
Vol:.(1234567890)

Journal of Membrane Computing (2020) 2:392–402
https://doi.org/10.1007/s41965-020-00056-w

1 3

SURVEY PAPER

Simulation challenges in membrane computing

Luis Valencia‑Cabrera1 · Ignacio Pérez‑Hurtado1 · Miguel Á. Martínez‑del‑Amor1

Received: 22 July 2020 / Accepted: 6 October 2020 / Published online: 31 October 2020
© Springer Nature Singapore Pte Ltd. 2020

Abstract
P system simulators are critical tools to enable them as formal modeling framework for real-life applications. Such simulators
abstract the concept of P systems in various ways, depending on the needs of the users and the requirements of the specific
application. We identify three main levels of abstraction: graphical user interfaces, simulation engines and parallel imple-
mentations. In this paper, we survey the state of the art at these levels and discuss the main challenges under consideration
for future developments.

Keywords Membrane computing · Simulation · P-Lingua · MeCoSim · PMCGPU · Parallelism

1 Introduction

P systems have been used in a wide variety of real-life appli-
cations serving as formal modeling framework [32]. In this
context, simulation tools are essential for the debugging,
analysis and refinement of such models and solutions based
on P systems [31]. Nobody questions nowadays the need for
such software assistants, complementing the tedious process
of manually following computation traces of the designed
P systems. Besides, for problem instances beyond a certain
size, this handmade work is impractical or just unfeasible
[6].

In the literature, we can identify different orientations
when developing P system simulators, which can be identi-
fied as levels of abstractions. That is, how much the syntax
and semantics of the P system being simulated is abstracted
to the end user. In this paper, we will focuse in the follow-
ing ones:

– Graphical user interface (GUI): this level provides the
highest level of abstraction, allowing users to handle cer-
tain scenarios without even realizing the details about the
underlying P system design. GUIs can be used to ease the
process of simulation and modeling with P systems, by
giving the pertinent interfaces for inputs and outputs.

– Simulation engine: this level is the one that handles all
the P system information, both syntactical and semantic.
The behavior of the theoretical model to be simulated
must be reproduced accordingly. Sometimes, this must be
restricted for certain models, but there is a current trend
on providing a flexible framework for simulation.

– Parallel simulation: at this level, not only the semantics of
the P system must be handled, but also the inherent paral-
lelism of these devices must be used efficiently to provide
accelerated simulators. This can be seen as a low-level
abstraction, since one needs to take into account both the
formal details on how the system performs a computa-
tion step as well as the technical details on how P system
rules are going to be simulated in parallel on the avail-
able hardware.

For example, an end-to-end simulation tool like MeCoSim
[30] includes the GUI and simulation levels of abstraction,
P-Lingua [11] involves the simulation level, and PMCGPU
[1] works on the parallel simulation level. Thus, in this
paper, we will focus on the state of the art at these levels
of abstraction and specific tools. We will survey the main
milestones and the current developments, and use this as a
base for further discussion on the challenges that have been

 * Luis Valencia-Cabrera
 lvalencia@us.es

 Ignacio Pérez-Hurtado
 perezh@us.es

 Miguel Á. Martínez-del-Amor
 mdelamor@us.es

1 Research Group on Natural Computing, Department
of Computer Science and Artificial Intelligence, E.T.S.
Ingeniería Informática, Avda. Reina Mercedes S/N,
41012 Sevilla, Spain

http://orcid.org/0000-0002-6576-9529
http://crossmark.crossref.org/dialog/?doi=10.1007/s41965-020-00056-w&domain=pdf

393Simulation challenges in membrane computing

1 3

encountered. These challenges will drive future develop-
ments in this concern.

The paper is structured as follows: Sect. 2 introduces the
state of the art at the three different layers for P system simu-
lation; Sect. 3 discusses the main challenges in each of these
layers; and Sect. 4 ends the paper with some conclusions.

2 Layers of abstraction in simulation

In this section, we will discuss the three layers of abstrac-
tions when simulating P systems, and current solutions in
each one.

2.1 Graphical user interfaces

When a new model is being created by a P system designer,
certain processes can be considerably time-consuming. For
instance, generating different instances for scenarios of
interest and simulating them, while debugging the model.
Additionally, extracting results, generating charts and ana-
lyzing the outputs involves a significant amount of work.
These tasks are common in most of the models, and imply a
huge effort if each scenario of interest requires the manual
encoding of every element by the P system designer. Con-
sequently, it is crucial to have not only tools to parse and
simulate different types of P systems but also tools making
it easier for the modelers to design, debug or create new
scenarios, as well as to automate certain processes to encode
the information of the system.

The aspects just pointed out might be solved with differ-
ent approaches, and the provision of a graphical user inter-
face (GUI) for P system experts to debug, visualize and run
experiments seems a good option to increase their produc-
tivity and potentially reduce the risk of introducing errors
or undesired effects in the solutions and models based on
P systems. Additionally, these graphical interfaces present
a benefit derived from the higher level of abstraction they
provide, in relation to programming environments or com-
mand-line tools. This advantage is the fact that they can hide
many internal aspects of the underlying models, thus open-
ing the possibility for end users, not familiar with P systems,
to have a virtual environment where they simply introduce
their data, load the model, run experiments and receive the
results of their scenarios of interest. Instead of models, con-
figurations, membrane structures, objects or rules, they will
simply observe the behavior of the system under study (in
Biology, Economy, Logics or any other field they are experts
in), focusing on elements of their problem domain.

All in all, the difference between these high-level inter-
faces and the alternative of command-line tools or directly
programming each specific problem and scenario is not in
the problems they solve, but the language they offer to the

user, the point of view they offer. While the latter approach
focuses on the control of the internal details of the systems,
the former one focuses on the problem itself being solved by
the internal system. For example, consider the differences
between R programming through RStudio environment, that
provides the capability to control every detail of the studies
with great flexibility, versus using interfaces like SPSS or
SAS, enabling a number of pre-built functionalities perform-
ing the operations of interest, by simply introducing data
and running the desired studies through the corresponding
buttons or menu options.

