
P-Lingua Compiler: A Tool for Generating

Ad-hoc Simulators in Membrane Computing

Ignacio Pérez-Hurtado1, David Orellana-Mart́ın1,
Gexiang Zhang2, and Mario J. Pérez-Jiménez1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Seville, Seville, Spain
{perezh,dorellana,marper}@us.es
2 School of Electrical Engineering

Southwest Jiaotong University, Chengdu, Shichuan, China
zhgxdylan@126.com

Abstract. Since the beginnings of membrane computing, software and
hardware tools have been implemented for simulating computations of
the proposed models. Some of these simulators are relatively generic,
providing enough flexibility for a wide variety of models and others are
ad-hoc simulators that reproduce computations of a single design that
has been hard-coded or computations of a single type of model. On the
one hand, generic tools are excellent assistants for the researchers while
verifying their designs. On the other hand, the efficiency of specific tools
in terms of simulation performance for a given design sacrifices the flexi-
bility of the previous ones. In this paper, it is presented for the first time
a tool that breaks this duality, we have implemented a compiler which
receives as input the definition of a design in the P-Lingua language and
produces as output source code in the C++ language for an ad-hoc sim-
ulator that has been optimized for the input design. The objective of
this work is twofold: On the one hand, we have extended the P-Lingua
framework to include some semantic features concerning to the models,
such as rule patterns and derivation modes, that can be written in an
explicit manner within their own file. On the other hand, we have de-
veloped a GNU GPLv3 command-line tool for Linux which works in the
same manner as conventional compilers. Finally, we include in this paper
a few examples for different types of cell-like and tissue-like models.

1 Introduction

Membrane computing is an unconventional model of computation within natural
computing that was introduced in 1998 by Gh. Păun [17]. The computational
devices in membrane computing, also known as P systems, are non-deterministic
theoretical machines inspired on the biochemical processes that take place inside
the compartments of living cells.

Several kinds of P systems coexist, each of them having different syntactic
ingredients, such as different alphabets and structures. The two most studied are

148

cell-like membrane systems, characterized by their rooted tree structure, where
membranes act as filters that let certain elements to pass through them [17],
and membrane systems structured as directed graphs, representing the com-
munication between cells within a tissue of a living being, called tissue-like P
systems [9] or between neurons in a brain, called spiking neural P systems [7].
The interchange of objects between the different compartments is defined by the
rules of the system, that together with the corresponding semantics, mark the
functioning of the system.

A configuration of a P system is defined by the structure of the compart-
ments at a certain moment, and the elements (being usually objects, although
other kinds of elements can be considered, as strings, catalysts [17] and anti-
matter [14], among others) contained in each compartment, as well as other
characteristics from specific types of P systems, providing a snapshot of the sys-
tem at an instant t. By using the rules specified in a model, we can make its
objects change, both evolving and moving between the different compartments
(membranes in the case of cell-like P systems and cells in the case of tissue-like
P systems).

On the one hand, in P systems with active membranes [19], both objects
and membranes change through the application of evolution, communication,
division, separation, creation and dissolution. In this framework, membranes
can have a polarization associated to each membrane. On the other hand, in
tissue P systems [9], symport/antiport rules are devoted to make objects move
from a cell to another cell or to the environment (a special compartment where
there exist an arbitrary number of objects of an alphabet defined a priori), while
division and separation rules allow an exponential growth in linear time.

We say that a configuration Ct yields to a configuration Ct+1 if, by applying
the rules specified in the model according to its semantics, we can obtain Ct+1

from Ct. Semantics rules the behavior of the system, determining which rules
can be applied and how they affect the system according to a global clock. A
computation of a P system is a (finite or infinite) sequence of instantaneous
configurations.

We consider a family (or model) of P systems as the definition of a type of
P system, that is, its syntax and semantics. According to the specification of a
particular family of P systems, we consider a (specific) model as the definition
of an individual P system, that is, its working alphabet, initial membrane struc-
ture with initial multisets of objects and the set of rewriting rules with another
characteristics of the correspondent family. By the definition of the family, we
can interpret the structure and behavior of a specific model within that family.

