using an exponential scaling, as follows

Gvu(x,ξ) = e−
(

c1
ε1
+

c4
ε2

)(
ε1x+ε2ξ

ε1+ε2

)
Kvu(x,ξ), (37)

Gvv(x,ξ) = e−
(

c1
ε1
+

c4
ε2

)(
ε1x−ε1ξ

ε1+ε2

)
Kvv(x,ξ). (38)

Using (32)–(35) we arrive at a new set of kernel equations for Gvu and Gvv

ε2Gvu
x (x,ξ)− ε1Gvu

ξ
(x,ξ) = c3Gvv(x,ξ), (39)

ε2Gvv
x (x,ξ)+ ε2Gvv

ξ
(x,ξ) = c2Gvu(x,ξ), (40)

with boundary conditions

Gvu(x,x) = − c3

ε1 + ε2
, (41)

Gvv(x,0) =
qε1

ε2
Gvu(x,0). (42)

Defining now c =
√

c2c3
ε2

, Ḡvu =
√

c2
c3

Gvu, ε = ε1
ε2

, and q̂ =
√

c3
c2

qε1
ε2

, we further simplify the
equations, arriving at

Gvv
x (x,ξ)+Gvv

ξ
(x,ξ) = cḠvu(x,ξ), (43)

Ḡvu
x (x,ξ)− εḠvu

ξ
(x,ξ) = cGvv(x,ξ), (44)

Ḡvu(x,x) = − c
1+ ε

, (45)

Gvv(x,0) = q̂Ḡvu(x,0), (46)

Finally, define x̂ = cx, ξ̂ = cξ, Ĝvu = −Ḡvu 1+ε

c , Ĝvv = −Gvv 1+ε

c . Then we obtain the following
expression

Ĝvv
x (x̂, ξ̂)+ Ĝvv

ξ
(x̂, ξ̂) = Ĝvu(x̂, ξ̂), (47)

Ĝvu
x (x̂, ξ̂)− εĜvu

ξ
(x̂, ξ̂) = Ĝvv(x̂, ξ̂), (48)

Ĝvu(x̂, x̂) = 1, (49)
Ĝvv(x̂,0) = q̂Ĝvu(x̂,0), (50)

which has to be solved in a new triangular domain Tc = {(x̂, ξ̂) : 0≤ ξ≤ x≤ c}, and only depends
on two parameters, ε and q̂. We call this new set of equations the reduced kernel equations.
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3.3. Solving the reduced kernel equations
To solve (47)–(50), we pose a solution as a series in the parameter q̂, in the following way

Ĝvu(x,ξ) =
∞

∑
n=0

q̂nAn(x,ξ), Ĝvv(x,ξ) =
∞

∑
n=0

q̂nBn(x,ξ). (51)

The convergence of this series will be checked when An and Bn are found; we assume for the
meantime that the series is convergent. Then, the equations verified by the coefficients An and Bn
are:

(∂x− ε∂ξ)An(x,ξ) = Bn(x,ξ), (52)
(∂x +∂ξ)Bn(x,ξ) = An(x,ξ), (53)

with boundary conditions

A0(x,x) = 1, (54)
An(x,x) = 0, ∀n > 0 (55)
B0(x,0) = 0, (56)
Bn(x,0) = An−1(x,0),∀n > 0. (57)

We need to solve this system of equation for all values of n. To do so, we decouple the system by
finding the equation verified by Bn(x,ξ). For that we need the following Lemma.

Lemma 3.1. Denote bn(x) = Bn(x,x). Then

bn(x,x) =


x, n = 0,
1, n = 1,
0, n > 1,

(58)

Proof. Using (53) with ξ = x we notice that

bn(x)′ = An(x,x) =
{

1, n = 0,
0, n > 0. (59)

Thus we obtain

bn(x) =
{

x+B0(0,0), n = 0,
Bn(0,0), n > 0, (60)

and from boundary condition (56) we obtain b0(x) = x and from boundary condition (57) we obtain
bn(x) = An−1(0,0); then, from (55), we finally obtain b1(x) = 1 and, for n > 1, bn(x) = 0.

Combining (52) and (53) and Lemma 3.1 we reach the following set of partial differential
equations

(∂x +∂ξ)(∂x− ε∂ξ)Bn(x,ξ) = Bn(x,ξ), (61)

Bn(x,x) =


x, n = 0,
1, n = 1,
0, n > 1,

(62)

Bn(x,0) =

{
0, n = 0
An−1(x,0), n > 0. (63)

The plan to solve this set of differential equations is the following.
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1. First solve for B0(x,ξ) (since it is an autonomous equation).
2. Obtain A0(x,ξ) from (53) by setting A0(x,ξ) = (∂x +∂ξ)B0(x,ξ).
3. Iterate this procedure for n ≥ 1, first solving for Bn (which requires using the previously

computed An−1 to use the value of An−1(x,0) for boundary condition (63)) and then obtaining
An(x,ξ) from (53) by setting An(x,ξ) = (∂x +∂ξ)Bn(x,ξ).