In the particular case of P system software tools, the most
widely used framework is P-Lingua [11], covering a num-
ber of P system types and variants with a general-purpose
approach. It provides a standard language for P system speci-
fication, along with pLinguaCore library, including parsing,
debugging and simulation tools. With respect to graphical
user interfaces, within this project, several ad hoc tools were
created for several ecosystem models, and the common pat-
terns in terms of input needs, output requirements, param-
eters handling and communication with P-Lingua were
extracted to plan a new goal: having a customizable visual
interface to be adapted to any possible ecosystem model
based on P systems. This was the origin of the so-called
membrane computing simulator (MeCoSim [30]), provid-
ing high-level features as the ones highlighted above, both
for P system designers (focusing on the internal details of
P systems), and for the end users (taking advantage of the
ready-to-use models and apps as black boxes for their virtual
experiments).

MeCoSim is built on top of P-Lingua framework and pro-
vides general-purpose tools for all the types of P systems
covered by such framework, mostly using its parser and sim-
ulation engines (along with some additional external simula-
tors and tools). On top of those functionalities, it provides
a mechanism to prepare custom apps through a spreadsheet
configuration (an alternative JSON format is also accepted).
In Fig. 1 the main interface of MeCoSim is given in the
background, where the custom apps can be imported. In the
foreground, one of such apps is shown, along with some
charts and graphs obtained from the computation.

This high-level interface abstracts the users from the
simulation engines used. Thus, whenever a P system-based
model is introduced in MeCoSim, using P-Lingua format,
and the input data are provided through input tables, the
environment reads the type of model the solution is based
on, and chooses a default simulator for such model. With
that simulator, the end users run their virtual experiments,
making the system evolve for the number of cycles requested
by the user (or until a halting configuration is reached). This
process is transparent for such end users, simply introducing
data and analyzing the results obtained after the simulation
has finished.

394 L. Valencia-Cabrera et al.

1 3

For more technical users, designing the underlying
models based on P systems, MeCoSim provides debugging
capabilities inherited from P-Lingua, plus some visual aids
making it easier to see how the objects are present inside
each region of the system, as shown in Fig. 2.

Some of the mechanisms enabling these features, as
parsing the models in P-Lingua language or simulat-
ing the behavior of the system (step by step or entirely)
are using pLinguaCore as its engine. As this framework
covers a broad range of P system types and variants, the
proper parsers and simulation engines are automatically

selected depending on the type of model loaded. Then the
visualization of structures and multisets, built as part of
MeCoSim, shows the information based on the type of
P system structure (cell like, tissue like, neuron like or
multi-environment).

Along with these more general mechanisms, other aspects
as the particular encoding of the input of the user as objects
of the P system or the decoding of the objects of the system
into the elements of the problem domain that are meaning-
ful for the end user, are in the essence of MeCoSim. These
aspects are the crucial elements that a designer user defines

Fig. 1 MeCoSim main panel
and custom app

Fig. 2 MeCoSim debugging
facilities: parsing, step-by-step
simulation and visualization

395Simulation challenges in membrane computing

1 3

in the spreadsheet configuration file for a custom app for an
end user: tabs hierarchy to visually arrange the inputs and
outputs, input tables to introduce the data, simulation param-
eters to be generated from the input tables, simulation results
to extract from the results of the computation, and output
tables and charts to visualize such results. With such cus-
tom app configuration file (.xls) and the P-Lingua model file
(.pli) loaded in MeCoSim, any end user not familiar with P
system can simply introduce the desired inputs in the tables,
run the system and observe the outputs. This environment
could be used for the managers in charge of certain problems
our P system-based models are trying to represent, in such a
way that they analyze potential scenarios of interest and get
valuable information for their decision-making processes.

2.2 Simulation engines

As mentioned above, to develop simulators for membrane
computing is absolutely needed to validate the designed
models and provide virtual experiments. We can define a
simulator as a software or hardware tool which is able to
reproduce computations of a given P system, following the
corresponding derivation mode. Usually, a simulator pro-
vides only one branch of computation each time it is exe-
cuted and different simulation modes should be included:
step-by-step simulation, where the simulator provides a trace
of the computation showing the selected rules for each step
of computation, as well as the intermediate configurations.
Another typical simulation mode is to simulate until a halt-
ing configuration.

Regardless of the software/hardware architecture of a
simulator, one common problem to solve is how to define
the P system to be simulated, i.e, the initial membrane
structure, the initial multisets and the initial set of rules.
There are several approaches, one could use a graphical
user interface, as P-Lab (Fig. 3), a prototype designed in
2007 by members of the RGNC that was abandoned before
being published. There are two main problems when defin-
ing P systems using GUIs: one is the dependency on the
current technology; another one is the lack of flexibility.

For example, P-Lab was designed in Java 6, today the
last version of Java is 14 and version 6 is obsolete. A
big effort should be done to update versions and, sadly,
researchers do not have the needed resources and techni-
cal people.

Another approach is to use definition languages, in this
sense, the failure of P-Lab was the origin of P-Lingua.

P-Lingua is a definition language for P systems which
was created in 2008 and it has become a standard in mem-
brane computing. P-Lingua is able to define P systems in a
modular and parametric way. From version 1.0 to 4.0, the
language comes with a library called pLinguaCore which is
responsible to parse P-Lingua files, detect syntax and seman-
tic errors and produce output files in other formats such as
XML and JSON, the output files codify the same P system
given as input, but after the parsing process, i.e., free of
errors. Thus, third-party simulators can use such outputs as
inputs without bothering to check errors. PLinguaCore also
includes a battery of simulators, at least one for each type
of supported P system. The semantics or derivation mode,
i.e., the way in which the rules of a particular P system are

Fig. 3 P-Lab: a prototype to
define P systems using a GUI

396 L. Valencia-Cabrera et al.

1 3

executed, is hard-coded in the corresponding simulator
within the pLinguaCore library. The next example is a tran-
sition P system codified in P-Lingua:

The first line provides a unique identifier for the deriva-
tion mode to be used, only a predefined list of derivation
modes can be used. The next line is the definition of the
main module, in this example, only one module is used, but a
P-Lingua file can include several modules. The @mu instruc-
tion defines the initial membrane structure and the @ms(3)
instruction defines the initial multiset for membrane labeled
3. The rest of the module are rules. The syntax of rules in
P-Lingua tries to be close to the standard scientific notation.

