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Abstract: To date, parallel simulation algorithms for spiking neural P (SNP) systems are based on
a matrix representation. This way, the simulation is implemented with linear algebra operations,
which can be easily parallelized on high performance computing platforms such as GPUs. Although
it has been convenient for the first generation of GPU-based simulators, such as CuSNP, there are
some bottlenecks to sort out. For example, the proposed matrix representations of SNP systems
lead to very sparse matrices, where the majority of values are zero. It is known that sparse matrices
can compromise the performance of algorithms since they involve a waste of memory and time.
This problem has been extensively studied in the literature of parallel computing. In this paper, we
analyze some of these ideas and apply them to represent some variants of SNP systems. We also
provide a new simulation algorithm based on a novel compressed representation for sparse matrices.
We also conclude which SNP system variant better suits our new compressed matrix representation.

Keywords: spiking neural P systems; simulation algorithm; sparse matrix-vector operations; com-
pressed matrix representation; GPU computing

1. Introduction

Membrane computing [1,2] is an interdisciplinary research area in the intersection
of computer science and cellular biology mainly [3], but also with many other fields
such as engineering, neuroscience, systems biology, chemistry, etc. The aim is to study
computational devices called P systems, taking inspiration from how living cells process
information. Spiking neural P (SNP) systems [4] are a type of P system composed of a
directed graph inspired by how neurons are interconnected by axons and synapses in the
brain. Neurons communicate through spikes, and the time difference between them plays
an important role in the computation. Therefore, this model belongs to the known third
generation of artificial neural networks, i.e., based on spikes.

Aside from computing numbers, SNP systems can also compute strings, and hence,
languages. More general ways to provide the input or receive the output include the
use of spike trains, i.e., a stream or sequence of spikes entering or leaving the system.
Further results and details on computability, complexity, and applications of spiking
neural P systems are detailed in [5–7], a dedicated chapter in the Handbook in [8], and an
extensive bibliography until February 2016 in [9]. Moreover, there is a wide range of SNP
system variants: with delays, with weights [10], with astrocytes [11], with anti-spikes [12],
dendrites [13], rules on synapses [14], scheduled synapses [15], stochastic firing [16],
numerical [17], etc.
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The research on applications and variants of SNP systems has required the devel-
opment of simulators. The simulation of SNP systems was initially carried out through
sequential simulators such as pLinguaCore [18]. In 2010, a matrix representation of SNP
systems was introduced [19]. Since then, most simulation algorithms are based on matrices
and vector representations, and consists of a set of linear algebra operations. This way,
parallel simulators can be efficiently implemented, since matrix-vector multiplications
are easy to parallelize. Moreover, there are efficient algebra libraries that can be used
out-of-the-box, although they have not been explored yet for this purpose. For instance,
GPUs are parallel devices optimized for certain matrix operations [20], and can handle
matrix operations efficiently. We can say, without loss of generality, that these matrix repre-
sentations of SNP systems fit well to the highly parallel architecture of these devices. This
have been harnessed already by introducing CuSNP, a set of simulators for SNP systems
implemented with CUDA [21–24]. Simulators for specific solutions have been also defined
in the literature [5,25]. Moreover, this is not unique for SNP systems, many simulators for
other P system variants have been accelerated on GPUs [26–28].

However, this matrix representation can be sparse (i.e., having a majority of zero
values) because the directed graph of SNP systems is not usually fully connected. A first
approach to tackle this problem was presented in [29], where some of the ideas described
in this work were described. Following these ideas, in [30], the transition matrix was split
to reduce the memory footprint of the SNP representation. In many disciplines, sparse
vector-matrix operations are very usual, and hence, many solutions based on compressed
implementations have been proposed in the literature [31].

In this paper, we introduce compressed representations for the simulation of SNP
systems based on sparse vector-matrix operations. First, we provide two approaches to
compress the transition matrix for the simulation of SNP systems with static graph. Second,
we extend these algorithms and data structures for SNP systems with dynamic graphs
(division, budding, and plasticity). Finally, we make a complexity analysis and comparison
of the algorithms to draw some conclusions.

The paper is structured as follows: Section 2 provides required concepts for the
methods and algorithms here defined; Section 3 defines the designs of the representa-
tions; Section 4 contains the detailed algorithms based on the compressed representations;
Section 5 shows the results on complexity analyses of the algorithms; Section 6 provides
final conclusions, remarks, and plans of future work.

2. Preliminaries

In this section we briefly introduce the concepts employed in this work. Firstly, we
define the standard model of spiking neural P systems and three variants. Second, a
matrix-based simulation algorithm for this model is revisited. Third, the fundamentals of
compressed formats for sparse matrix-vector operations are given.

2.1. Spiking Neural P Systems

Let us first formally introduce the definition of spiking neural P system. This model
was first introduced in [4].

Definition 1. A spiking neural P system of degree q ≥ 1 is a tuple

Π = (O, syn, σ1, . . . , σq, iout)

where:

• O = {a} is the singleton alphabet (a is called spike);
• syn = {(i, j)|, 1 ≤ i, j ≤ q, i 6= j} represents the arcs of a directed graph G = (V, syn)

whose nodes are V = {1, . . . , q};
• σ1, . . . , σq are neurons of the form

σi = (ni, Ri), 1 ≤ i ≤ q,
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where:

– ni ≥ 0 is the initial number of spikes within neuron labeled by i; and
– Ri is a finite set of rules associated to neuron labeled by i, of one of the following forms:

(1) E/ac → ap, being E a regular expression over {a}, c ≥ p ≥ 1 (firing rules);
(2) as → λ for some s ≥ 1, with the restriction that for each rule E/ac → ap of type

of type (1) from Ri, we have as 6∈ L(E) (forgetting rules).

• iout ∈ {1, 2, . . . , q} such that (iout, j) /∈ syn, for any 1 ≤ j ≤ q.

A spiking neural P system of degree q ≥ 1 can be viewed as a set of q neurons
{σ1, . . . , σq} interconnected by the arcs of a directed graph syn, called synapse graph. There
is a distinguished neuron label iout, called output neuron (σiout ), which communicates with
the environment.

If a neuron σi contains k spikes at an instant t, and ak ∈ L(E), k ≥ c, then the rule
E/ac → ap can be applied. By the application of that rule, c spikes are removed from
neuron σi and the neuron fires producing p spikes immediately. Thus, each neuron σj such
that (σi, σj) ∈ G receives p spikes. For σiout , the output neuron iout, the spikes are sent to
the environment.

The rules of type (2) are forgetting rules, and they are applied as follows: If neuron σi
contains exactly s spikes, then the rule as → λ from Ri can be applied. By the application
of this rule all s spikes are removed from σi.

In spiking neural P systems, a global clock is assumed, marking the time for the whole
system. Only one rule can be executed in each neuron at step t. As models of computation,
spiking neural P systems are Turing complete, i.e., as powerful as Turing machines. On
one hand, a common way to introduce the input (instance of the problem to solve) to the
system is to encode it into some or all of the initial spikes ni’s (inside each neuron i). On
the other hand, a common way to obtain the output is by observing neuron iout: either by
getting the interval t2 − t1 = n, where σiout sent its first two spikes at times t1 and t2 (we
say n is computed or generated by the system), or by counting all the spikes sent by σiout to
the environment until the system halts.

For the rest of the paper, we call this model spiking neural P systems with static
structure, or just static SNP, given that the graph associated with it does not change along
the computation. Next, we briefly introduce and focus on three variants with a dynamic
graph: division, budding, and plasticity. A broader explanation of them and more variants
are provided at [32–35].

Finally, let us introduce some notations and definitions:

• pres(i): for a neuron σi, the presynapses of this neuron is pres(i) = {j|(i, j) ∈ syn}.
• outdegree(i): for a neuron σi, the out degree of this neuron is: outdegree(i) = |pres(i)|.
• ines(i): for a neuron σi, the insynapses of this neuron is ines(i) = {j|(j, i) ∈ syn}.
• indegree(i): for a neuron σi, the in degree of this neuron is: outdegree(i) = |ines(i)|.

2.1.1. Spiking Neural P Systems with Budding Rules

Based on the idea of neuronal budding, where a cell is divided into two new cells, we
can abstract it to budding rules. In this process, the new neurons can differ in some aspects:
their connections, contents, and shape. A budding rule has the following form:

[E]i → [ ]i/[ ]j,

where E is a regular expression and i, j ∈ {1, . . . , q}.
If a neuron σi contains s spikes, as ∈ L(E), and there is no neuron σj such that there

exists a synapse (i, j) in the system, then the rule [E]i → [ ]i/[ ]j is enabled and it can be
executed. A new neuron σj is created, and both neurons σi and σj are empty after the
execution of the rule. This neuron σi keeps all the synapses that were going in, and this σj
inherits all the synapses that were going out of σi in the previous configuration. There is
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also a synapse (i, j) between neurons σi and σj, and the rest of synapses of σj are given to
the neuron depending on the synapses of syn.

2.1.2. Spiking Neural P Systems with Division Rules

Inspired by the process of mitosis, division rules have been widely used within the
field of membrane computing. In SNP systems, a division rule can be defined as follows:

[E]i → [ ]j||[ ]k,

where E is a regular expression and i, j, k ∈ {1, . . . , q}.
If a neuron σi contains s spikes, as ∈ L(E), and there is no neuron σg such that the

synapse (g, i) or (i, g) exists in the system, g ∈ {j, k}, then the rule [E]i → [ ]j||[ ]k is enabled
and it can be executed. Neuron σi is then divided into two new cells, σj and σk. The new
cells are empty at the time of their creation. The new neurons keep the synapses previously
associated to the original neuron σi, that is, if there was a synapse from σg to σi, then a new
synapse from σg to σj and a new one to σk are created, and if there was a synapse from σi to
σg, then a new synapse from σj to σg and a new one from σk to σg are created. The rest of
synapses of σj and σk are given by the ones defined in syn.