The following result shows that this plan can be carried out explicitly.

Lemma 3.2. Denote by Φ(x,ξ) the (smooth) function that verifies:

(∂x +∂ξ)(∂x− ε∂ξ)Φ(x,ξ) = Φ(x,ξ), (64)
Φ(x,x) = x, (65)
Φ(x,0) = 0. (66)

Then, defining An and Bn as

Bn = (∂x +∂ξ)
n
Φ(x,ξ), (67)

An = (∂x +∂ξ)
n+1

Φ(x,ξ), (68)

the set of equation (52)–(57) is verified for all values of n≥ 0.

Proof. We show the result by direct substitution (it could also be proved by induction). The func-
tion Φ(x,ξ) is smooth (see Lemma A1 from the Appendix) so the definitions (67)–(68) make sense.
Notice that (53) is automatically verified. Let us see that the (Bn) set of equations given by (61)–(63)
is verified. Obviously (61) is verified due to the fact that Φ verifies (64) and using interchangeabil-
ity of partial derivatives. It is also easy to see that (62) is verified. Finally, (63) is obviously verified
for n = 0, but also for n≥ 0 due to the fact that An−1(x,ξ) = Bn(x,ξ).

Substituting the result of Lemma 3.2 in (51) we get

Ĝvv(x,ξ) =
∞

∑
n=0

q̂n(∂x +∂ξ)
n
Φ(x,ξ). (69)

Noting that from (69) it follows that

Ĝvv− q̂
(

Ĝvv
x + Ĝvv

ξ

)
= Φ (70)

from (47) it follows that
Ĝvv− q̂Ĝvu = Φ (71)

which means that Ĝvu can also be obtained either from (47) by differentiation or as

Ĝvu =
1
q̂

(
Ĝvv−Φ

)
. (72)
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3.4. Obtaining explicit formulae for the solution of the reduced kernel equations
We use Lemma A1 from the Appendix to solve the equation for Φ, obtaining

Φ(x,ξ) = (1+ ε)ξ
I1

(
2

1+ε

√
(x−ξ)(εx+ξ)

)
√

(x−ξ)(εx+ξ)
. (73)

Expanding Φ(x,ξ) as a power series by using Lemma A2 for n = 1

Φ(x,ξ) =
(1+ ε)ξ

x−ξ

∞

∑
k=0

(
1

1+ ε

)2k+1 (x−ξ)k+1

(k+1)!
(εx+ξ)k

k!

= ξ

∞

∑
k=0

(
1

1+ ε

)2k (x−ξ)k

(k+1)!
(εx+ξ)k

k!
, (74)

and writing ξ = εx+ξ

1+ε
− ε

x−ξ

1+ε
, we get the following power series expression for Φ

Φ(x,ξ) =
∞

∑
k=0

(
x−ξ

1+ε

)k

(k+1)!

(
εx+ξ

1+ε

)k+1

k!
− ε

∞

∑
k=0

(
x−ξ

1+ε

)k+1

(k+1)!

(
εx+ξ

1+ε

)k

k!
. (75)

To find an explicit formula for (69), we have to compute (∂x +∂ξ)
nΦ(x,ξ), which is easier to carry

out for Φ expressed as in (75). The following result holds.

Lemma 3.3. For all n > 0

(∂x +∂ξ)
n
Φ(x,ξ) =

∞

∑
k=0

(
x−ξ

1+ε

)k+n−1

(k+n−1)!

(
εx+ξ

1+ε

)k

k!

1− ε

(
x−ξ

1+ε

)2

(k+n)(k+n+1)

 (76)

Proof. We prove the lemma by induction. First, for n = 1, we compute the derivative (∂x +
∂ξ)Φ(x,ξ) obtaining

(∂x +∂ξ)Φ(x,ξ) =
∞

∑
k=0

(
x−ξ

1+ε

)k

k!

(
εx+ξ

1+ε

)k

k!
− ε

∞

∑
k=1

(
x−ξ

1+ε

)k+1

(k+1)!

(
εx+ξ

1+ε

)k−1

(k−1)!

=
∞

∑
k=0

(
x−ξ

1+ε

)k

k!

(
εx+ξ

1+ε

)k

k!

1− ε

(
x−ξ

1+ε

)2

(k+1)(k+2)

 . (77)

Now, assume the result is correct for n. Then, for n+1, we obtain

(∂x +∂ξ)
n+1

Φ(x,ξ) = (∂x +∂ξ)
[
(∂x +∂ξ)

n
Φ(x,ξ)

]
=

∞

∑
k=1

(
x−ξ

1+ε

)k+n−1

(k+n−1)!