2.3 Parallel implementations

Implementing P system parallelism is a good option to
increase the performance of the simulators. However, the
development of parallel P-system simulators is a challenge
itself. Translating the semantics of these systems into a
simulator is already a non-trivial task. Implementing the
natural parallelism of P systems in more classical parallel
computing platforms, while maintaining the correctness of
the simulated semantics, is a complex but interesting task,
which has received important attention from the community,
and even led to a number of doctoral theses [10, 17, 21].

The increasing need of efficient simulators for P systems,
motivated by the requirements of both real-life applications
and theoretical research, has led to a new research line
within membrane computing focusing on implementing real
parallelism on high-performance computing platforms [33]:
FPGAs1, GPUs, computer networks, big data environments,
etc. In this section, we will focus on the implementation of

P system parallelism on graphics processing units (GPUs),
which turns out to be one of the most explored technologies
for this purpose [22]. The main reason for the popularity
of GPUs on the simulation of P systems is that they offer a
cheap platform, with a high parallel degree, easy to program,
flexible and with a shared-memory environment (required
to efficiently implement the synchronization of the global
clock).

Indeed, after the introduction of CUDA in 2007 [16], sev-
eral parallel simulators for P systems have been developed
and investigated. The main open-source project that gather
these developments is called PMCGPU (parallel simulators
for membrane computing on the GPU) [1, 21]. Some of the
models simulated on the GPU within PMCGPU are the
following:

– PCUDA: P systems with active membranes [6, 22].
– ABCDGPU: population dynamics P systems2 [22, 23, 26,

27].
– PCUDASAT: a family of P systems with active mem-

branes solving SAT problem [5, 7, 22].
– TSPCUDASAT: a family of tissue-like P systems with

cell division solving SAT problem [22, 24].
– ENPS-GPU: enzymatic numerical P systems [12, 22].
– RRT-ENPS-GPU: a family of enzymatic numerical P

systems implementing the RRT/RRT* algorithms [28].
– CuSNP: spiking neural P systems [3, 4].

Many other developments involving the usage of GPUs to
speedup the simulation of P systems can be found in the lit-
erature: extended simulation of P systems with active mem-
branes [19], kernel P systems [8, 14], membrane algorithms
[34], evolution–communication P systems with energy [15],
fuzzy reasoning spiking neural P systems [18], etc.

We can build a taxonomy of these simulators by classify-
ing them by the level of flexibility [20]:

– Generic simulators: they are designed for a P system vari-
ant, accepting any model, or a wide range of them, of that
variant. It receives the description of a P system model
and then simulates one or several computations.

– Specific simulators: they are usually designed for specific
problem solved by a P system model, or sometimes for a
family of them, within a variant. It receives the param-
eters specific of the problem they are designed for, and
compute the result by simulating the model.

– Adaptative simulators: they are slightly enriched generic
simulators, that receive the description of a P sys-
tem model together with some extra information (e.g.,

1 Field-programmable gate arrays, energy-efficient devices with
application in HPC. 2 a.k.a. PDP systems.

397Simulation challenges in membrane computing

1 3

modules of rules, computation stages, etc.) intended to
improve the simulation.

Let us discuss first the usual design of a parallel generic
simulator, as shown in Fig. 4. Here, the simulation of a P
system is controlled by a main loop, with an iteration per
transition step. In every iteration, there are two phases:
selection and execution phases. The former involves visit-
ing all the defined rules in the P system and annotating how
many times each rule is going to be executed (i.e., the num-
ber of selections) in that transition step. The latter actually
performs the execution of the selected rules, by updating
the configuration according to the left-hand (LHS) and the
right-hand (RHS) sides of the executed rules. We need to
store the information of the rules (LHS, RHS, charge, prob-
ability, priority, etc.), and the configuration of the P system
(multisets within each region, charges in membranes, etc.).
The codification of a configuration of the P system is typi-
cally made in an extended way [20]; that is, with an array
using a position per object symbol, saying the number of
copies of each object on each region. Such arrays are usually
very sparse, but they are required to efficiently pinpointing
the objects in the process of rules selection. The GPU ker-
nels implement the semantics of the P system in parallel, by

launching many threads over either the rules or the objects.
Usually, the selection phase is the most complex, and con-
sists of several sub-phases (this is how DCBA algorithm3
[25] for PDP systems [26] works, for instance). Examples
of generic simulators are PCUDA, ABCDGPU, CuSNP and
ENPS-GPU.

In Fig. 5, the scheme of a specific parallel simulator is
shown. Contrary to a generic simulator, where the rules
of the P system to be simulated are not known at develop-
ment time, in the specific case information about rules can
be encoded in its majority inside the source code. For this,
the computation of the specific P system family is usually
divided into stages, where specific rules are known to be
executed. Hence, the kernels are written to reproduce the
behavior of those rules by effectively selecting and execut-
ing them without separated phases. It is very important to
remark that a “fair” specific simulator must reproduce the
execution of the P system rules, so that it should be pos-
sible to infer efficiently the configuration of the P system
at any given step. Otherwise, we will say that the code is
not simulating the P system solving a certain problem, but
it is just solving the problem. Moreover, because of this, it
would be required to just store some objects of the alphabet
in memory, usually in a dense representation; i.e., with a
map associating each object with its multiplicity (only when
it is greater than 0).