Membrane computing is a very flexible framework where different types of
devices can be outlined. In fact, the intersection between Membrane Computing
and other fields, such as engineering [20], biology [23] and ecology [2], as well as
a long list of other scientific lines [5, 13, 24], has generated necessities that could
only be filled by the creation of new kinds of P systems, expanding the scope of
researchers in this area. For an exhaustive explanation of the different types of
P systems, we refer the reader to [18] and [16].

149

Software and hardware simulators have been implemented from the begin-
nings of membrane computing. Some of these are very generic and flexible. On
the other hand, we define an ad-hoc simulator as a simulator for one and on-
ly one membrane computing design which has been hard-coded. Such tools are
usually the faster simulators since they can be optimized for the input design
and the hardware to be used. But the hard-coding process requires an excellent
knowledge of the hardware architecture, as well as the design to be implemented.
Debugging should be always critical and the results are not very reusable.

In this work, we have extended the P-Lingua framework [6, 25] to include
semantic features concerning to the models. On the other hand, we have imple-
mented a GNU GPLv3 command-line tool to compile P-Lingua input files to
ad-hoc source code in C++. The output files are optimized for the input designs
and all the process can be automatized by using makefiles, i.e.,files which specify
how to derive the target program.

The paper is structured as follows: In the next section, some preliminaries
concepts about P-Lingua are introduced. In Section 3, we propose an extension
for the P-Lingua language to directly define model constraints in the own P-
Lingua files, providing a more flexible and experimental framework. The next
Section is devoted to the new GNU GPLv3 software tool to compile the input P-
Lingua files and generate source code in C++, as well as JSON code codifying the
input designs for third-party applications. Section 5 introduces the simulation
algorithm used in the generated simulators. In Section 6 some examples of the
new P-Lingua extension are introduced. Finally, some conclusions and future
work are drawn.

2 Preliminaries

P-Lingua [6, 25] is a software framework that includes a definition language for P
systems (also called P-Lingua) and a GNU GPLv3 Java library (pLinguaCore)
that is able to parse P-Lingua files and simulate computations. The library
contains three main components:

– A parser for reading input files in P-Lingua format and checking syntactic
and semantic constraints related to predefined models. In order to achieve
this, the first line of a P-Lingua file should include a P system model dec-
laration by using an unique identifier. There are several P system models
that can be used, each one with its own identifier, such as transition,
membrane division, tissue psystems, and probabilistic. The analysis
of semantic ingredients, such as rule patterns, is hard-coded for each model.
Several versions of pLinguaCore [6, 8, 10, 21] have been launched to cover
different types of models.

– For each type of model, the pLinguaCore library includes one or more built-
in simulators, each one implementing a different simulation algorithm. For
instance, Population Dynamic P systems [1] (probabilistic identifier in
P-Lingua) can be simulated within the library by applying three different

150

algorithms: BBB, DNDP, and DCBA [3, 11]. Remarkable software projects such
as MeCoSim (Membrane Computing Simulator) [27, 22] use the simulators
integrated in the library to perform P system computations and generate
relevant information as result for custom applications.

– Alternatively, the pLinguaCore library is able to transform the input P-
Lingua files to other formats such as XML or binary format in order to feed
external simulators. The generated files for the given P systems are free of
syntactic/semantic errors since the transformation is done after the parser
analysis. Several external simulators use this feature, for example, the PM-
CGPU project (Parallel simulators for membrane computing on GPU) [12,
26] uses definitions generated by pLinguaCore in order to provide the input
of CUDA GPU simulators.

The P-Lingua language is currently a standard widely used for the scientific
community since the syntax is modular, parametric and close to the common
scientific notation. The description of the language can be found in the refer-
ences [6, 8, 10, 21, 25]. As an example, the definition of a basic transition P system
follows:

@model<transition>

def main()

{

@mu = [[[]’3 []’4]’2]’1;

@ms(3) = a,f;

[a --> a,bp]’3;

[a --> bp,@d]’3;

[f --> f*2]’3;

[bp --> b]’2;

[b []’4 --> b [c]’4]’2;

(1) [f*2 --> f]’2;

(2) [f --> a,@d]’2;

}

In the example, a module main is defined including an initial membrane
structure [[]3 []4]2]1, an initial multiset for the membrane labelled 3, and
a set of seven multiset rewriting rules. The special symbol @d is used to specify
dissolution. The last two rules include priorities as integer numbers in parenthesis
at the beginning of the left-hand side of the rules. More complex examples can
be found in the P-Lingua web [25].