(
εx+ξ

1+ε

)k−1

(k−1)!

1− ε

(
x−ξ

1+ε

)2

(k+n)(k+n+1)


=

∞

∑
k=0

(
x−ξ

1+ε

)k+n

(k+n)!

(
εx+ξ

1+ε

)k

k!

1− ε

(
x−ξ

1+ε

)2

(k+n+1)(k+n+2)

 , (78)
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where in the last step we have shifted k by one to start the sum at k = 0. Thus the result is proven.

Applying Lemma (3.3) in (69) we get absolute convergence of the series, and if we substitute
the derivatives, we get, for Ĝvv

Ĝvv(x,ξ) = Φ(x,ξ)+
∞

∑
n=1

q̂n(∂x +∂ξ)
n
Φ(x,ξ)

=
∞

∑
k=0

(
x−ξ

1+ε

)k

(k+1)!

(
εx+ξ

1+ε

)k+1

k!
− ε

∞

∑
k=0

(
x−ξ

1+ε

)k+1

(k+1)!

(
εx+ξ

1+ε

)k

k!

+
∞

∑
n=1

q̂n
∞

∑
k=0

(
x−ξ

1+ε

)k+n−1

(k+n−1)!

(
εx+ξ

1+ε

)k

k!

1− ε

(
x−ξ

1+ε

)2

(k+n)(k+n+1)


=

∞

∑
k=0

(
x−ξ

1+ε

)k

(k+1)!

(
εx+ξ

1+ε

)k+1

k!
+

∞

∑
n=1

q̂n
∞

∑
k=0

(
x−ξ

1+ε

)k+n−1

(k+n−1)!

(
εx+ξ

1+ε

)k

k!

−ε

∞

∑
n=0

q̂n
∞

∑
k=0

(
x−ξ

1+ε

)k+n+1

(k+n+1)!

(
εx+ξ

1+ε

)k

k!

=
∞

∑
k=0

(
x−ξ

1+ε

)k

(k+1)!

(
εx+ξ

1+ε

)k+1

k!
+

ε

q̂

∞

∑
k=0

(
x−ξ

1+ε

)k

k!

(
εx+ξ

1+ε

)k

k!

+

(
q̂− ε

q̂

)
∞

∑
n=0

∞

∑
k=0

(
q̂ x−ξ

1+ε

)k+n

(k+n)!

(
εx+ξ

q̂(1+ε)

)k

k!

=

√
εx+ξ

x−ξ
I1

(
2

1+ ε

√
(x−ξ)(εx+ξ)

)
+

ε

q̂
I0

(
2

1+ ε

√
(x−ξ)(εx+ξ)

)
+

(
q̂− ε

q̂

)
Π

(
q̂(x−ξ)

1+ ε
,

εx+ξ

q̂(1+ ε)

)
, (79)

where we have used Lemma A2 to express the power series as modified Bessel functions, and
defined the function

Π(x,y) =
∞

∑
n=0

∞

∑
m=0

xnyn+m

n!(n+m)!
, (80)

which can also be written in terms of the the generalized Marcum Q-function of first order, as
shown in Lemma A3. Next, using (47) and differentiating Ĝvv, or by using (70), we obtain Ĝvu as
follows

Ĝvu(x,ξ) =
ε

q̂2 I0

(
2

1+ ε

√
(x−ξ)(εx+ξ)

)
+

ε

q̂

√
x−ξ

εx+ξ
I1

(
2

1+ ε

√
(x−ξ)(εx+ξ)

)
+

(
1− ε

q̂2

)
Π

(
q̂(x−ξ)

1+ ε
,

εx+ξ

q̂(1+ ε)

)
. (81)
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Undoing the various scaling transformations that were made to arrive at the reduced equation, we
get the Kvu and Kvv backstepping kernels in term of the original coefficients, as follows

Kuv(x,ξ) =
−1

q(ε1 + ε2)
exp
[(

c1

ε1
+

c4

ε2

)
ε1x+ ε2ξ

ε1 + ε2

]{
c2ε2

qε1
I0

[
2
√

c2c3

ε1 + ε2

√
(x−ξ)(ε1/ε2x+ξ)

]
+

√
c2c3

x−ξ

ε1/ε2x+ξ
I1

[
2
√

c2c3

ε1 + ε2

√
(x−ξ)(ε1/ε2x+ξ)

]
+

c3q2ε1− c2ε2

qε1
Π

[
qε1c3

ε2

x−ξ

ε1 + ε2
,

c2

qε1

ε1x+ ε2ξ

ε1 + ε2

]}
, (82)