2.1.3. Spiking Neural P Systems with Plasticity Rules

It is known that new synapses can be created in the brain thanks to the process of
synaptogenesis. We can recreate this process in the framework of spiking neural P systems
defining plasticity rules in the following form:

E/ac → αk(i, Nj),

where E is a regular expression, c ≥ 1, α ∈ {+,−,±,∓}, k ≥ 1 and Nj ⊆ {1, . . . , q} (a.k.a.
neuron set). Recall that pres(i) is the set of presynapses of neuron σi.

If a neuron σi contains s spikes, as ∈ L(E), then the rule E/ac → αk(i, Nj) is enabled
and can be executed. The rule consumes c spikes and, depending on the value of α, it
performs one of the following:

• If α = + and Nj − pres(i) = ∅, or if α = − and pres(i) = ∅, then there is nothing
more to do.

• If α = + and |Nj − pres(i)| ≤ k, deterministically create a synapse to every σg,
g ∈ Nj − pres(i). Otherwise, if |Nj − pres(i)| > k, then non-deterministically select k
neurons in Nj − pres(i) and create one synapse to each selected neuron.

• If α = − and |pres(i)| ≤ k, deterministically delete all synapses in pres(i). Otherwise,
if |pres(i)| > k, then non-deterministically select k neurons in pres(i) and delete each
synapse to the selected neurons.

• If α = {±,∓}, create (respectively, delete) synapses at time t and then delete (resp.,
create) synapses at time t + 1. Even when this rule is applied, neurons are still open,
that is, they can continue receiving spikes.

Let us notice that if, for some σi, we apply a plasticity rule with α ∈ {+,±,∓}, when a
synapse is created, a spike is sent from σi to the neuron that has been connected. That is,
when σi attaches to σj through this method, we have immediately transferring one spike
to σj.

2.2. Matrix Representation for SNP Systems

Usually, parallel, P system simulators make use of ad-hoc representations, tailored
for a certain variant [26–28]. In order to ease the simulation of static SNP system and its
deployment to parallel environments, a matrix representation was introduced [19]. By
using a set of algebraic operations, it is possible to reproduce the transitions of a compu-
tation. Although the baseline representation only involves SNP systems without delays
and static structure, many extensions have followed such as for enabling delays [21,22],
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handling non-determinism [24], plasticity rules [36], rules on synapses [37], and dendrite P
systems [38]. In this section we briefly introduce the definitions for the matrix represen-
tation of the basic model of spiking neural P systems without delays, as defined above.
We also provide the pseudocode to simulate just one computation of any P system of the
variant using this matrix representation. In our notation, we use capital letters for vectors
and matrices, and [] for accessing values: V[i] is the value at position i of the vector V, and
M[i, j] is the value at row i and column j of matrix M.

For an SNP system Π of degree (q, m) (q neurons and m rules, where m = ∑
q
i=1 |Ri|),

we define the following vectors and matrices:
Configuration vector: Ck is the vector containing all spikes in every neuron on the

kth computation step/time, where C0 denotes the initial configuration; i.e., C0[i] = ni, for
neuron σi = (ni, Ri). It contains q elements.

Spiking vector: Sk shows if a rule is going to fire at the transition step k (having
value 1) or not (having value 0). Given the non-determinism nature of SNP systems, it
would be possible to have a set of valid spiking vectors, which is denoted as SVk. However,
for the computation of the next configuration vector, only a spiking vector is used. It
contains m elements.

Transition matrix: MΠ is a matrix comprised of m · q elements given as

M[i, j] =


−c, rule ri is in σj and is applied consuming c spikes;

p, rule ri is in σs, with s 6= j and (s, j) ∈ syn,
and is applied producing p spikes;

0, rule ri is in σs with s 6= j and (s, j) /∈ syn.

In this representation, rows represent rules and columns represent neurons in the
spiking transition matrix. Note also that a negative entry corresponds to the consumption
of spikes. Thus, it is easy to observe that each row has exactly one negative entry, and each
column has at least one negative entry [19].

Hence, to compute the transition k, it is enough to select a spiking vector Sk from all
possibilities SVk and calculate: Ck = Sk ·MΠ + Ck−1.

The pseudocode to simulate a computation of an SNP system is as described in
Algorithm 1. The selection of valid spiking vectors can be done in different ways, as
in [21,22]. This returns a set of valid spiking vectors. In this work, we focus on just one
computation, but non-determinism can be tackled by maintaining a queue of generated
configurations [24].

Algorithm 1 MAIN PROCEDURE: simulating one computation for static spiking neural P
systems.

Require: A SNP system Π of degree (q, m), and a limit L of time steps.
Ensure: A computation of the system

1: (MΠ, C0) ← INIT(Π)
2: k ← 0
3: repeat
4: SVk ← SPIKING_VECTORS(Ck, Π) . Calculate all possible spiking vectors
5: Sk ← GET_ONE_RANDOMLY(SVk) . Pick one spiking vector randomly
6: Ck+1 ← Ck + Sk ·MΠ . Compute next configuration
7: k ← k + 1
8: until k ≥ L ∨ SVk = ∅ . Stop condition: maximum steps or no more applicable rules
9: return C0 . . . Ck−1

In this work we focus on compressing the representation, specifically the transition
matrix, so the determination of the spiking vector is not affecting these designs. Therefore,
we use a straightforward approach and select just one valid spiking vector randomly. The
representations here depicted only affect how the computation of the next configuration is
done (matrix-vector multiplication at line 6 in Algorithm 1).
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2.3. Sparse Matrix-Vector Operations

Algebraic operations have been studied deeply in parallel computing solutions. Specif-
ically, GPU computing provides large speedups when accelerating such kind of operations.
This technology allows us to run scientific computations in parallel on the GPU, given
that a GPU device typically contains thousands of cores and high memory bandwidth [39].
However, parallel computing on a GPU has more constraints than on a CPU: threads
have to run in an SPMD fashion while accessing data in a coalesced way; that is, best
performance is achieved when the execution of threads is synchronized and accessing
contiguous data from memory. In fact, GPUs have been employed for P system simulations
since the introduction of CUDA.

Matrix computation is a highly optimized operation in CUDA [40], and there are many
efficient libraries for algebra computations like cuBLAS. It is usual that when working with
large matrices, these are almost “empty”, or with a majority of zero values. This is known
as sparse matrix, and this downgrades the runtime in two ways: lot of memory is wasted,
and lot of operations are redundant.

Given the importance of linear algebra in many computational disciplines, sparse
vector-matrix operations (SpMV) have been subject of study in parallel computing (and so,
on GPUs). Today there exists many approaches to tackle this problem [41]. Let us focus
on two formats to represent sparse matrices in a compressed way, assuming that threads
access rows in parallel:

• CSR format. Only non-null values are represented by using three arrays: row pointers,
non-zero values, and columns (see Figure 1 for an example). First, the row-pointers
array is accessed, which contains a position per row of the original matrix. Each
position says the index where the row start in the non-zero values and columns arrays.
The non-zero values and the columns arrays can be seen as a single array of pairs, since
every entry has to be accessed at the same time. Once a row is indexed, then a loop
over the values in that row has to be performed, so that the corresponding column is
found, and therefore, the value. If the column is not present, then the value is assumed
to be zero, since this data structure contains all non-zero values. The main advantage
is that it is a full-compressed format if NumNonZeroValues · 2 > NumZeroValues,
where NumNonZeroValues and NumZeroValues are the number of non-zero and zero
values in the original matrix, respectively. However, the drawbacks is that the search
of elements in the non-zero values and columns arrays is not coalesced when using
parallelism per row. Moreover, since it is a full-compressed format, there is no room
for modifying the values, such as introducing new non-zero values;

• ELL format. This representation aims at increasing the memory coalescing access of
threads in CUDA. This is achieved by using a matrix of pairs, containing a trimmed,
transposed version of the original matrix (see Figure 2 for an example). Each column of
the ELL matrix is devoted to each row of the matrix, even though the row is empty (all
elements are zero). Every element is a pair, where the first position denotes the column
and the second is the value, of only the non-zero elements in the corresponding row.
However, the size of the matrix is fixed, so the number of columns equals the number
of rows of the original matrix, but the number of rows is the maximum length of a
row in terms of non-zero values; in other words, the maximum amount of non-zero
elements in a row of the original matrix. Rows containing fewer elements pad the
difference with null elements. The main advantage of this format is that threads
always access the elements of all rows in coalesced way, and the null elements padded
by short rows can be utilized to incorporate new data. However, there is a waste of
memory, which is worst when the rows are unbalanced in terms of number of zeros.
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3  0  1  0
0  2  4  1
0  0  0  0
8  1  5  1

1 3 6 7

3 1 2 4 1 8 1 5 1

1 3 2 3 4 1 2 3 4

Row pointers:

Non-zero val:

Columns:

Figure 1. CSR format example. Non-zero val array stores the non-null values, columns array stores
the column indexes, and row pointers are the positions where each row starts in the previous arrays.

3  0  1  0
0  2  4  1
0  0  0  0
8  1  5  1

(1,3) (2,2) X (1,8)
(3,1) (3,4) X (2,1)

X (4,1) X (3,5)
X X X (4,1)

                              Maximum number
                                    of non-null values

                              in a row of the
                             original matrix

Column Value

transpose

Figure 2. ELL format example. Note that it represents the transpose of the original matrix to increase
the coalesced access in GPU devices. It includes pairs of column and value for every row. The
compressed matrix has a number of columns equals to the number of original rows, and a number of
rows equals to the maximum amount of non-null values in an original row.