Finally, in Ref. [27], a novel idea was introduced: adap-
tative simulators. They are essentially generic simulators
that receive extra, high-level information from the model
designer, along with the P system description. This infor-
mation can be either dismissed (hence, becoming a generic
simulator), or employed (usually to improve the simulation).
Specifically, the first adaptative simulator was based on
ABCDGPU, and the PDP system was given with additional
pieces of information called features. These were used to
say to which module, defined by the algorithmic scheme
of the ecosystem model, each rule belongs to. This is very
useful because one can safely skip visiting many rules that
are known not to be applicable at certain transition steps.
In other words, the model designer is telling the simulator
which range of rules should be visited at every step. This
helped to achieve an extra 2.5× of speedup with a K40 GPU.

Finally, let us stand out that parallel generic simulators
usually assume that the P systems to simulate are confluent4.
This eases drastically the GPU code, because the aim of the
selection of rules is to find any valid output. However, for
systems not required to be confluent (e.g., spiking neural P
systems), the non-determinism has been employed as a new
level parallelism [4].

Fig. 4 Scheme of a parallel generic simulator

Fig. 5 Scheme of a parallel specific simulator

3 DCBA is a simulation algorithm for PDP systems, aiming to
“fairly” distribute the consumption of objects among competing rules.

4 Confluent systems may present different computations for a given
input, but all of them leading to the same output.

398 L. Valencia-Cabrera et al.

1 3

3 Challenges in the simulation of P systems

In this section, we discuss challenges that will drive future
developments of simulation tools for P systems.

3.1 Challenges in graphical user interfaces

The availability of high-level visual interfaces has proved
essential in order to make it easier for P system experts
to debug their models or solutions to certain problems.
Additionally, as clarified in Sect. 2.1, end users interested
in the problems themselves, also take advantage of inter-
faces where they can focus on their scenarios of interest
and perform virtual experiments, abstracting them from
the complexities happening behind the scene.

However, it is not easy to fill the gap between the mode-
ling of complex systems by P systems and the entities of the
real world that the end user view requires. To this purpose,
some mechanisms are needed to convert real-world inputs
into model parameters instantiating a particular P system
inside a family of P systems solving a problem or provid-
ing a model for a case study, and providing the multisets of
objects for a particular input of such P system. Similarly,
the evolution of the P system and its potential results might
be far from the real-world entities understood by the end
user, so a new mechanism is required to translate the details
about configurations and transition steps into meaningful
outputs. Not surprisingly, the input and outputs required
for completely different underlying systems are inherently
different, just as the corresponding problems under study
are. Examples range from SAT problem (where a Boolean
answer is expected for each input formula) to zebra mussel
ecosystem modeling (where one expects graphics show-
ing the population dynamics over time). Consequently, it
is very challenging to abstract those mechanisms with a
general-purpose philosophy, preserving the usability for
the end user but being flexible enough to cover any possible
problem solvable by P systems.

For instance, the approach followed by MeCoSim is
to organize as tabs with tables all the inputs and out-
puts, organizing the way they are displayed and arranged
according to a configuration file of the particular app.
Along with the definition of their names and fields, two
more complex mechanisms are defined: first, a language
to extract the information from the input tables into the
parameters to instantiate the specific P system depending
on the scenario introduced by the end user; and second, a
language to produce specific views, as tables or charts, for
the desired objects, membrane, computation steps, etc. for
each particular view of interest for the end user.

While the first three mechanisms (definition of input
and output tables and generation of simulation parameters)
are relatively easy to implement, the last one is not as

user-friendly as it should, as the variety of possible outputs
a user might be expecting from the system is huge. For this
reason, the approach followed was storing a flattened view
of all the computation steps for each object inside each
region, and defining in the configuration file some simpli-
fied version of a query on a database. While this approach
has proved to be very flexible, there is still much room for
improvement to make it more intuitive for the designers
of the P systems defining the interfaces to be used by the
end users.

3.2 Challenges in simulators

There are several challenges related to the development of
simulators. As mentioned in Sect. 2.2, one of the main mod-
ules for all simulators is the one in charge to define the P
system to be simulated, the definition of a P system can be
divided into two parts: On the one hand, the definition of the
syntactical elements, such as initial structures, initial multi-
sets of objects and initial set of rules; on the other hand, the
definition of the derivation mode or semantics, i.e, the way
in which computations should be generated for the defined
P system. Defining a semantics is a hard task and most of
the current simulators include the semantics in the simula-
tion algorithm, i.e., the simulator can only simulate a fixed
set of types of P systems, a.k.a. variants of P systems. In the
case of P-Lingua for versions 1.0–4.0, the first line of the
P-Lingua file should include an identifier of the variant to
be used. If the variant is not implemented in the source code
of the simulator, the P system definition cannot be used.
This is a lack of flexibility, especially when designers are
interested in playing with experimental variants. There are
several research works introducing how to define the seman-
tics of a P system [9], but until now, there does not exist an
efficient way to implement them. It is an important challenge
currently being addressed by the team of P-Lingua 5, which
is under development. A preliminary version of such ideas
can be found in [29].

Moreover, another important issue in software/hard-
ware simulators is how to simulate the non-determinism,
since computers based on the Von Neumann architecture
are inherently deterministic. Pseudo-random numbers are
usually used, being a well-accepted solution. One particular
case is related to probabilistic models in general, and PDP
systems in particular, where the non-determinism is con-
ducted by multinomial probability distributions. Pseudo-ran-
dom numbers are not actual random numbers, they depend
on a seed which is usually based on the CPU time. Using
a true source of randomness such as a specific hardware
device is an interesting approach to be studied, at least until
true non-deterministic hardware could be designed.