Kvv(x,ξ) =
−1

ε1 + ε2
exp
[(

c1

ε1
+

c4

ε2

)
ε1x− ε1ξ

ε1 + ε2

]{
c2

q
I0

[
2
√

c2c3

ε1 + ε2

√
(x−ξ)(ε1/ε2x+ξ)

]
+

√
c2c3

ε1/ε2x+ξ

x−ξ
I1

[
2
√

c2c3

ε1 + ε2

√
(x−ξ)(ε1/ε2x+ξ)

]
+

c3q2ε1− c2ε2

qε2
Π

[
qε1c3

ε2

x−ξ

ε1 + ε2
,

c2

qε1

ε1x+ ε2ξ

ε1 + ε2

]}
, (83)

Finally, applying (36) to compute the control kernels, an defining the intermediate functions (10)–
(16) to simplify the resulting expression, we verify (8)–(9). Finally we apply [19] to finally arrive
at the result of Theorem 1.

4. Examples

In this section we present several examples to graphically show how the control kernels depend
on the different plant coefficients. We also illustrate the application of the explicit control law (5)
in a nonlinear plant inspired in a combustion instability model.

4.1. Stabilization of a constant equilibrium profile for a nonlinear plant
Consider the following system with quadratic nonlinearities

ut +ux =
c
2
(u− v2), (84)

vt− vx =
c
2
(v−u2), (85)

with boundary conditions
u(0, t) = v(0, t), v(1, t) =U(t). (86)

This example is inspired by models of thermoacoustic combustion instabilities in elongated com-
bustion chambers with momentum-dependent heat release [36, 37].

If U(t) = 1, there is an equilibrium at u ≡ v ≡ 1, and the objective is to stabilize the system
around this equilibrium. Define error variables ũ(x, t) = u(x, t)− 1 and ṽ(x, t) = v(x, t)− 1, and
Ũ(t) =U(t)−1. The error system is

ũt + ũx =
c
2
((ũ+1))− (ṽ+1)2), (87)

ṽt− ṽx =
c
2
((ṽ+1)− (ũ+1)2), (88)
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with boundary conditions
ũ(0, t) = ṽ(0, t), ṽ(1, t) = Ũ(t). (89)

Linearizing system (87)–(88) around the origin, we obtain

ũt + ũx =
c
2
(ũ−2ṽ), (90)

ṽt− ṽx =
c
2
(ṽ−2ũ), (91)

which is a constant coefficient system; following the notation of Section 2, we get c1 = c/2, c2 =
−c, c3 =−c, c4 = c/2, ε1 = ε2 = 1, q = 1.

To see that this is a potentially unstable system, take both a time and a space derivative in (90)
and subtract the resulting expressions. One obtains

ũtt− ũxx = cũt +
3c2

4
ũ, (92)

which is a wave equation with in-domain antidamping (for positive values of c) and anti-stiffness,
which is well-known to yield instability [38]. Numerical simulations of the open-loop nonlinear
system (Fig. 2) show the system becoming unstable for large enough c.

The explicit solution for the control kernels is, in this case,

ku(ξ) =
c
2

{
I0

[
c
√

1−ξ2
]
−

√
1−ξ

1+ξ
I1

[
c
√

1−ξ2
]}

, (93)

kv(ξ) =
c
2

{
I0

[
c
√

1−ξ2
]
−

√
1+ξ

1−ξ
I1

[
c
√

1−ξ2
]}

. (94)

In Fig. 1 we give the values of the control kernels for different values of c. Notice the exponen-
tial increase as c grows.

To find the numerical solution of the open-loop and closed-loop system we use the HPDE
solver for Matlab [39], which is well-known and has been tested for many types of hyperbolic
systems. In the numerical simulations, we use the following initial conditions, which are close to
the equilibrium profile:

u(x,0) = 1+0.2
x2 + sin(6x)

2
, (95)

v(x,0) = 1−0.2
x2 +2sin(3x)

2
. (96)

With these initial conditions and the value c = 6, the open-loop system is unstable as shown in
Fig. 2. The application of the control law makes the origin of the closed-loop system asymptotically
stable as shown in Fig. 3.

4.2. A plant with varying q coefficient
Consider

ut = −ux + cv, (97)
vt = vx + cv, (98)
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Figure 1: Control kernels ku(ξ) and kv(ξ) for the example of Section 4.1, for different values of c.

with boundary conditions

u(0, t) = qv(0, t), (99)
v(1, t) = U(t), (100)
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Figure 2: Numerical simulation of the open-loop system of the example described in Section 4.1.
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Figure 3: Numerical simulation of the closed-loop system of the example described in Section 4.1, with control input
v(1, t) =U(t).