3. Methods

SNP systems in the literature typically do not contain fully connected graphs. This
means that the transition matrix gets very sparse and, therefore, both computing time and
memory are wasted. However, further optimizations based on SpMV can be conveyed. In
the following subsections we discuss some approaches. Of course, if the graph inherent to
an SNP system leads to a compressed transition matrix, then a normal (sparse) format can
be employed, because using compressed formats will increase the memory footprint.

In this work, we focus on the basic model of spiking neural P systems without delays
as defined above, as well as three variants with dynamic network: budding, division
and plasticity. The set of algorithms defined next are designed to take advantage of data
parallelism, what is convenient for GPUs and vector co-processors. Their pseudocodes are
detailed in Section 4 of this paper.

In Algorithm 2 we generalize the pseudocode disposed in Algorithm 1 to be able to
handle both static and dynamic networks. This way, each variant requires to re-define
just some functions from the ones defined for the static SNP system variant using vector
and matrices without compression (i.e., sparse representation). In order to understand the
algorithms, we will present in this section the main new data structures and their behavior.
The detailed pseudocodes are available in Section 4.

Algorithm 2 MAIN PROCEDURE: simulating one computation for spiking neural P sys-
tems.
Require: An SNP system Π of degree (q, m), and a limit L of time steps.
Ensure: A computation of the system

1: (C0, M0) ← INIT(Π)
2: k ← 0
3: repeat
4: SVk ← SPIKING_VECTORS(Ck, Mk) . Calculate all possible spiking vectors
5: Sk ← GET_ONE_RANDOMLY(SVk) . Pick one spiking vector randomly
6: (Ck+1, Mk+1) ← COMPUTE_NEXT(Ck, Mk, SK) . Compute next configuration
7: k ← k + 1
8: until k ≥ L ∨ SVk = ∅ . Stop condition: maximum steps or no more applicable rules
9: return C0 . . . Ck−1

As a convention, those vectors and matrices using subindex k are dynamic and can
change during the simulation time, while those with Π subindex are constructed at the
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beginning and are invariant. Capital letters refer to vectors and matrices, and small
letters are scalar numbers. A total order over the rules defined in the system is assumed,
which is denoted as R =

∧q
i=1 Ri. For the sake of simplicity, we represent each rule

rj ≡ Ej/acj → apj , with 1 ≤ j ≤ m, as a tuple (i, Ej, cj, pj), where i is the subindex of the
set Ri where rj belongs (i.e., the neuron where it is contained). Specifically, forgetting rules
just have pj = 0.

For static SNP systems using sparse representation, we use the following vectors and
matrices:

• Preconditions vector PΠ is a vector storing the preconditions of the rules; that is, both
the regular expression and the consumed spikes. Initially, PΠ[j] = (Ej, cj), for each
rj ∈ R, rj = (ij, Ej, cj, pj), 1 ≤ j ≤ m.

• Neuron-rule map vector NΠ is a vector that maps each neuron index with its rules
indexes. Specifically, NΠ[i] is the index of the first rule in the neuron. Given that
rules have been ordered in R as mentioned above, rules belonging to the same neuron
have contiguous indexes. Thus, it is enough to store just the first index. In this sense,
the first rule in neuron i is NΠ[i] and the last one is NΠ[i + 1]− 1. In other words,
NΠ contains q + 1 elements, and it is initialized as follows: NΠ[i] = ∑i−1

h=1 1 + |Rh|.
Specifically, NΠ[1] = 1 and NΠ[i] = N0[i− 1] + |Ri−1|, for 2 ≤ i ≤ q + 1

• Mk is the transition tuple, where Mk = (MΠ, PΠ, NΠ). If the variant has a dynamic
network, the transition matrix needs to be modified. Therefore, we start with M0. The
following algorithms show how they are constructed.

Algorithm 2 can be easily transformed to Algorithm 1 by defining the INIT and
COMPUTE_NEXT functions as in Algorithm 3. They work exactly as already specified in
Section 2.2; that is, using the usual vector-matrix multiplication operation to calculate the
next configuration vector. We will also detail how the selection of spiking vectors can be
done. This is defined in Algorithm 4, and it is based on previous ideas already presented
in [21,22]. First, SPIKING_VECTORS function calculates the set of all possible spiking
vectors by using a recursive function over neuron index i. It gathers all spiking vectors
that can be generated for neurons i′ > i and then. If neuron i contains applicable rules, it
populates a spiking vector for each of these rules, and from each of the generated spiking
vectors form neurons i′ > i. Finally, neuron i propagates these spiking vectors to the next
neuron i− 1.

3.1. Approach with ELL Format

Our first approach to compress the representation of the transition matrix, MΠ, is
to use the ELL format (see Figure 3 for an example). The reason for using ELL and not
other compressed formats for sparse matrices (CSR, COO, BSR, ...) is to enable extensions
for dynamic networks, as seen later. ELL can give some room for modifications without
much memory re-allocations, while CSR requires us to modify the whole matrix to add
new elements.

ELL format leads to the new compressed matrix Ms
Π. The following aspects have been

taken into consideration:

• The ELL format represents the transpose of the original matrix, so now rows corre-
spond to neurons and columns to rules. This is convenient for SIMD processors such
as GPUs.

• The number of rows of Ms
Π equals the maximum amount of non-zero values in a row

of MΠ, denoted by z′. It can be shown that z′ = z + 1, where z is the maximum output
degree found in the neurons of the SNP system. Specifically, z = max{outdegree(i)|1 ≤
i ≤ q} (see definition in Section 2.1). z′ can be derived from the composition of the
transition matrix, where row j devoted for rule rj ≡ (ij, Ej, cj, pj) contains the values
+pj for every neuron i (columns) connected though an output synapse with the neuron
where the rule belongs to (i.e., i ∈ pres(ij)), and a value −cj for consuming the spikes
in the neuron the rule belongs to (i.e., ij).
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• The values inside columns can be sorted, so that the consumption of spikes (−c values)
are placed at the first row. In this way, if implemented in parallel, all threads can start
by doing the same task: consuming spikes.

• Every position of Ms
Π is a pair (as illustrated in Figure 3), where the first element is a

neuron label, and the second is the number of spikes produced (+p).

A parallel code can be implemented with this design by assigning a thread to each
rule, and so, one per column of the spiking vector Sk and one per column of Ms

Π (rows of
the original transition matrix). For the vector-matrix multiplication, it is enough to have
a loop of z′ steps at maximum through the columns. In the loop of each column j, the
corresponding value in the spiking vector Sk[j] (either 0 or 1) is multiplied to the value xj
in the pair (ij, xj), and added to the neuron id nj in the configuration vector Ck[nj]. In case
the SNP network contains hubs (nodes with high amount of input synapses), then we can
opt for a parallel reduction per column. Since some threads might write to same positions
in the configuration vector at the same time, a solution would be to use atomic adding
operations, which are available on devices such as GPUs.

Algorithm 3 Functions for static SNP systems with sparse matrix representation.

1: procedure INIT(Π)
2: (C0, NΠ) ← INIT_NEURON_VECTORS(Π) . Initialize vectors only related to neurons.
3: (MΠ, PΠ) ← INIT_RULE_MATRICES(Π) . Initialize matrices related to rules.
4: M0 ← (MΠ, PΠ, NΠ)
5: return (C0, M0)
6: end procedure

7: procedure INIT_NEURON_VECTORS(Π)
8: (q, σ1, . . . , σq) ← Π . Get information from Π
9: C0 ← EMPTY_VECTOR(q) . Create initial configuration

10: NΠ ← EMPTY_VECTOR(q + 1) . Create neuron-rule vector
11: NΠ[1] ← 1
12: for all i ← 1 . . . q do . For each neuron
13: (ni, Ri) ← σi . Get info of the neuron from Π
14: C0[i] ← ni . Initial configuration
15: NΠ[i + 1] ← NΠ[i] + |Ri| . Neuron-rule map vector initialization
16: end for
17: return (C0, NΠ)
18: end procedure

19: procedure INIT_RULE_MATRICES(Π)
20: (R, m, q, pres) ← Π . Get information from Π
21: PΠ ← EMPTY_VECTOR(m) . Create preconditions vector
22: MΠ ← EMPTY_MATRIX(m, q) . Create transition matrix
23: for all rj ∈ R, j ← 1 . . . m do . For each rule (column). This loop is parallelizable.
24: rj ≡ (ij, Ej, cj, pj) . Get info of the rule
25: PΠ[j] ← (Ej, cj) . Store it in precondition vector
26: MΠ[j, ij] ← −cj . Construct transition matrix
27: for all i ∈ pres(ij) do . For each connected neuron to ij
28: MΠ[j, i] ← pj . Construct transition matrix
29: end for
30: end for
31: return (MΠ, PΠ)
32: end procedure

33: procedure COMPUTE_NEXT(Ck, Mk, SK)
34: (MΠ, _, _) ← Mk . Get some content of transition tuple
35: return (Ck + Sk ·MΠ, Mk) . Only the configuration is updated.
36: end procedure
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Algorithm 4 Spiking vectors selection with static SNP systems and sparse representation.