399Simulation challenges in membrane computing

1 3

Furthermore, there are many simulators for P systems that
can be found in the literature [31], each one defined for dif-
ferent variants and models. However, we point out the lack of
uniformity in these developments. The membrane computing
community should make the efforts to simplify this process by
constructing a common environment for P system simulators.
This way, it would decrease the learning curve to both new
developers, designers and end users. The challenge in this con-
cern would be to find a common interface to define P systems
by creating a standard. This involves creating a working com-
mittee to select a candidate (e.g., P-Lingua) and evolving it for
the community. Moreover, a communication protocol between
input interfaces and simulation engines should be also created
and adopted, which should be common for all P system vari-
ants. This protocol will help to integrate all simulators into just
one platform using this standard language. Moreover, it would
be interesting to integrate this idea into a common universal
package for P systems in scientific languages such as Python,
R, C++ or Haskell, so that users can define, simulate, play,
debug and collect results in a programmatic way.

3.3 Challenges in parallel simulators

In this section, we will discuss the main challenges to solve
in future developments concerning the parallel simulation
of P systems. We will not discuss the simulation of new P
system models and applications, given that their wide range
cannot be summarized in this paper. Thus, we will discuss
how to improve the design of parallel simulators, requiring
efforts in both sides: from the design of P system models to
the improvement of the simulator source codes.

Simulating P systems is a memory-demanding task, given
that the execution of rules requires several accesses to mem-
ory for just one conditional operation:

– Computation: check how many times the LHS can be
consumed, if it can be done more than once, and check
whether there are or not conflicts with other rules accord-
ing to the semantics.

– Memory accesses: memory reads to know the multiplici-
ties of the objects in the LHS, and memory writes to
consume the LHS and produce the RHS are a non-com-
putationally intensive task for threads.

Because of this, the GPU simulators are memory-bandwidth
bounded [21]. That is, they spend more time accessing and
updating data (multisets) than executing computation. In this
sense, one challenge is to design P system variants where
the model contains a higher computational intensity; in
other words, the rules perform more computation other than
rewriting the multisets [13]. Moreover, memory accesses can
be partially reduced by improving data structures using a
compacted, dense and well-ordered memory representation

of P systems. In [20], it was shown that specific simula-
tors already take advantage of knowing which objects can
appear at certain steps, so that large arrays are not required
to represent all objects defined in the alphabet. The latter can
lead to very sparse arrays that all full of zeroes, which will
lead to useless threads accessing to empty positions. This is
usually worsened when the models use objects as counters,
where the counter is a subindex of the object type (e.g., O

i
 ,

for i = 1.1000); however, they are all different objects to be
represented in the arrays.

Another bottleneck in the simulators are the selection
phases. Here, rule competitions for the objects have to be
sorted out. A P system model with cooperation in the LHS
usually leads to this issue, making it more difficult when the
cooperation is larger. While many assumptions are taken in
theory when designing P systems, considering that the selec-
tion of rules can be made non deterministically, in practice
rules have to make an agreement within the simulators. This
sometimes requires extra phases to control maximality, what
can be ensured only by a sequential method (a loop over
the remaining rules). Hence, a challenge is to find efficient
ways to lightweight the selection phase when rule competi-
tion takes place. This can be done from two points of view:
from the simulator, applying extra effort to pre-compute the
real competitions to reduce the selection time; and from the
model, to what extend models with no cooperation or even
with minimal cooperation can have enough power for certain
problems such as ecological modelng.

Specific simulators are much more efficient than their
generic counterparts [22] given that most of the informa-
tion of the P system to be simulated is known at development
time. Hence, the programmer writes the simulator source
code bearing in mind the P system model/family. On the
other side, generic simulators know the P system to simu-
late at run time, hence wasting many resources to tackle
worst-case scenarios. However, a challenge is to move the
knowledge of the P system from development to compilation
time. That is, using meta-programming [2], to generate the
source code of a simulator from a specific P system model/
family. New achievements in P-Lingua will open that way
[29], but there is a long way to go.

Finally, another challenge is to find ways to extend the
idea of adaptative simulators [27]. They can be used also to
reduce the complexity of simulators when selecting rules
in solutions to, for example, the SAT problem, if the stages
of the computation can be encoded along with the P system
description. Moreover, objects can be annotated somehow
to declare that they are “counters”5, and hence, only one of

5 We say that a collection of objects a
i
 is being used as a counter if

the role of the index i is just counting steps (typically the rules associ-
ated are of the type a

i
→ a

i+1
.

400 L. Valencia-Cabrera et al.

1 3

them will appear at each instant, so there is no need to pro-
vide a position for each one in the array for multisets (i.e.,
merging sparse with dense representations).

4 Conclusions for future work

In this paper, we have surveyed the simulation of P systems
from a new point of view, which is by abstraction levels.
These are: graphical user interfaces for specific problems,
simulation engines for a variety of semantics with similar
syntax, parallelism implementation using GPUs for specific
and different variants. Current developments on each level
are presented, surveying in this way the state of the art. This
has served as the baseline for further discussions concerning
challenges for future research. In this way, we have shown
the main topics that will drive the next generation of simula-
tion tools for P systems and its applications, such as: transla-
tion of real-world inputs into model parameters, definition of
P system semantics, and meta-programming for instantiating
parallel simulators.

Acknowledgements This work was supported by the research pro-
ject TIN2017-89842-P (MABICAP), co-financed by Ministerio de
Economía, Industria y Competitividad (MINECO) of Spain, through
the Agencia Estatal de Investigación (AEI), and by Fondo Europeo de
Desarrollo Regional (FEDER) of the European Union.

Compliance with ethical standards

 Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. The PMCGPU (parallel simulators for membrane computing
on the GPU) project website. http://sourc eforg e.net/p/pmcgp u.
Accessed Feb 2020.

 2. Abrahams, D., & Gurtovoy, A. (2005). C++ template metapro-
gramming. Boston: Addison-Wesley.

 3. Carandang, J., Villaflores, J., Cabarle, F.G.C., Adorna, H.N.,
& Martínez-del-Amor, M.A. (2017). CuSNP: Spiking neural P
systems simulators in CUDA. Romanian Journal of Information
Science and Technology 20(1), 57–70. https ://www.imt.ro/romji
st/Volum 20/Numbe r20_1/cupri ns20_1.htm.