Then the control kernels are

ku(ξ) = − c
2q

{
1
q

I0

[
c
√

1−ξ2
]
+

√
1−ξ

1+ξ
I1

[
c
√

1−ξ2
]

+

(
q− 1

q

)
exp
[

c
2

(
q(1−ξ)+

1+ξ

q

)]
Q1

[√
cq(1−ξ),

√
c
q
(1+ξ)

]}
, (101)

kv(ξ) = −c
2

{
1
q

I0

[
c
√

1−ξ2
]
+

√
1+ξ

1−ξ
I1

[
c
√

(1−ξ2)sds
]

+

(
q− 1

q

)
exp
[

c
2

(
q(1−ξ)+

1+ξ

q

)]
Q1

[√
cq(1−ξ),

√
c
q
(1+ξ)

]}
. (102)

or for q = 0:

ku(ξ) = −c
2

(
I0

[
c
√

1−ξ2
]
+

1−ξ

1+ξ
I2

[
c
√

1−ξ2
])

, (103)
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kv(ξ) =
−cξ√
1−ξ2

I1

[
c
√

1−ξ2
]
. (104)

In Fig. 4 we represent these kernels for q ∈ [0,5] and for fixed c = 6. We find that both kernels
grow exponentially with q, particularly on the boundary ξ = 0.
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Figure 4: Control kernels ku(ξ) and kv(ξ) for the example of Section 4.2 , with fixed c = 6 and for different values of q.

4.3. A plant with varying propagation speeds
Consider

ut = −εux + cv, (105)
vt = vx + cv, (106)

with boundary conditions

u(0, t) = v(0, t), (107)
v(1, t) = U(t), (108)

Then the control kernels are

ku(ξ) =
−c

ε(1+ ε)

{
I0

[
2c

1+ ε

√
(1−ξ)(ε+ξ)

]
+ ε

√
1−ξ

ε+ξ
I1

[
2c

1+ ε

√
(1−ξ)(ε+ξ)

]

+(ε−1)exp
[

c
1+ ε

(
ε(1−ξ)+

ε+ξ

ε

)]
Q1

[√
2cε(1−ξ)

1+ ε
,

√
2c(ε+ξ)

ε(1+ ε)

]}
, (109)

kv(ξ) =
−c

1+ ε

{
I0

[
2c

1+ ε

√
(1−ξ)(ε+ξ)

]
+

√
ε+ξ

1−ξ
I1

[
2c

1+ ε

√
(1−ξ)(ε+ξ)

]

+(ε−1)exp
[

c
1+ ε

(
ε(1−ξ)+

ε+ξ

ε

)]
Q1

[√
2cε(1−ξ)

1+ ε
,

√
2c(ε+ξ)

ε(1+ ε)

]}
. (110)
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In Fig. 5 we represent these kernels for ε ∈ [0.2,10] and for fixed c = 6. We find that kv(ξ) grows
rapidly with ε, particularly on the boundary ξ = 0. On the other hand the behavior of ku(ξ) is
non-monotone with respect to ε, initially growing on the boundary ξ = 0 but then decreasing for ε

larger than unity, and at the same time growing in the center of the domain.
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Figure 5: Control kernels ku(ξ) and kv(ξ) for the example of Section 4.3 , with fixed c = 6 and for different values of ε.

5. Conclusions

In this work we have derived an explicit control law to solve the problem of boundary stabi-
lization for constant-coefficient 2× 2 system of first-order hyperbolic linear PDEs. The control
law is found by applying the backstepping method and then solving the resulting control kernel
equations, which has required the development of a method that expresses their solution as the sum
of solutions of an infinite set of explicitly solvable equations.

The resulting explicit expressions contain not only modified Bessel functions of the first kind
(frequently seen in explicit controllers previously found by using backstepping) but also generalized
Marcum Q-functions of first order. This it is the first time that this special function appears in
control theory outside specific applications in communications. It is expected that this function
might appear in other explicit controllers designed by the backstepping method.

To analyze the dependence of the explicit solutions with respect to system parameters, several
cases have been analyzed, including the stabilization of a constant equilibirum for a quasi-linear
plant. The dependence is found to be mostly of exponential type, and particularly complex with
respect to the speeds of propagation.
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control in networks of open channels, Automatica 39 (2003) 1365–1376.

[5] C. Curro, D. Fusco, N. Manganaro, A reduction procedure for generalized Riemann problems
with application to nonlinear transmission lines, J. Phys. A: Math. Theor. 44 (2011) 335205.

[6] M. Gugat, M. Dick, Time-delayed boundary feedback stabilization of the isothermal Euler
equations with friction, Mathematical Control, Related Fields 1 (2011) 469–491.

[7] P. Goatin, The Aw-Rascle vehicular traffic flow model with phase transitions, Math. Comput.
Modeling 44 (2006) 287–303.