1: procedure SPIKING_VECTORS(Ck, Mk)
2: return COMBINATIONS(1, Ck, Mk) . Start calculating combinations from neuron 1
3: end procedure

4: procedure COMBINATIONS(i, Ck, Mk)
5: qk ← |Ck| . With dynamic networks, qk ≥ q
6: (_, _, NΠ) ← Mk . Get some content of transition tuple
7: if i > qk then . If neuron i is out of index.
8: return ∅ . An empty set.
9: else

10: SV ← ∅ . The set for the rest of neurons.
11: SV′ ← COMBINATIONS(i + 1, Ck, PΠ, NΠ) . All combinations for rest of neurons.
12: if SV′ = ∅ then . No spiking vectors yet for rest of neurons
13: S ← EMPTY_VECTOR(m) . Create an empty spiking vector.
14: SV′′ ← {S} . The set to loop over just contains S
15: else . There are spiking vectors for rest of neurons
16: SV′′ ← SV′ . The set to loop over is just SV′

17: end if
18: for j ← NΠ[i] . . . NΠ[i + 1]− 1 do . For each rule in neuron i
19: if APPLICABLE(i, j, Ck, Mk) then . If rule j is applicable
20: for all S ∈ SV′′ do . For each spiking vector, either SV′ or empty vector
21: S′ ← S . Create a copy
22: S′[j] ← 1 . Mark rule j as applicable
23: SV ← SV ∪ {S′} . Add it to the solution
24: end for
25: end if
26: end for
27: if SV = ∅ then . If there are no applicable rules
28: return SV′ . Just propagate combinations
29: else
30: return SV . Return calculated combinations
31: end if
32: end if
33: end procedure

34: procedure APPLICABLE(i, j, Ck, Mk)
35: (_, PΠ, _) ← Mk . Get some content of transition tuple
36: (Ej, cj) ← PΠ[j] . Preconditions of the rule
37: return Ck[i] ∈ L(Ej) ∧ Ck[i] ≥ cj . If rule j is applicable in neuron i
38: end procedure

39: procedure GET_ONE_RANDOMLY(SVk)
40: s′ ← RANDOM(1, |SVk|))
41: return s′-th spiking vector in SVk . Returns just one randomly chosen
42: end procedure

In order to use this representation in Algorithm 2, we only need to re-define functions
INIT_RULE_MATRICES and COMPUTE_NEXT from Algorithm 3 (for sparse representa-
tion) as shown in Algorithm 5. The rest of functions remain unchanged.
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Figure 3. Illustration of compressed representation based on the ELL format of a static spiking neural
P (SNP) system. Light cells are empty values (0,0). The first column is a forgetting rule (there is
no need to use p = 0). The rows below the spiking vector illustrate threads, showing the level of
parallelism that can be achieved; i.e., each column and each position of the spiking vector in parallel
can be processed in parallel.

Algorithm 5 Functions for static SNP systems with ELL-based matrix representation.

1: procedure INIT_RULE_MATRICES(Π)
2: (R, m, q, z′, pres) ← Π . Get information from Π
3: PΠ ← EMPTY_VECTOR(m) . Create preconditions vector
4: Ms

Π ← EMPTY_MATRIX(z′, m) . Create transition matrix
5: for all rj ∈ R, j ← 1 . . . m do . For each rule (column). This loop is parallelizable.
6: rj ≡ (ij, Ej, cj, pj) . Get info of the rule
7: PΠ[j] ← (Ej, cj) . Store it in precondition vector
8: Ms

Π[1, j] ← (ij,−cj) . Only for the first row
9: if pj > 0 then . Only if rj is not a forgetting rule

10: k ← 2 . k is our iterator, compacting the rows
11: for all i ∈ pres(ij) do . For each out synapse
12: Ms

Π[k, j] ← (i, pj) . Add out neuron and produced spikes
13: k ← k + 1 . We know that k ≤ z′

14: end for
15: end if
16: end for
17: return (MΠ, PΠ)
18: end procedure

19: procedure COMPUTE_NEXT(Ck, Mk, SK)
20: Ck+1 ← Ck . Create a copy of Ck
21: (Ms

Π, _, _) ← Mk . Get some content of transition tuple
22: for j ← 1 . . . m do . For each rule (column). This loop is parallelizable.
23: i ← 1
24: repeat
25: (ij, xj) ← Ms

Π[i, j] . Get info from transition matrix
26: Ck+1[ij] ← Ck+1[ij] + Sk[j] · xj . Update configuration, if not applicable, Sk[j] = 0
27: i ← i + 1
28: until Ms

Π[i, j] = (0, 0) ∨ i > z′ . Until reaching an empty value or the maximum
29: end for
30: return (Ck+1, Mk)
31: end procedure



Processes 2021, 9, 690 12 of 30

3.2. Optimized Approach for Static Networks

If, in general, more than one rule are associated to each neuron, many of the itera-
tions in the main loop in COMPUTE_NEXT function are wasted. Indeed, if the loop is
parallelized and each iteration is assigned to a thread, then many of them will be inactive
(having a 0 in the spiking vector), causing performance drops such as branch divergence
and non-coalesced memory access in GPUs. Moreover, note in Figure 3 that columns
corresponding to rules belonging to the same neuron contain redundant information: the
generation of spikes (+p) is replicated for all synapses.

Therefore, a more efficient compressed matrix representation can be obtained when
maintaining the synapses separated from the rule information. This is called optimized
matrix representation, and can be done with the following data structures:

• Rule vector, RuΠ. By using a CSR-like format (see Figure 4 for an example), rules
of the form E/ac → ap (also forgetting rules are included, assuming p = 0) can be
represented by an array storing the values c and p in a pair. We can use the already
defined neuron-rule map vector Nk to relate the subset of rules associated to each
neuron.

• Synapse matrix, SyΠ. It is a transposed matrix as with ELL representation (to better
fit to SIMD architectures such as GPU devices), but it has a column per neuron i and a
row for every neuron j such that (i, j) ∈ Syn (there is a synapse). That is, every element
of the matrix corresponds to a synapse (the neuron id) or a null value otherwise. Null
values are employed for padding the columns, since the number of rows equals z
(the maximum output degree in the neurons of the SNP system). See Figure 4 for an
example.

• Spiking vector is modified, containing only q positions instead of n (i.e., one per
neuron), and states which rule is selected.
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Figure 4. Illustration of optimized compressed matrix representation. Light cells in the synapse
matrix are empty values (0), dark cells are positions with values greater than 0 (i.e., with neuron
labels). The rows below illustrate threads, showing the level of parallelism that can be achieved (each
column/neuron in parallel). The first column in the rule vector is a forgetting rule, where p = 0.
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Note that we replace the transition matrix for a pair with rule vector and synapse
matrix: M′Π = (RuΠ, SyΠ). In order to compute the next configuration, it is enough to loop
over the neurons. Then, for each neuron i, we check which rule j is selected, according to
the spiking vector at position Sk[i]. This is used to grab the pair (cj, pj) from the rule vector,
and therefore consume cj spikes in the neuron i and add pj spikes in the neurons at the
column i of the synapse matrix. The loop over the column can end prematurely if the out
degree of neuron i is not z (that is, when encountering a null value). This operation can be
easily parallelized by assigning a thread to each column of the synapse matrix (requiring q
threads, one per neuron).

In order to use this optimized representation in Algorithm 2, we need to re-define the
spiking selection function, since this vector works differently. To do this, it is enough to just
modify two lines in the definition of COMBINATIONS function at Algorithm 4, in order to
keep the spiking vector with size q and storing the rule id instead of just 1 or 0 (see Section 4
for more detail). Moreover, we need to define tailored INIT_RULE_MATRICES and COM-
PUTE_NEXT functions as shown in Algorithm 6, replacing those from Algorithm 3.

Algorithm 6 Functions for static SNP systems with optimized compressed matrix repre-
sentation.

1: procedure INIT_RULE_MATRICES(Π)
2: (R, m, q, z, pres) ← Π . Get information from Π
3: PΠ ← EMPTY_VECTOR(m) . Create preconditions vector
4: RuΠ ← EMPTY_VECTOR(m)
5: for all rj ∈ R(j ← 1 . . . m) do . For each rule (column). This loop is parallelizable.
6: rj = (ij, Ej, cj, pj) . Get info of the rule
7: PΠ[j] ← (Ej, cj) . Store it in precondition vector
8: RuΠ[j] ← (cj, pj) . Store it in rule vector
9: end for

10: SyΠ ← EMPTY_MATRIX(z, q)
11: for i ← 1 . . . q do . For each neuron (column in synapse matrix)
12: k ← 1 . k is our iterator, compacting the rows
13: for all h ∈ pres(i) do . For each out synapse
14: SyΠ[k, i] ← h
15: k ← k + 1 . We know that k ≤ z
16: end for
17: end for
18: M′Π ← (RuΠ, SyΠ)
19: return (M′Π, PΠ)
20: end procedure

21: procedure COMPUTE_NEXT(Ck, Mk, Sk)
22: Ck+1 ← Ck . Create a copy of Ck
23: (M′Π, _, _) ← Mk . Get some content of transition tuple
24: (RuΠ, SyΠ) ← M′Π
25: for i ← 1 . . . q do . For each neuron. This loop is parallelizable.
26: j ← Sk[i] . Index of rule to fire in the neuron
27: if j 6= 0 then . Only if there is a rule.
28: (cj, pj) ← RuΠ[j] . Get rule info
29: Ck+1[i] ← Ck+1[i]− cj . Consume spikes in firing neuron
30: w ← 1 . Next while stops if pj = 0, i.e., a firing rule
31: while pj > 0∧ SyΠ[w, i] 6= 0∧ w ≤ z do . Until an empty value or the maximum
32: h ← SyΠ[w, i] . Get connected neuron by a synapse
33: Ck+1[h] ← Ck+1[h] + pj . Produce spikes in connected neuron
34: w ← w + 1
35: end while
36: end if
37: end for
38: return (Ck+1, Mk)
39: end procedure
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3.3. Optimized Approach for Dynamic Networks

The optimized compressed matrix representation discussed in Section 3.2 can be
further extended to support rules that modify the network, such as budding, division, or
plasticity.

3.3.1. Budding and Division Rules

We start by analyzing how to simulate dynamic SNP systems with budding and
division rules. They are supported at the same time in order to unify the pseudocode and
also because both kind of rules are usually together in the model.

First of all, the synapse matrix has to be flexible enough to host new neurons. This can
be accomplished by allocating a matrix large enough to populate new neurons (probably up
to fill the whole memory available). We denote qmax as the maximum amount of neurons
that the simulator is able to support, and qk the amount of neurons in a given step k. The
formula to calculate qmax is in Section 5. It is important to point out that the simulator needs
to differentiate between neuron label and neuron id [35]. The reason for this separation
is that we can have more than one neuron (with different ids) with the same label (and
hence, rules).