 4. Carandang, J. P., Cabarle, F. G., Adorna, H. N., Hernandez, Hope
S. N., & Martínez-del-Amor, M. A. (2019). Handling non-deter-
minism in spiking neural P systems: algorithms and simulations.
Fundamenta Informaticae, 164, 139–155. https ://doi.org/10.3233/
FI-2019-1759.

 5. Cecilia, J. M., García, J. M., Guerrero, G. D., Martínez-del-Amor,
M. A., Pérez-Hurtado, I., & Pérez-Jiménez, M. J. (2010). Simu-
lating a P system based efficient solution to SAT by using GPUs.
Journal of Logic and Algebraic Programming, 79(6), 317–325.
https ://doi.org/10.1016/j.jlap.2010.03.008.

 6. Cecilia, J. M., García, J. M., Guerrero, G. D., Martínez-del-Amor,
M. A., Pérez-Hurtado, I., & Pérez-Jiménez, M. J. (2010). Simu-
lation of P systems with active membranes on CUDA. Briefings
in Bioinformatics, 11(3), 313–322. https ://doi.org/10.1093/bib/
bbp06 4.

 7. Cecilia, J. M., García, J. M., Guerrero, G. D., Martínez-del-Amor,
M. A., Pérez-Jiménez, M. J., & Ujaldón, M. (2012). The GPU
on the simulation of cellular computing models. Soft Computing,
16(2), 231–246. https ://doi.org/10.1007/s0050 0-011-0716-1.

 8. Elkhani, N., Muniyandi, R. C., & Zhang, G. (2018). Multi-objec-
tive binary PSO with kernel P system on GPU. International Jour-
nal of Computers Communications and Control, 13, 323–336.
https ://doi.org/10.15837 /ijccc .2018.3.3282.

 9. Freund, R., Pérez-Hurtado, I., Riscos-Núñez, A., & Verlan, S.
(2013). A formalization of membrane systems with dynami-
cally evolving structures. International Journal of Computer
Mathematics, 90(4), 801–815. https ://doi.org/10.1080/00207
160.2012.74889 9.

 10. García-Quismondo, M. (2014). Modelling and simulation of real-
life phenomena in membrane computing. PhD Thesis. Universidad
de Sevilla. 2014. https ://idus.us.es/handl e/11441 /66147 .

 11. García-Quismondo, M., Gutiérrez-Escudero, R., Martínez-del-
Amor, M., Orejuela-Pinedo, E., & Pérez-Hurtado, I. (2009).
P-lingua 2.0: a software framework for cell-like P systems. Inter-
national Journal of Computers, Communications and Control,
4(3), 234–243. https ://doi.org/10.15837 /ijccc .2009.3.2431.

 12. García-Quismondo, M., Macías-Ramos, L. F., & Pérez-Jiménez,
M. J. (2013). Implementing enzymatic numerical P systems for AI
applications by means of graphic processing units (pp. 137–159).
Berlin: Springer. https ://doi.org/10.1007/978-3-642-34422 -0_10.

 13. Henderson, A., & Nicolescu, R. (2019). Actor-like cP systems.
In T. Hinze, G. Rozenberg, A. Salomaa, & C. Zandron (Eds.),
Membrane computing (pp. 160–187). Lecture notes in computer
science. Cham: Springer International Publishing.

 14. Ipate, F., Lefticaru, R., Mierlă, L., Valencia-Cabrera, L., Han,
H., Zhang, G., Dragomir, C., Pérez-Jiménez, M., & Gheorghe,
M. (2013). Kernel P systems: applications and implementations.
In Proc. 8th int. conf. on bio-inspired computing: theories and
applications, Advances in intelligent systems and computing (vol.
2012, pp. 1081–1089).

 15. Juayong, R., Cabarle, F. G., Adorna, H. N., Martínez-del-Amor,
M. A.. (2012). On the simulations of Evolution-Communication
P systems with Energy without antiport rules for GPUs. In 10th
Brainstorming Week on Membrane Computing, BWMC12, Seville,
Spain, February 2012, Proceedings (vol. I, pp. 267–290).

 16. Kirk, D.B., & Hwu, W.W. (2016). Programming massively paral-
lel processors: a hands-on approach, 3rd edn. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc. https ://www.scien cedir
ect.com/scien ce/book/97801 28119 860.

 17. Macías-Ramos, L. (2016). Developing efficient simulators for cell
machines. PhD Thesis. Universidad de Sevilla. 2016. https ://idus.
us.es/handl e/11441 /36828 .

 18. Macías-Ramos, L. F., Martínez-del-Amor, M. A., & Pérez-Jimé-
nez, M. J. (2015). Simulating FRSN P systems with real numbers
in P-Lingua on sequential and CUDA platforms. In G. Rozenberg,
A. Salomaa, J. M. Sempere, & C. Zandron (Eds.), Membrane com-
puting (pp. 262–276). Cham: Springer International Publishing.

 19. Maroosi, A., Muniyandi, R. C., Sundararajan, E., & Zin, A. M.
(2014). Parallel and distributed computing models on a graphics
processing unit to accelerate simulation of membrane systems.
Simulation Modelling Practice and Theory, 47, 60–78. https ://
doi.org/10.1016/j.simpa t.2014.05.005.