[8] J.-M. Greenberg, T.-t. Li, The effect of boundary damping for the quasilinear wave equations,
Journal of Differential Equations 52 (1984) 66–75.

[9] J.-M. Coron, B. d’Andrea-Novel, G. Bastin, A strict Lyapunov function for boundary control
of hyperbolic systems of conservation laws, IEEE Trans. on Automatic Control 52 (2006)
2–11.

[10] J.-M. Coron, G. Bastin, B. d’Andrea-Novel, Dissipative boundary conditions for one-
dimensional nonlinear hyperbolic systems, SIAM Journal of Control and Optimization 47
(2008) 1460–1498.

[11] C. Z. Xu, G. Sallet, Exponential stability, transfer functions of processes governed by sym-
metric hyperbolic systems, ESAIM Control Optimisation, Calculus of Variations 7 (2002)
421–442.

[12] M. Dick, M. Gugat, G. Leugering, Classical solutions, feedback stabilisation for the gas flow
in a sequence of pipes, Networks, heterogeneous media 5 (2010) 691–709.

[13] M. Gugat, M. Herty, Existence of classical solutions, feedback stabilisation for the flow in gas
networks, ESAIM Control Optimisation, Calculus of Variations 17 (2011) 28–51.

[14] C. Prieur, Control of systems of conservation laws with boundary errors, Networks, Hetero-
geneous Media 4 (2009) 393–407.

[15] C. Prieur, J. Winkin, G. Bastin, Robust boundary control of systems of conservation laws,
Mathematics of Control, Signals, Systems 20 (2008) 173–197.

[16] X.Litrico, V. Fromion, Boundary control of hyperbolic conservation laws using a frequency
domain approach, Automatica 45 (2009) 647–656.

[17] M. Krstic, A. Smyshlyaev, Boundary Control of PDEs, SIAM, 2008.

[18] R. Vazquez, M. Krstic, Control of Turbulent, Magnetohydrodynamic Channel Flow,
Birkhauser, 2008.

18



[19] R. Vazquez, M. Krstic, J.-M. Coron, Backstepping Boundary Stabilization, State Estimation
of a 2×2 Linear Hyperbolic System, in: proceedings of the 50th IEEE Control, Decision
Conference, European Control Conference (2011).

[20] J.-M. Coron, R. Vazquez, M. Krstic, G. Bastin, Local Exponential H2 Stabilization of a 2×2
Quasilinear Hyperbolic System using Backstepping, SIAM Journal of Control and Optimiza-
tion 51 (2013) 2005–2035.

[21] O. Aamo, Disturbance rejection in 2x2 linear hyperbolic systems, IEEE Transactions on Au-
tomatic Control 58 (2013) 1095–1106.

[22] F. Di Meglio, R. Vazquez, M. Krstic, Stabilization of a system of n+1 coupled first-order hy-
perbolic linear PDEs with a single boundary input, , IEEE Transactions on Automatic Control
PP (2013).

[23] D. Bresch-Pietri, M. Krstic, Adaptive trajectory tracking despite unknown input delay, plant
parameters, Automatica 45 (2009) 2075–2081.

[24] D. Bresch-Pietri, M. Krstic, Delay-adaptive predictor feedback for systems with unknown
long actuator delay, IEEE Transactions on Automatic Control 55 (2010) 2106–2112.

[25] A. Smyshlyaev, M. Krstic, Adaptive boundary control for unstable parabolic PDEs - Part II:
Estimation-based designs, Automatica 43 (2007) 1543–1556.

[26] M. Krstic, A. Smyshlyaev, Adaptive boundary control for unstable parabolic PDEs - Part I:
Lyapunov design, IEEE Transactions on Automatic Control 53 (2008)1575–1591.

[27] M. Krstic, Adaptive control of an anti-stable wave PDE, Dynamics of Continuous, Discrete,
Impulsive Systems (invited paper in the special issue in the honor of Professor Hassan Khalil)
17 (2010) 853–882.

[28] A. Smyshlyaev, M. Krstic, Adaptive boundary control for unstable parabolic PDEs - Part III:
Output-feedback examples with swaing identifiers, Automatica 43 (2007) 1557–1564.

[29] J. I. Marcum, Table of Q Functions, U.S. Air Force Project, RAND Res. Memo. M-339,
ASTIA Document AD 1165451, Rand Corp. (1950).

[30] S. Stein, Unified analysis of certain coherent, noncoherent binary communication systems,
IEEE Trans. Inform. Theory 10 (1964) 43–51.

[31] J. Proakis, Digital Communications, McGraw-Hill, 1983.

[32] C. W. Helstrom, Statistical Theory of Signal Detection, Pergamon, 1960.

[33] P. E. Cantrell, A. K. Ojha, Comparison of generalized Q-function algorithms, IEEE Transac-
tions on Information Theory 33 (1987) 591–596.