In order to achieve this separation, it is enough to have a vector to map each neuron id
to its label. We will call this new vector, neuron-id map vector Qk, and the following holds
at step k: qk = |Qk| = |Ck| = |Sk| ≤ qmax. That is, neuron-id map vector, configuration
vector and spiking vector have a size of qmax as well. Once the label of a neuron is obtained,
the information of its corresponding rules can be accessed as usual, like the neuron-rule
map vector NΠ. For simplicity, we attach the neuron-id map vector to the transition tuple.
Moreover, the synapse matrix becomes dynamic, thus using k sub-index: Syk; hence, the
transition matrix is also dynamic. Let us now introduce this new notation for transition
tuple and transition matrix:

• The transition matrix is now a dynamic pair: M′k = (RuΠ, Syk).
• The transition tuple is extended as follows: Mk = (M′k, Qk, PΠ, NΠ).

We use the following encoding for each type of rule. Spiking and forgetting rules
remain unchanged:

• For a budding rule r ≡ [E]i → []i/[]j as r = (i, E, 0, j). Given that all pairs in the rule
vector RuΠ are of the form (c, p), and c is always greater equal than 1, then we can
encode a budding rule as a pair (0, j).

• For a division rule r ≡ [E]i → []j||[]k as r = (i, E,−j, k). Given that all pairs in the rule
vector RuΠ are of the form (c, p), and c is always greater equal than 1, then we can
encode a division rule as a pair (−j, k).

The execution of a budding rule [E]i → []i/[]l requires the following operations (see
Figure 5 for an illustration):

1. Let i′ be the neuron id executing this rule.
2. Allocate a column l′ to the synapse matrix Syk for the new neuron, and use this index

as its neuron id.
3. Add an entry to the neuron-id map vector Qk at position l′ with the label l.
4. Copy column i′ to the new column l′ in Syk.
5. Delete the content of column i′ and add only one element at the first row with the

id l′.

For a division rule [E]i → []j||[]l , the following operations have to be performed (see
Figure 6 for an example):

1. Let i′ be the neuron id executing this rule.
2. Allocate a new column l′ for the created neuron l in the synapse matrix Syk.
3. Modify the neuron-id map vector Qk as follows: replace the value at position i′ for

label j, and add a new entry for l′ to associate it with label k.
4. Copy column i′ to l′ in Syk (the generated neuron gets the out synapses of the parent).
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5. Find all occurrences of i′ in the synapse matrix, and add l′ to the columns where it
is found.
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Figure 5. Illustration of application of a budding rule in the synapse matrix with compressed
representation. Light blue cells in the synapse matrix are empty values (0), dark cells are positions
with values greater than 0 (i.e., with neuron id), and light cells are empty columns allocated in
memory (a total of qmax). Neuron 1 is applying budding, and its content is copied to an empty
column (5) and replaced by a single synapse to the created neuron.
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Figure 6. Illustration of application of a division rule in the synapse matrix with compressed
representation. Light blue cells in the synapse matrix are empty values (0), dark cells are positions
with values greater than 0 (i.e., with neuron id), and light cells are empty columns allocated in
memory (a total of qmax). Neuron 1 is being divided, and its content is copied to an empty column (5).
Columns 0 and 3 represent neurons with a synapse to the neuron being divided (1), so we need to
update them as well with the synapse to the created neuron (5). Neuron 3 has reached its limit of
maximum out degree, therefore we need to expand the matrix with a new row, or use a COO-like
system to store these exceeded elements.

The last operation can be very expensive if the amount of neurons is large, since it
requires to loop all over the synapse matrix. Moreover, when adding l′ in all the columns
containing i′, it would be possible to exceed the predetermined size z. For this situation, a
special array of overflows is needed, like ELL + COO format for SpMV [41]. For simplicity,
we will assume this situation is weird and the algorithm will allocate a new row for the
synapse matrix.

Some functions in the pseudocode are re-defined to support dynamic networks with
division and budding:

• INIT functions as in Algorithm 7. They now take into account the initialization of
structures at its maximum amount qmax, including the new neuron-id map vector.

• SPIKING_VECTORS function, as defined in Algorithm 4 and modified in Section 3.2
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for optimized matrix representation, is slightly modified (just two lines) to support
the neuron-id map vector.

• APPLICABLE function as in Algorithm 8. This function, when dealing with division
rules, has to search if there are existing synapses for the neurons involved. If they
exist, the division rule does not apply.

• COMPUTE_NEXT function as in Algorithm 9, to include the operations described
above. It now needs to expand the synapse matrix Syk either by columns (when new
neurons are created) or by rows if there is a neuron from which we need to create
a synapse to the new neuron and it has already the maximum out degree z. In this
case, we need to re-allocate the synapse matrix in order to extend it by one row (this
is written in the pseudocode with the function EXPAND_MATRIX). Finally, let us
remark that we can easily detect if type of a rule rj at it’s associated cj value: if 0, it is a
budding rule, if it is positive number, a spiking rule, otherwise (negative value) it is a
division rule.

Algorithm 7 Initialization functions for dynamic SNP systems with budding and division
rules over optimized compressed matrix representation.

1: procedure INIT(Π)
2: (C0, NΠ) ← INIT_NEURON_VECTORS(Π) . Initialize vectors only related to neurons.
3: (M′0, Q0, PΠ) ← INIT_RULE_MATRICES(Π) . Initialize matrices related to rules.
4: M0 ← (M′0, Q0, PΠ, NΠ)
5: return (C0, M0)
6: end procedure

7: procedure INIT_NEURON_VECTORS(Π)
8: (q, qmax, σ1, . . . , σq) ← Π . Get information from Π
9: C0 ← EMPTY_VECTOR(qmax) . Create initial configuration

10: NΠ ← EMPTY_VECTOR(q + 1) . Create neuron-rule vector
11: NΠ[1] ← 1
12: for all i ← 1 . . . q do . For each neuron
13: (ni, Ri) ← σi . Get info of the neuron from Π
14: C0[i] ← ni . Initial configuration
15: NΠ[i + 1] ← NΠ[i] + |Ri| . Neuron-rule map vector initialization
16: end for
17: return (C0, NΠ)
18: end procedure

19: procedure INIT_RULE_MATRICES(Π)
20: (R, m, q, qmax, z, pres) ← Π . Get information from Π
21: PΠ ← EMPTY_VECTOR(m) . Create preconditions vector
22: RuΠ ← EMPTY_VECTOR(m)
23: for all rj ∈ R(j ← 1 . . . m) do . For each rule (column). This loop is parallelizable.
24: rj ≡ (ij, Ej, cj, pj) . Get info of the rule
25: PΠ[j] ← (Ej, cj) . Store it in precondition vector
26: RuΠ[j] ← (cj, pj) . Store it in rule vector
27: end for
28: Q0 ← EMPTY_VECTOR(qmax)
29: Sy0 ← EMPTY_MATRIX(z, qmax)
30: for i ← 1 . . . q do . For each neuron label
31: Q0[i] ← i
32: k ← 1 . k is our iterator, compacting the rows
33: for all h ∈ pres(i) do . For each out synapse
34: Sy0[k, i] ← h
35: k ← k + 1 . We know that k ≤ z
36: end for
37: end for
38: M′0 ← (RuΠ, Sy0)
39: return (M′0, Q0, PΠ)
40: end procedure
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Algorithm 8 Applicable functions for dynamic SNP systems with budding rules over
optimized compressed matrix representation.

1: procedure APPLICABLE(i, j, Ck, Mk)
2: (M′k, Qk, PΠ, _) ← Mk . Get some content of transition tuple
3: (RuΠ, Syk) ← M′k . Get some content of transition matrix
4: (lj, hj) ← RuΠ[j] . Preconditions of the rule
5: (Ej, cj) ← PΠ[j] . Preconditions of the rule
6: if cj > 0 then . If a spiking or forgetting rule
7: return Ck[i] ∈ L(Ej) ∧ Ck[i] ≥ cj . If rule j is applicable in neuron icj = 0 . If a budding

rule
8: b ← False . Check if synapse (i, hj) exists
9: w ← 1

10: while ¬b ∧ Syk[w, i] 6= 0∧ w ≤ z do . Until an empty value or the maximum
11: b ← Qk[Syk[w, i]] = hj . If synapse exists
12: w ← w + 1
13: end while
14: return Ck[i] ∈ L(Ej) ∧ ¬b
15: else . If a division rule
16: b ← False . Check if synapse (i, hj) or (i,−lj) exists
17: w ← 1
18: while ¬b ∧ Syk[w, i] 6= 0∧ w ≤ z do . Until an empty value
19: b ← Qk[Syk[w, i]] = hj ∨Qk[Syk[w, i]] = −lj . If either synapse exists
20: w ← w + 1
21: end while
22: for x ← 1 . . . qk do . Search for neurons with label hj or lj
23: b′ ← Qk[x] = hj ∨Qk[x] = −lj . Either hj or lj
24: w ← 1
25: while b′ ∧ ¬b ∧ Syk[w, x] 6= 0∧ w ≤ z do . Combination of conditions
26: b ← Qk[Syk[w, x]] = i . If the synapse exists
27: w ← w + 1
28: end while
29: end for
30: return Ck[i] ∈ L(Ej) ∧ ¬b
31: end if
32: end procedure

3.3.2. Plasticity Rules

For dynamic SNP systems with plasticity rules, the synapse matrix can be allocated in
advance to the exact size q, since no new neurons are created. Thus, there is no need of using
a neuron-id map vector as before. However, enough rows (value z) in the synapse matrix
have to be pre-established to support the maximum amount of synapses. Fortunately,
this can be pre-computed by looking to the initial out degrees of the neurons and the size
of the neuron sets in the plasticity rules adding synapses. We encode a plasticity rule
rj ≡ Ej/ac

j → αjk j(ij, Nj), with αj = +/ − / ± /∓ as follows: rj = (ij, Ej, cj, αj, k j, Nj).
Next, we define the value of zp for SNP systems with plasticity rules: zp = max{|pres(i) ∪
Nti|, 1 ≤ i ≤ q}, where Nti =

⋃j=m
j=1 Nj, rj ∈ Ri, rj = (ij, Ej, cj, αj, k j, Nj), αj ∈ {+,±,∓}. In

other words, zp is the maximum out degree (z) that a neuron can have initially plus those
new connections that can be created with plasticity rules inside that neuron. This result can
be refined for plasticity rules having α ∈ {±,∓}, because we know up to k new synapses
can be created at a time. However, for simplicity, we will use the formula above.
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Algorithm 9 Compute next function for dynamic SNP systems with budding and division
rules using optimized compressed matrix representation.