 20. Martínez-del-Amor, M., Orellana-Martín, D., Pérez-Hurtado,
I., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-Jiménez,
M.J. (2019). Design of specific P systems simulators on GPUs.
In: T. Hinze, G. Rozenberg, A. Salomaa, C. Zandron (Eds.),

http://sourceforge.net/p/pmcgpu
https://www.imt.ro/romjist/Volum20/Number20_1/cuprins20_1.htm
https://www.imt.ro/romjist/Volum20/Number20_1/cuprins20_1.htm
https://doi.org/10.3233/FI-2019-1759
https://doi.org/10.3233/FI-2019-1759
https://doi.org/10.1016/j.jlap.2010.03.008
https://doi.org/10.1093/bib/bbp064
https://doi.org/10.1093/bib/bbp064
https://doi.org/10.1007/s00500-011-0716-1
https://doi.org/10.15837/ijccc.2018.3.3282
https://doi.org/10.1080/00207160.2012.748899
https://doi.org/10.1080/00207160.2012.748899
https://idus.us.es/handle/11441/66147
https://doi.org/10.15837/ijccc.2009.3.2431
https://doi.org/10.1007/978-3-642-34422-0_10
https://www.sciencedirect.com/science/book/9780128119860
https://www.sciencedirect.com/science/book/9780128119860
https://idus.us.es/handle/11441/36828
https://idus.us.es/handle/11441/36828
https://doi.org/10.1016/j.simpat.2014.05.005
https://doi.org/10.1016/j.simpat.2014.05.005

401Simulation challenges in membrane computing

1 3

Membrane computing (vol. 11399, pp. 202–207). Lecture notes
in computer science. Springer International Publishing. https ://
doi.org/10.1007/978-3-030-12797 -8_14.

 21. Martínez-del-Amor, M.A. (2013). Accelerating membrane sys-
tems simulators using high performance computing with GPU.
PhD Thesis. Universidad de Sevilla. 2013. https ://idus.us.es/handl
e/11441 /15644 .

 22. Martínez-del-Amor, M. A., García-Quismondo, M., Macías-
Ramos, L. F., Valencia-Cabrera, L., Riscos-Núñez, A., & Pérez-
Jiménez, M. J. (2015). Simulating P systems on GPU devices: a
survey. Fundamenta Informaticae, 136(3), 269–284. https ://doi.
org/10.3233/FI-2015-1157.

 23. Martínez-del-Amor, M. A., Macías-Ramos, L. F., Valencia-
Cabrera, L., & Pérez-Jiménez, M. J. (2015). Parallel simulation
of population dynamics P systems: updates and roadmap. Natu-
ral Computing, 15(4), 565–573. https ://doi.org/10.1007/s1104
7-016-9566-1.

 24. Martínez-del-Amor, M.A., Pérez-Carrasco, J., & Pérez-Jiménez,
M.J. (2013). Characterizing the parallel simulation of P systems
on the GPU. International Journal of Unconventional Comput-
ing 9(5-6), 405–424. https ://www.oldci typub lishi ng.com/journ als/
ijuc-home/ijuc-issue -conte nts/ijuc-volum e-9-numbe r-5-6-2013/.

 25. Martínez-del-Amor, M.A., Pérez-Hurtado, I., García-Quismondo,
M., Macías-Ramos, L.F., Valencia-Cabrera, L., Romero-Jimé-
nez, Á., Graciani-Díaz, C., Riscos-Núñez, A., Colomer, M.A.,
& Pérez-Jiménez, M.J. (2012). DCBA: simulating population
dynamics P systems with proportional object distribution. In 13th
International conference on membrane computing (CMC13), pp.
291–310. http://www.sztak i.hu/tcs/proba /cmc13 /CMC13 -proce
eding s.pdf.

 26. Martínez-del-Amor, M.A., Pérez-Hurtado, I., Gastalver-Rubio, A.,
Elster, A.C., & Pérez-Jiménez, M.J. (2012). Population dynamics
P systems on CUDA. In D. Gilbert, M. Heiner (Eds.) Compu-
tational methods in systems biology (vol. 7605, pp. 247–266).
Lecture notes in computer science. Berlin: Springer. https ://doi.
org/10.1007/978-3-642-33636 -2_15.

 27. Martínez-del-Amor, M. A., Pérez-Hurtado, I., Orellana-Martín,
D., & Pérez-Jiménez, M. J. (2020). Adaptative parallel simula-
tors for bioinspired computing models. Future Generation Com-
puter Systems, 107, 469–484. https ://doi.org/10.1016/j.futur
e.2020.02.012.

 28. Pérez-Hurtado, I., Martínez-del-Amor, M. A., Zhang, G., Neri,
F., & Pérez-Jiménez, M. J. (2020). A membrane parallel rapidly-
exploring random tree algorithm for robotic motion planning.
Integrated Computer-Aided Engineering, 27(2), 121–138. https
://doi.org/10.3233/ICA-19061 6.

 29. Pérez-Hurtado, I., Orellana-Martín, D., Zhang, G., & Pérez-
Jiménez, M. J. (2019). P-Lingua in two steps: flexibility and effi-
ciency. Journal of Membrane Computing, 1(2), 93–102. https ://
doi.org/10.1007/s4196 5-019-00014 -1.

 30. Pérez-Hurtado, I., Valencia-Cabrera, L., Pérez-Jiménez, M.J.,
Colomer, M.A., & Riscos-Núñez, A. (2010). MeCoSim: a gen-
eral purpose software tool for simulating biological phenomena
by means of P systems. In IEEE fifth international conference on
bio-inpired computing: theories and applications (BIC-TA 2010),
vol. I, pp. 637–643.

 31. Valencia-Cabrera, L., Orellana-Martín, D., Martínez-del-Amor,
M. Á., & Pérez-Jiménez, M. J. (2019). An interactive timeline of
simulators in membrane computing. Journal of Membrane Com-
puting, 1(3), 209–222. https ://doi.org/10.1007/s4196 5-019-00016
-z.

 32. Zhang, G., Pérez-Jiménez, M., & Gheorghe, M. (2017). Real-life
applications with membrane computing. Berlin: Springer. https ://
doi.org/10.1007/978-3-319-55989 -6.

 33. Zhang, G., Shang, Z., Verlan, S., del Amor, M.M., Yuan, C.,
Valencia-Cabrera, L., & Pérez-Jiménez, M. (2020). An overview

of hardware implementation of membrane computing models.
ACM Computing Surveys (Accepted).