[34] A. Schaffer, Jess Marcum, Mathematical genius, blackjack legend, the early his-
tory of card counting, Blackjack Forum 24(2005), available online at http://www.
blackjackforumonline.com/content/JessMarcumEarlyDaysofCardCounting.htm.

19



[35] R. Vazquez, M. Krstic, J.-M. Coron, G. Bastin, Collocated Output-Feedback Stabilization
of a 2×2 Quasilinear Hyperbolic System using Backstepping, in: proceedings of the 2012
American Control Conference (2012).

[36] M. Krstic, A. Krupadanam, C. Jacobson, Self-Tuning Control of a Nonlinear Model of Com-
bustion Instabilities, IEEE Transactions on Control Systems Technology 7 (1999) 424–435.

[37] F. E. C. Culick, Nonlinear behavior of acoustic waves in combustion chambers-I, Acta Astro-
nautica 3 (1976) 715–734.

[38] A. Smyshlyaev, E. Cerpa, M. Krstic, Boundary stabilization of a 1-D wave equation with
in-domain antidamping, SIAM Journal of Control and Optimization 48 (2010) 4014–4031.

[39] L.F. Shampine, Solving Hyperbolic PDEs in MATLAB, Alied Numerical Analysis & Com-
putational Mathematics 2(2005) 346–358.

[40] A. Smyshlyaev, M. Krstic, Closed form boundary state feedbacks for a class of partial integro-
differential equations, IEEE Trans. Aut. Cont. 49 (2004) 2185–2202.

[41] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions (9th edition) Dover pub-
lications, 1965.

Appendix A. Some technical results

In the computation of explicit expressions for the kernels, it is necessary to solve a Goursat
problem for a function Φ(x,ξ). The next lemma gives the solution of that problem.

Lemma A1. The solution of the following PDE

(∂x +∂ξ)(∂x− ε∂ξ)Φ(x,ξ) = Φ(x,ξ), (A.1)

with boundary conditions

Φ(x,x) = x, (A.2)
Φ(x,0) = 0, (A.3)

is given by the smooth function

Φ(x,ξ) = (1+ ε)ξ
I1

(
2

1+ε

√
(εx+ξ)(x−ξ)

)
√

(εx+ξ)(x−ξ)
. (A.4)

Proof. We present a constructive proof, as the method used in the construction of Φ has some
interest; however, we remark that the lemma could be proved just by checking that Φ from (A.4)
verifies the equation and by uniqueness of this class of equations (see for instance [17]).

While in principle this PDE could be solved using successive approximation, the resulting in-
tegral equation is hard to solve in an explicit fashion. However, we notice that it would be much
easier to arrive at a solution if, instead of having boundary data at ξ = 0, we had boundary data
at the other characteristic ξ =−εx. Following this idea, we substitute boundary condition (A.3) at
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ξ = 0 with a different boundary condition, namely Φ(x,−εx) = f (x), and try to find f (x) such that
the original PDE is verified. This can be done using a generic Taylor series for f and the finding
the values of the coefficients by setting in the resulting solution Φ(x,0) = 0, which introduces a
further complication. Let us guess a simple function f (x) = κx. If a value of κ can be found such
that the resulting solution verifies that Φ(x,0) = 0 then we have guessed the correct function. Thus
the problem is transformed into

(∂x +∂ξ)(∂x− ε∂ξ)Φ(x,ξ) = Φ(x,ξ), (A.5)
Φ(x,x) = x, (A.6)

Φ(x,−εx) = κx. (A.7)

Call α = εx+ξ, β = x−ξ, and Φ̂(α,β) = Φ(x,ξ). The problem written in α-β variables is:

∂αβΦ̂(α,β) =
Φ̂(α,β)

(1+ ε)2 , (A.8)

Φ̂(α,0) =
α

1+ ε
, (A.9)

Φ̂(0,β) =
κβ

1+ ε
. (A.10)

Now this is explicitly solvable (as a power series) by using the method of successive approxima-
tions, as follows. We integrate ∂αβΦ̂(α,β), first in α (from 0 to α), finding

∂βΦ̂(α,β) = ∂βΦ̂(0,β)+
∫

α

0

Φ̂(s,β)
(1+ ε)2 ds, (A.11)

and then we integrate in β (from 0 to β), finding

Φ̂(α,β) = Φ̂(α,0)+ Φ̂(0,β)− Φ̂(0,0)+
∫

β

0

∫
α

0

Φ̂(s,r)
(1+ ε)2 dsdr, (A.12)

and substituting the boundary conditions

Φ̂(α,β) =
α+κβ

1+ ε
+

∫
β

0

∫
α

0

Φ̂(s,r)
(1+ ε)2 dsdr. (A.13)

Applying to this integral equation the method of successive approximations (see for instance [40])
we directly find a series solution

Φ̂(α,β) =
∞

∑
n=0

(
αβ

(1+ε)2

)n

n!(n+1)!