1: procedure COMPUTE_NEXT(Ck, Mk, Sk)
2: Ck+1 ← Ck . Create a copy of Ck
3: (M′k, Qk, _, _) ← Mk . Extract info from transition tuple
4: (RuΠ, Syk) ← M′k . Extract info from transition matrix
5: qk ← |Ck| . Get current amount of neurons.
6: for i ← 1 . . . qk do . For each neuron. This loop is parallelizable.
7: j ← Sk[i] . Index of rule to fire in the neuron
8: if j 6= 0 then . Only if there is a rule.
9: (cj, pj) ← RuΠ[j] . Get rule info

10: if cj > 0 then . Execution of a spiking or forgetting rule
11: Ck+1[i] ← Ck+1[i]− cj . Consume spikes in firing neuron
12: w ← 1 . Next while stops if pj = 0, i.e., a firing rule
13: while pj > 0∧ Syk[w, i] 6= 0∧ w ≤ z do . Until an empty value
14: h ← Syk[w, i] . Get connected neuron by a synapse
15: Ck+1[h] ← Ck+1[h] + pj . Produce spikes in connected neuron
16: w ← w + 1
17: end while
18: else if cj = 0 then . Execution of a budding rule
19: qk ← qk + 1 . Increment counter of neurons
20: Ck+1[i] ← 0 . Empty the neuron i, neuron qk is 0 already
21: Qk[qk] ← pj . pj is the label of the new neuron
22: for w ← 1 . . . z do
23: Syk[w, qk] ← Syk[w, i] . Copy column i to the new one
24: if w = 1 then . Update out synapses of i
25: Syk[w, i] ← qk . The only new out synapse of i
26: else
27: Syk[w, i] ← 0 . No more out synapses for i
28: end if
29: end for
30: else . Execution of a division rule
31: (hj, lj) ← (cj,−pj) . Get new neurons labels
32: qk ← qk + 1 . Increment counter of neurons
33: Ck+1[i] ← 0 . Empty the neuron i, neuron qk is 0 already
34: Qk[i] ← hj . The new label of the neuron
35: Qk[qk] ← lj . The label of the new neuron
36: for w ← 1 . . . z do . Copy out synapses to new neuron
37: Syk[w, qk] ← Syk[w, i] . Copy column i to the new one
38: end for
39: for x ← 1 . . . qk − 1 do . Search for in synapses of neuron i
40: b ← False . Boolean saying the synapse was found
41: w ← 1
42: while Syk[w, x] 6= 0∧ w ≤ z do . Search the end of the column
43: b ← b ∨ Syk[w, x] = i . Search for neuron i
44: w ← w + 1
45: end while
46: if b then . If synapse was found, add new neuron at the end of the column
47: if w = z then
48: z ← z + 1 . The neuron x has a larger out degree than z
49: Syk ← EXPAND_MATRIX(Syk, z, qk) . Extend with one more row
50: end if
51: Syk[w, x] ← qk . This can lead to overflows if w = z
52: end if
53: end for
54: end if
55: end if
56: end for
57: return (Ck+1, Mk)
58: end procedure
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First, we need to represent plasticity rules into vectors. We assume that np is the total
amount of plasticity rules in the system, and that there is a total order between these rules.
Given a plasticity rule, we can initialize the neuron-map and the precondition vector as
with spiking rules. But in this case, we need a couple of new vectors and modify existing
ones in order to represent all plasticity rules rj = (ij, Ej, cj, αj, k j, Nj), with j ∈ {1 . . . np}
(following the imposed total order):

• Rule vector RuΠ stores the following pair for a plasticity rule rj: (cj,−j), that is, the
consumed spikes cj and the unique index of the plasticity rule j. This index is used to
access the following vector, and it is stored as a negative value in order to detect that
this is a plasticity rule.

• Plasticity rule vector PrΠ, of size np, contains a tuple for each plasticity rule rj of the
form (αj, k j, nij, nej). The values nij and nej are used as indexes, from nij (start) to nej
(end) for the following vector.

• Plasticity neuron vector PnΠ, of size npr = ∑
j=np
j=1 |Nj|, represents all neuron sets

of plasticity rules. Thus, the elements of Nj are stored, in an ordered way, between
PnΠ[nij] to PnΠ[nej].

• Time vector Tk is used to prevent neurons from applying rules during one step if the
plasticity rule applied was of the type αj ∈ {±,∓}. It contains binary (0 or 1) values.

• Transition matrix is therefore M′k = (RuΠ, Syk, Tk, PrΠ, PnΠ). Note that the Synapse
matrix can be modified at each step, so we use sub-index k.

The following operations have to be performed to reproduce the behavior plasticity
rules (see Figure 7 for an illustration):

1. For each column in the synapse matrix executing a plasticity rule deleting x synapses:

(a) If the intersection of the rule’s neuron set and the current synapses in Syk is
larger than x, then randomly select x synapses.

(b) Loop through the rows (up to zp iterations) to search the selected neurons and
set them to null. Given that holes might appear in the column, its values can
be sorted (or compacted).

2. For each column in the synapse matrix executing a plasticity rule adding x synapses:

(a) If the difference of the rule’s neuron set and the current synapses in Syk is
larger than x, then randomly select x neurons.

(b) Loop through the rows (up to zp iterations) to insert the selected new synapses
while keeping the order.

Checking the applicability of plasticity rules is much simpler than for division rules,
given that the preconditions only affect to the local neuron and we do not need to know if
there are existing synapses. However, for a plasticity rule r in a neuron i, and in order to
create new or delete existing synapses, we need to check which neurons declared in r are
already in the column i in the synapse matrix. This search can be O(zp · nr), being nr the
length of the neuron set in r. Nevertheless, by maintaining always the order in the column,
this search can be done easily in O(zp + nr).

Given that it is not usual to have budding and division rules together with plasticity
rules, the pseudocode is based on the optimized matrix representation for static SNP
systems (and not for division and budding) in Section 3.2. Algorithm 10 shows the re-
definition of INIT_RULE_MATRICES and COMPUTE_NEXT functions, replacing those
from Algorithm 3. For COMPUTE_NEXT, the implementation is very similar to the original
one, but it just call to a new function, PLASTICITY, which actually modify the synapses
of the neuron (by just modifying its corresponding column in the synapse matrix). This
function and its auxiliaries are defined in Algorithms 11 and 12, respectively.
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Figure 7. Illustration of application of a plasticity rule in the synapse matrix with compressed
representation. Light blue cells in the synapse matrix are empty values (0), dark cells are positions
with values greater than 0 (i.e., with neuron label). Two examples are give, in case of adding new
synapses (top) and in case of deleting synapses (bottom). We sort the synapses per column for more
efficiency.

4. Algorithms

In this section we define the algorithms implementing the methods described in
Section 3.

Let us first define a generic function to create a new, empty (all values to 0) vector
of size s as follows: EMPTY_VECTOR(s). In order to create an empty matrix with f
rows and c columns, we will use the following function: EMPTY_MATRIX( f , c). Next,
the pseudocodes for simulating static SNP systems with sparse representation are given.
Algorithm 3 shows the INIT and COMPUTE_NEXT functions, while Algorithm 4 shows
the selection of spiking vectors.

For ELL-based matrix representation for static SNP systems, we need to re-define
only two functions (INIT_RULE_MATRICES and COMPUTE_NEXT) from Algorithm 3
(static SNP systems with sparse representation) as shown in Algorithm 5.

For our optimized matrix representation for static SNP systems, we need to re-
define only two functions (INIT_RULE_MATRICES and COMPUTE_NEXT) from
Algorithm 3 (static SNP systems with sparse representation) as shown in Algorithm 6.
Moreover, the following two lines in the definition of COMBINATIONS function at
Algorithm 4 are required, in order to support a spiking vector of size q:

• Line 13 at Algorithm 4: S ← EMPTY_VECTOR(q)
• Line 22 at Algorithm 4: S′[i] ← j

For dynamic SNP systems with budding and division rules, the following functions
are redefined: INIT functions as in Algorithm 7, APPLICABLE function as in Algorithm 8,
and COMPUTE_NEXT function as in Algorithm 9. The SPIKING_VECTORS function, as
defined in Algorithm 4 and modified in Section 3.2 for optimized matrix representation, is
slightly modified (just two lines) to support the neuron-id map vector as follows:

• Line 6 at Algorithm 4: (_, Qk, PΠ, NΠ) ← Mk
• Line 18 at Algorithm 4: for j ← NΠ[Qk[i]] . . . NΠ[Qk[i] + 1]− 1
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Algorithm 10 Functions for dynamic SNP systems with plasticity rules using optimized
compressed matrix representation.