 34. Zhang, X., Wang, B., Ding, Z., Tang, J., & He, J. (2014). Imple-
mentation of membrane algorithms on GPU. Journal of Applied
Mathematics,. https ://doi.org/10.1155/2014/30761 7.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Luis Valencia‑Cabrera finished his
BSc degree in Computer Engi-
neering in 2005, Advanced stud-
ies diploma in 2011, MSc in
Logics, Computing and Artificial
Intelligence in 2013, and Ph.D.
in 2015 (Ph.D. Extraordinary
Award), in Universidad de
Sevilla (Spain). He worked in IT
Consulting from 2005 to 2010,
obtained a Prof. MSc in Devel-
opment of Enterprise Applica-
tions JEE in 2007, and official
certifications by IFPUG (CFPS,
2006) and Oracle (SCJP,
SCWCD, SCBCD, 2008). In

2017–2018, he worked in Natural Language Processing, getting 1st
prize in category “General Corpus” in II Hackathon of Natural Lan-
guage Technologies (Ministry of Economy and Enterprises of Spain,
2018). He is an Assistant Professor (certified by ANECA to Associate
Professor) in the Dept. of Computer Science and AI (University of
Sevilla, Spain). He joined the department in 2011 (from 2010, he
belongs to Research Group on Natural Computing). He has supervised
many final BSc/MSc final projects, and 2 PhD theses. His main
research interests are modeling and simulation of complex systems,
natural computing, membrane computing, theoretical computer sci-
ence, and software engineering. His publications include 36 papers in
ISI-JCR-indexed journals, plus other papers in journals, book chapters,
invited talks and conference communications, totalling more than 100
scientific publications. He has been involved in more than 10 research
projects at regional, national and international levels. He has partici-
pated in the organization of a dozen international conferences, and in
the edition of the volumes of such conferences.

Ignacio Pérez‑Hurtado received
his M.S. (2003) in Computer
Engineering at Univ. of Seville
(Spain). After that, he was work-
ing for 4 years as analyst in a
software company. He received
his Ph.D. (2010) in Computer
Science and Artificial Intelli-
gence at Univ. of Seville (Spain).
In his dissertation, carried out at
the Research Group on Natural
Computing (Univ. Seville), he
developed the programming lan-
guage for Membrane Computing
P-Lingua. From 2011 to 2014, he
worked as researcher in the

Group on Natural Computing applying the P-Lingua framework to the
simulation of real-life ecosystems. From 2014 to 2017, he received a
"Juan de la Cierva" postdoctoral grant, working in the University Pablo
de Olavide under several European projects related to social robotics.
He is currently an interim lecturer at the University of Seville. His main

https://doi.org/10.1007/978-3-030-12797-8_14
https://doi.org/10.1007/978-3-030-12797-8_14
https://idus.us.es/handle/11441/15644
https://idus.us.es/handle/11441/15644
https://doi.org/10.3233/FI-2015-1157
https://doi.org/10.3233/FI-2015-1157
https://doi.org/10.1007/s11047-016-9566-1
https://doi.org/10.1007/s11047-016-9566-1
https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-5-6-2013/
https://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-9-number-5-6-2013/
http://www.sztaki.hu/tcs/proba/cmc13/CMC13-proceedings.pdf
http://www.sztaki.hu/tcs/proba/cmc13/CMC13-proceedings.pdf
https://doi.org/10.1007/978-3-642-33636-2_15
https://doi.org/10.1007/978-3-642-33636-2_15
https://doi.org/10.1016/j.future.2020.02.012
https://doi.org/10.1016/j.future.2020.02.012
https://doi.org/10.3233/ICA-190616
https://doi.org/10.3233/ICA-190616
https://doi.org/10.1007/s41965-019-00014-1
https://doi.org/10.1007/s41965-019-00014-1
https://doi.org/10.1007/s41965-019-00016-z
https://doi.org/10.1007/s41965-019-00016-z
https://doi.org/10.1007/978-3-319-55989-6
https://doi.org/10.1007/978-3-319-55989-6
https://doi.org/10.1155/2014/307617

402 L. Valencia-Cabrera et al.

1 3

research interests are related to P system simulators, programming lan-
guages and algorithms for social navigation in robotics.

Miguel Á. Martínez‑del‑Amor
received his Ph.D. (2013) in
Computer Science and Artificial
Intelligence at University of
Seville (Spain), and his M.S.
(2008) in Computer Engineering
at University of Murcia (Spain).
In his dissertation, carried out at
the Research Group on Natural
Computing (University of
Seville), he developed parallel
simulators for bio-inspired mod-
els of computation using GPUs.
From 2014 to 2017, he worked
first as an ERCIM fellow, and
later as research associate, at the

Moving Picture Technologies Department of Fraunhofer IIS (Germany)
where he was involved in the standardization of JPEGXS format, paral-
lelization of JPEG2000 codecs with GPUs, and Deep Learning applica-
tions in Digital Cinema. Since August 2017, he is an assistant professor
at the University of Seville. His main research interest is on the inter-
play between parallel computing, bio-inspired computing and machine
learning. In 2018, he was nominated university Ambassador by the
NVIDIA Deep Learning Institute. He has co-authored 37 papers in
scientific journals (29 in JCR-indexed journals), more than 52 contribu-
tions to conferences, and participated in 9 patents concerning image
compression techniques.

	Simulation challenges in membrane computing
	Abstract
	1 Introduction
	2 Layers of abstraction in simulation
	2.1 Graphical user interfaces
	2.2 Simulation engines
	2.3 Parallel implementations

	3 Challenges in the simulation of P systems
	3.1 Challenges in graphical user interfaces
	3.2 Challenges in simulators
	3.3 Challenges in parallel simulators

	4 Conclusions for future work
	Acknowledgements
	References