(
κβ+α

1+ ε

)
, (A.14)

which can be easily seen to be convergent and to represent a smooth function (independently of the
value of κ). Now, noting that in α-β variables the condition ξ = 0 is equivalent to α = εβ, we make
this substitution and find

Φ(x,0) = Φ̂(εβ,β) =
∞

∑
n=0

(
εβ2

(1+ε)2

)n

n!(n+1)!

(
κβ+ εβ

1+ ε

)
, (A.15)

21



finding that Φ(x,0) = 0 if and only if κ =−ε. Thus we used a correct guess for Φ(x,−εx) =−εx,
and we reach the solution

Φ̂(α,β) =
−εβ+α

1+ ε

∞

∑
n=0

(
αβ

(1+ε)2

)n

n!(n+1)!
= (α− εβ)

I1

(
2

1+ε

√
αβ

)
√

αβ
, (A.16)

where Lemma A2 has been used to express the result as a Bessel function. Substituting Φ in the
original variables we reach (A.4).

Next we present a lemma that allows us to express power series as modified Bessel functions

Lemma A2. The following identity holds.

∞

∑
k=0

(
1

1+ ε

)2k+n (x−ξ)k+n

(k+n)!
(εx+ξ)k

k!
=

√
(x−ξ)n

(εx+ξ)n In

(
2

1+ ε

√
(x−ξ)(εx+ξ)

)
. (A.17)

Proof. First, using the Taylor series of the corresponding modified Bessel function (see for in-
stance [41, page 375]), one gets, for integer n,

In

(
2
√

ab
)
=
(√

ab
)n ∞

∑
k=0

ak

(k+n)!
bk

k!
(A.18)

and multiplying both sides of the equation by
√

an

bn , we reach√
an

bn In

(
2
√

ab
)
=

∞

∑
k=0

ak+n

(k+n)!
bk

k!
. (A.19)

To obtain the result, it is only necessary to substitute a = x−ξ

1+ε
and b = εx+ξ

1+ε
.

Finally, we present a result that allows to express a double series as an special function known
as the Marcum Q-function (or the generalized Marcum Q-function of order 1, see [33]).

Lemma A3. The function Π(x,y) defined as

Π(x,y) =
∞

∑
m=0

∞

∑
n=0

ynxn+m

n!(n+m)!
(A.20)

can be written as
Π(x,y) = ex+yQ1

(√
2x,
√

2y
)
, (A.21)

and also it can alternatively be written as

Π(x,y) = ex+y− y
∫ 1

0
ey(1−s)I0 (2

√
sxy)ds. (A.22)

Additionally, Π
(
δx, y

δ

)
can be approximated for small δ as follows

Π

(
δx,

y
δ

)
= I0 (2

√
xy)+δ

√
x
y

I1 (2
√

xy)+δ
2 x

y
I2 (2
√

xy)+O(δ3) (A.23)
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Proof. Note first that Π(x,y) is defined as an (absolutely convergent) double series, so the following
manipulations can be rigourosly justified. Using Lemma A2, we can write

Π(x,y) =
∞

∑
m=0

√
xm

ym Im (2
√

xy) . (A.24)

On the other hand, the generalized Marcum Q-function of order 1 can be written as [33]

Q1(a,b) = e−
a2+b2

2

∞

∑
m=0

am

bm Im (ab) . (A.25)

Substituting a =
√

2x, b =
√

2x, the first part of the lemma follows. To obtain the integral repre-
sentation (A.22), first we note that it is clear that Π(x,0) = ∑

∞
m=0

xm

m! = ex. On the other hand

∂

∂y
Π(x,y) =

∞

∑
m=0

∞

∑
n=1

yn−1xn+m

(n−1)!(n+m)!

=
∞

∑
m=1

∞

∑
n=0

ynxn+m

n!(n+m)!

= Π(x,y)−
∞

∑
n=0

xnyn

n!2

= Π(x,y)− I0 (2
√

xy) , (A.26)

where Lemma A2 has been used. This expression represents an ordinary differential equation in y,
that we can solve

Π(x,y) = Π(x,0)ey−
∫ y

0
ey−sI0

(
2
√

sx
)

ds, (A.27)

thus:

Π(x,y) = ex+y−
∫ y

0
ey−sI0

(
2
√

sx
)

ds = ex+y− y
∫ 1

0
ey(1−s)I0 (2

√
sxy)ds, (A.28)

obtaining (A.22). Finally (A.23) easily follows from the series representation of Π(x,y) and
Lemma A2.
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