1: procedure INIT_RULE_MATRICES(Π)
2: (R, m, q, zp, np, npr, pres) ← Π . Get information from Π, zp is different for plasticity.
3: PΠ ← EMPTY_VECTOR(m) . Create preconditions vector
4: RuΠ ← EMPTY_VECTOR(m) . Create rule vector
5: PrΠ ← EMPTY_VECTOR(np) . Create plasticity rule vector
6: PnΠ ← EMPTY_VECTOR(npr) . Create plasticity neuron vector
7: pk ← 1 . Counter for plasticity rule vector
8: ni ← 1 . Counter for plasticity neuron vector
9: for all rj ∈ R, j ← 1 . . . m do . For each rule (column). This loop is parallelizable.

10: if rj = (ij, Ej, cj, pj) then . If spiking rule
11: PΠ[j] ← (Ej, cj) . Store it in precondition vector
12: RuΠ[j] ← (cj, pj) . Store it in rule vector
13: else if rj = (ij, Ej, cj, αj, kj, Nj) then . If plasticity rule
14: PΠ[j] ← (Ej, cj) . Store it in precondition vector
15: RuΠ[j] ← (cj,−pk) . Store it in rule vector
16: PrΠ[pk] ← (αj, kj, ni, ni + |Nj|) . Store it in rule vector
17: PnΠ[ni] ← SORT(Nj) . Sort and store Nj in Pn after position ni
18: pk ← pk + 1
19: ni ← ni + |Nj|
20: end if
21: end for
22: T0 ← EMPTY_VECTOR(q) . Create time vector
23: Sy0 ← EMPTY_MATRIX(zp, q) . Create synapse matrix
24: for all i ← 1 . . . q do . For each neuron (column in synapse matrix)
25: k ← 1 . k is our iterator, compacting the rows
26: for all h ∈ pres(i) do . For each out synapse
27: Sy0[k, i] ← h
28: k ← k + 1 . We know that k ≤ zp
29: end for
30: end for
31: M′0 ← (RuΠ, Sy0, T0, PrΠ, PnΠ) . New transition matrix
32: return (M′0, PΠ)
33: end procedure

34: procedure COMPUTE_NEXT(Ck, Mk, Sk)
35: Ck+1 ← Ck . Create a copy of Ck
36: (M′k, PΠ, NΠ) ← Mk . Get some content of transition tuple
37: (RuΠ, Syk, PrΠ, PnΠ) ← M′k
38: for i ← 1 . . . q do . For each neuron. This loop is parallelizable.
39: j ← Sk[i] . Index of rule to fire in the neuron
40: if j 6= 0∨ Tk[i] = 1 then . Only if there is a rule or blocked neuron
41: (cj, pj) ← RuΠ[j] . Get rule info
42: Ck+1[i] ← Ck+1[i]− cj . Consume spikes in firing neuron
43: if pj > 0 then . If a spiking rule
44: w ← 1
45: while SyΠ[w, i] 6= 0∧ w ≤ zp do . Until an empty value or the maximum
46: h ← SyΠ[w, i] . Get connected neuron by a synapse
47: Ck+1[h] ← Ck+1[h] + pj . Produce spikes in connected neuron
48: w ← w + 1
49: end while
50: else if pj < 0 then . If a plasticity rule
51: (A, t) ← PLASTICITY(Syk[, i],−pj, PrΠ, PnΠ) . Modify only column i
52: Syk[, i] ← A Tk[i] ← t
53: end if
54: end if
55: Tk[i] ← 0 . Reset time vector
56: end for
57: M′k+1 ← (RuΠ, Syk, Tk, PrΠ, PnΠ) . Next transition matrix
58: return (Ck+1, (M′Π, PΠ, NΠ)
59: end procedure
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For dynamic SNP systems with plasticity rules, the pseudocode is based on the
optimized matrix representation for static SNP systems (and not for division and budding)
in Section 3.2. Algorithm 10 shows the re-definition of INIT_RULE_MATRICES and
COMPUTE_NEXT functions, replacing those from Algorithm 3. As for line 17, we assume
that the function SORT exists, which takes a set of neurons, sorts them by id, and generates
a vector. Moreover, we can copy vectors directly from one position by just one assignation.
The new PLASTICITY function is defined in Algorithm 11, and its auxiliaries are defined
in Algorithm 12.

Algorithm 11 Function for plasticity mechanism using optimized compressed matrix
representation.

1: procedure PLASTICITY(Ai, j, PrΠ, PnΠ)
2: (αj, kj, nij, nej) gets PrΠ[j] . Get info of plasticity rule
3: nprj ← nej − nij . Number of neurons in the neuron set
4: Nj ← EMPTY_VECTOR(nprj) . Create a vector with the neuron set
5: for x ← 1 . . . nprj do
6: Nj[x] ← PnΠ[nij + x] . Copy the contents of the neuron set
7: end for
8: t ← 0 . Vale for time vector, only 1 for mp, pm
9: if αj = − then . Delete synapses

10: Ai ← DEL_SYNAPSES(Ai, kj, Nj)
11: else if αj = + then . Add synapses
12: Ai ← ADD_SYNAPSES(Ai, kj, Nj)
13: else if αj = ± then . Add and delete synapses
14: Ai ← ADD_SYNAPSES(Ai, kj, Nj)
15: Ai ← DEL_SYNAPSES(Ai, kj, Nj)
16: t ← 1
17: else if αj = ∓ then . Delete and add synapses
18: Ai ← DEL_SYNAPSES(Ai, kj, Nj)
19: Ai ← ADD_SYNAPSES(Ai, kj, Nj)
20: t ← 1
21: end if
22: return (Ai, t)
23: end procedure

In order to keep Algorithm 12 simple, we assume that the functions INTERSEC, DIFF,
and DELETE_RANDOM are already defined. As mentioned above, INTERSEC and DIFF
can be implemented with algorithms of complexity O(zp + nr), given that the vectors (a
column of synapse matrix and a chunk of plasticity neuron vector) are already sorted. We
also assume that DELETE_RANDOM is a function that randomly select k elements from a
total of n while keeping the order between elements. This can be done with an algorithm
of complexity O(k2).

5. Results

In this section we conduct a complexity analysis (for both time and memory) of
the algorithms. In order to define the formulas, we need to introduce a set of descrip-
tors for a spiking neural P system Π. These are described in Table 1. Moreover, Table 2
summarizes the vectors and matrices employed by each representation, and their corre-
sponding sizes defined according to the descriptors. We use the following short names
for the representations: Sparse (original sparse representation as Section 3), ELL (ELL
compressed representation as in Section 3.1), optimized static (optimized static compressed
representation as in Section 3.2), division and budding (optimized dynamic compressed
representation for division and budding as in Section 3.3.1), and plasticity (optimized
dynamic compressed representation for plasticity as in Section 3.3.2).



Processes 2021, 9, 690 23 of 30

Algorithm 12 Auxiliary functions for plasticity mechanism using optimized compressed
matrix representation.

1: procedure DEL_SYNAPSES(A, k, N)
2: N′ ← INTERSEC(A, N) . Calculate A ∩ N (involved synapses to be deleted)
3: if |N′| > k then . If more than k neurons, select randomly
4: N′ ← DELETE_RANDOM(N′, |N′| − k) . A random set of k neurons
5: end if
6: k ← |N′| . The new amount of synapses to delete
7: w← p← s← 1 . Initialize iterators
8: while w ≤ zp ∧ A[w] 6= 0 do . Loop over the column
9: if A[w] = N′[s] then . Synapse to delete

10: A[w]← 0 . Delete the synapse
11: s← s + 1 . Advance in N′ vector
12: else
13: if p < w then . Need to compact the vector
14: A[p]← A[w] . p is the last compacted position
15: A[w]← 0
16: end if
17: p← p + 1 . Advance the last compacted position p
18: end if
19: w← w + 1
20: end while
21: return A
22: end procedure

23: procedure ADD_SYNAPSES(A, k, N, n)
24: N′ ← DIFF(N, A) . Calculate N \ A (not involved synapses to create)
25: if |N′| > k then . If more than k neurons, select randomly
26: N′ ← DELETE_RANDOM(N′, |N′| − k) . A random set of k neurons
27: end if
28: k ← |N′| . The new amount of synapses to delete
29: B ← EMPTY_VECTOR(zp) . Create the output
30: w← p← s← 1 . Initialize iterators
31: while w ≤ zp ∧ ¬(A[w] = 0∧ s ≤ k) do . Loop over the column
32: if A[w] > N′[s] then . Synapse to add
33: B[p]← N′[s] . Add the synapse
34: s← s + 1
35: else
36: B[p]← A[w] . Keep the synapse
37: w← w + 1
38: end if
39: p← p + 1
40: end while
41: return B
42: end procedure

Table 1. Descriptors of an SNP system.

Descriptor Description

q Number of initial neurons

m Total number of rules

z Number of rows (column size) for optimized matrix representation. Also, maximum out degree of a neuron

z′ Number of rows (column size) for ELL matrix representation. z′ = z + 1

qmax Maximum amount of neurons to handle during simulation for division and budding. q′ ≥ q

zp Number of rows (column size) for optimized matrix representation for plasticity

np Maximum size of a neuron set in plasticity rules.

npr Sum of neuron set sizes of all plasticity rules.

kp Maximum value of k in plasticity rules.
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Table 2. Size of matrices employed in the representations for SNP systems. Those whose name are in bold were used for the
total calculation, which assumes just one spiking vector.

Notation/Name Sparse ELL Optimized Static Division and Budding Plasticity

Ck Configuration Vector q q q qmax q

Sk Spiking vector m m q qmax q

PΠ Preconditions vector 2m 2m 2m 2m 2m

NΠ Neuron-rule map vector q + 1 q + 1 q + 1 q + 1 q + 1

Syk Synapse matrix q · z qmax · z q · zp

RuΠ Rule vector 2m 2m 2m

Qk Neuron-id map vector qmax

PrΠ Rule vector 4m

PnΠ Rule vector npr

Tk Rule vector q

M′Π Transition matrix m · q 2 ·m · z′ q · z + 2m qmax · z + 2m q(zp + 1) + 6m + npr

Mk Transition tuple m · q + 2m + q + 1 m(2z′ + 2) + q + 1 q(z + 1) + 4m + 1 qmax(z + 1) + 4m + q + 1 q(zp + 2)+ 8m+ npr + 1

TOTAL m · q + 3m + 2q + 1 m(2z′ + 3) + 2q + 1 q(z + 3) + 4m + 1 qmax(z + 2) + 4m + 2q + 1 q(zp + 4) + 8m+ npr + 1

According to Table 2, we can limit the value of qmax for dynamic SNP systems with
division and budding with the following formula: qmax = bMT−4m+2q+1

z+2 c, where MT is
the maximum amount of memory in the system (measured in the word size employed to
encode the elements of all the matrices and vectors; e.g., 4 Bytes). Moreover, we can infer
when the matrix representation will be smaller for static SNP systems: ELL is better than
sparse when z < q−2

2 ; optimized is better than ELL when z > q−m
2m−q ; optimized is better

than sparse when z < m− 2. In other words, our optimized compressed representation is
worth when the the maximum out degree of the neurons is less than the total number of
rules minus 2.

For dynamic SNP systems, given can say that a solution to a problem using an
SNP with plasticity rules is better than a solution based on division and budding, if

qmax >
q(zp+2)+4m+npr

z+2 ; in other words, if we can know the maximum amount of neurons
to generate, and this number is greater than a formula based on number of initial neurons,
number of rules, and number of elements in the neuron set and the max out degree, then
the solution will need less memory using plasticity.

Finally, Table 3 shows the order of complexity of each function as defined for each
representation. We can see that COMPUTE_NEXT gets reduced in complexity as well when
using optimized static representation against ELL and sparse, given that we expect that
m ≤ q, and also z < m− 2. However, we can see that implementing division and budding
explodes the complexity of the algorithms, since they need to loop over all the neurons
checking for in-synapses. This also depends on the total amount of generated neurons
in a given step. This is also the case for the generation of spiking vectors, because the
applicability function also needs to loop over all existing neurons. However, for dynamic
networks, plasticity keeps the complexity with the amount of neurons, the value z, and the
descriptors of plasticity rules (max value of k and amount of neurons in a neuron set np).

Table 3. Algorithmic order of complexity of the main functions employed in the simulation loop (i.e., excluding init
functions) for each representation.

Function Sparse ELL Optimized Static Division & Budding Plasticity

APPLICABLE O(1) O(1) O(1) O(qmax · z) O(1)

SPIKING_VECTORS O(m) O(m) O(m) O(m · qmax · z) O(m)

PLASTICITY O(np + k2
p + zp)

COMPUTE_NEXT O(q ·m) O(z′ ·m) O(z · q) O(qmax · z) O(q · (np + k2
p + zp))



Processes 2021, 9, 690 25 of 30

Therefore, we can see that using our compressed representations, both the memory
footprint of the simulators and their complexity are reduced, as long as the maximum out
degree of neurons is a low number. Furthermore, we can see that for dynamic networks,
plasticity is an option that keeps the complexity balanced, since we know in advance the
amount of neurons and synapses.

Let us make an easy example of comparison with an example from the literature. For
example, if we take the SNP system for sorting natural numbers as defined in [42], then we
have that q = 3n, m = n + n2 and z = n, where n is the amount of natural numbers to sort.
Thus:

• The size of the sparse representation is 3n3 + 6n2 + 5n + 1 and the complexity of
COMPUTE_NEXT is O(n3).

• The size of the ELL representation is 2n3 + 7n2 + 11n + 1 and the complexity of
COMPUTE_NEXT is O(n3).

• The size of the optimized representation is 7n2 + 13n + 1 and the complexity of
COMPUTE_NEXT is O(n2).

The optimized representation drastically decreases the order of complexity and
amount of memory spent for the algorithms, going from orders of n3 to n2. ELL has
a similar order of complexity to that of sparse, but the amount of memory is just a bit
decreased. Figure 8 shows that the reduction of the memory footprint achieved with the
compressed representations takes effect after n > 3. Figure 9 shows that the optimized
representation scales better than ELL and sparse. ELL is only a bit better than the sparse
representation, demonstrating the need for using the optimized one, which significantly
scales much better.

Finally, we also analyze a uniform solution to 3SAT with SNP systems without delays
as in [43] (Figure 10). We can see that q = 8n3 + 3n + 3, m = 64n3 + 6n + 3 and z = 8n3,
where n is the amount of variables in the 3SAT instance. We can see that z < m− 3, so our
optimized implementation will be able to save some memory. Therefore:

• The size of the sparse representation is 512n6 + 240n4 + 424n3 + 18n2 + 51n + 25 and
the complexity of COMPUTE_NEXT is O(n6).

• The size of the ELL representation is 1024n6 + 96n4 + 384n3 + 36n + 22 and the com-
plexity of COMPUTE_NEXT is O(n6).

• The size of the optimized representation is 64n6 + 24n4 + 304n3 + 33n + 22 and the
complexity of COMPUTE_NEXT is O(n6).

Figure 8. Memory size of the matrix representation (Y-axis) depending on the amount of natural
numbers (n, X-axis) for the model of natural number sorting in [42], using sparse, ELL and optimized
representation, for only n = 1, 2, 3, 4.
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Figure 9. Memory size of the matrix representation (Y-axis in log scale) depending on the amount of
natural numbers (n, X-axis in log scale) for the model of natural number sorting, using sparse, ELL,
and optimized representation, for 1 ≤ n ≤ 65536.

We can see that the memory footprint is decreased but it is still of the same order
of magnitude (O(n6)), and the same happens with the computing complexity. Thus, our
representation helps to reduce memory, although not significantly for this specific solution.
This is mainly due to having a high value of z. We can see in Figure 10 how the reduction of
memory takes place only for optimized representation as long as n increases. It is interesting
to see that the ELL representation is even worse than just using sparse representation.

Finally, let us analyze the size of the solution uniform solution to subset sum with
plasticity rules in [34]. The descriptors for the matrix representation of a dynamic SNP
system with plasticity rules are the following: q = 4n + 9, m = 5n + 11, npr = 2n, zp = 2,
where n is the number of sets V, therefore, the memory footprint is described as: 66n + 143.
If we were using a sparse representation where the transition matrix is of order m · q, then
the amount of memory is of order O(n2).

Figure 10. Memory size of the matrix representation (Y-axis in log scale) depending on the number
of variables in the SAT formula (1 ≤ n ≤ 256, X-axis in log scale) for the model of 3SAT, using sparse,
ELL, and optimized representation.

6. Conclusions

In this paper, we addressed the problem of having very sparse matrices in the matrix
representation of SNP systems. Usually, the graph defined for an SNP system is not fully
connected, leading to sparse matrices. This drastically downgrades the performance of the
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simulators. However, sparse matrices are a known issue in other disciplines, and efficient
representations have been introduced in the literature. There are even solutions tailored
for parallel architectures such as GPUs.

We propose two efficient compressed representations for SNP systems, one based on
the classic format ELL, and an optimized one based on a combination of CSR and ELL. This
representation gives room to support rules for dynamic networks: division, budding, and
plasticity. The representation for plasticity poses more advantages than the one for division
and budding, since the synapse matrix size can be pre-computed. Thus, no label mapping
nor empty columns to host new neurons are required. Moreover, simulating the creation
of new neurons in parallel can damage the performance of the simulator significantly,
because this operation can be sequential. Plasticity rules do not create new neurons, so this
is avoided.

As future work, we plan to provide implementations of these designs within cuSNP [21]
and P-Lingua [44] frameworks to provide high performance simulations with real examples
from the literature. We believe that these concepts will help to bring efficient tools to
simulate SNP systems on GPUs, enabling the simulation of large networks in parallel.
Specifically, we will use these designs to develop a new framework for automatically
designing SNP systems using genetic algorithms [45]. Another tool that could benefit
from the inclusion of this new type of representation are visual tools for SNP systems [46].
Moreover, our optimized designs will enable the effective usage of spiking neural P systems
on industrial processes such as [47–50], and to optimization applications as [51,52]. SNP
systems have been used in many applications [5], and in order to be used in industrial
applications we need efficient simulators where compressed representations of sparse
matrices can help.

Numerical SNP systems (or NSNP systems) [17,53] are SNP system variants which are
largely dissimilar to many variants of SNP systems, especially to the variants considered
in this paper, for at least two main reasons: (1) rules in NSNP systems do not use regular
expressions, and instead use linear functions, so that rules are applied when certain values
or threshold of the variables in such functions are satisfied, and (2) the variables in the
functions are real-valued, unlike the natural numbers associated with strings and regular
expressions. One of the main goals in [17] for introducing NSNP systems is to create an
SNP system variant, which in a future work may be more feasible for use with training
algorithms in traditional neural networks [53]. For these reasons, we plan to extend our
algorithms and compressed data structures for NSNP systems. We think that simulators
for this variant can be effectively accelerated on GPUs. Specifically, GPUs are devices
designed for floating point operations and not for integer arithmetic, although the latter is
supported.

We also plan to include more models and ingredients into these new methods, such
as delays, weights, dendrites, rules on synapses, and scheduled synapses, among others.
Moreover, a recent work in SNP systems with plasticity shows that having the same set of
rules in all neurons leads to Turing complete algorithms [54]. This means that m descriptor
can be common to all neurons, leading to smaller representations for this kind of systems.
We plan to study this deeper and combine it with our representations. Our aim on focusing
on plasticity is also related to other results involving this ingredient in other fields such as
machine learning [55].
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