3 An extension of P-Lingua for semantic features

As explained above, the analysis of semantic ingredients belonging to P systems
is hard-coded in the pLinguaCore library, i.e, the only way to define new types of

151

models is by implementing code inside the library. In this section, we propose an
extension for the P-Lingua language to directly define model constraints in the
own P-Lingua files, providing a more flexible and experimental framework. Two
types of semantic constraints can be defined with this extension: rule patterns

and derivation modes.

3.1 Rule patterns

The P-Lingua parser is able to recognize rules with the next general syntax:

p

u[v1[v1,1]
α1,1

h1,1
. . . [v1,m1]

α1,m1

h1,m1
]α1

h1
. . . [vn[vn,1]

αn,1

hn,1
. . . [vn,mn

]
αn,mn

hn,mn
]αn

hn

q
−→ or

q
←→

w0[w1[w1,1]
β1,1
g1,1

. . . [w1,r1]
β1,r1
g1,r1

]β1
g1

. . . [ws[ws,1]
βs,1
gs,1

. . . [ws,rs]
βs,rs
gs,rs

]βs

gs

where:

– p is a priority related to the rule given by a natural number, where a lower
number means a higher rule priority.

– q is a probability related to the rule given by a real number in [0, 1].
– αi,αi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi and βi,βi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ ri are electrical

charges.
– hi, hi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi and gi, gi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ ri are

membrane labels.
– u, vi, vi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ mi and wi, wi,j , 1 ≤ i ≤ s, 1 ≤ j ≤ ri are

multisets of objects.

Next, there is a list of P-Lingua rule examples matching the general rule
syntax:

– a,b [d,e*2]’h --> [f,g]’h :: q; where q is the probability of the
rule.

– (p) [a]’h --> [b]’h; where p is the priority of the rule.
– [a --> b]’h;, the left-hand side and right-hand side of evolution rules can

be collapsed.
– +[a]’h --> +[b]’h -[c]’h; a division rule using electrical charges.
– [a]’h --> ; a dissolution rule.
– a[]’h --> [b]’h; a send-in rule.
– [a]’h --> b[]’h; a send-out rule.
– [a --> #]’h; the symbol # can be optionally used as empty multiset.
– [a]’1 <--> [b]’0; a symport/antiport rule in the tissue-like framework.

152

The syntax of the general rule is very permissive, and so different parsers for
different models have been developed in order to restrict the rules used in each
one. In order to provide the researcher a more flexible framework, not having
to depend on the implementation itself but acquiring the capacity of restricting
the model by himself, we introduce the next syntax in P-Lingua for rule pattern
matching:

!rule-type-id

{

pattern1

pattern2

...

patternN

}

where rule-type-identifier is an unique name for the type of rule that is
going to be defined and pattern1, pattern2, ..., patternN are rule patterns
following the same syntax than common rules in P-Lingua where anonymous
variables beginning with ? can be optionally used instead of probabilities, charges
and priorities. In the patterns, the symbols beginning with a, b or c always mean
single objects and symbols beginning with u, v and w always mean multisets of
objects. In Section 6, are given several examples of rule patterns in P-Lingua for
different types of cell-like and tissue-like models.

3.2 Derivation modes

From an informal point of view, we can see a derivation mode as the way a step
of a P system is performed. As a part of semantics, it rules the exact application
of rules of the system, deciding when rules can be applied or not when they are
applicable. An extensive study of derivation modes can be found in [4]. In order
to make the work self-content, we give a minimal definition of a derivation mode.

A derivation mode ϑ is defined as a function that selects different multisets
of rules “really applicable” to a configuration Ct of a P system depending on a
specification. For this purpose, let Π be a P system with R as its set of rules, R
a multiset of compatible rules applicable to a P system at configuration Ct, and
let R be the set of all multisets applicable to a P system at configuration Ct.

In this extension of P-Lingua we provide two main derivation modes:

– Maximally parallel derivation mode (max): It is the default mode for P
systems. In this mode, we only take multisets from R that are not extensible,
that is:

R′ = {R | R ∈ R∧ ̸ ∃R′ ∈ R : R ! R′
}.

The multiset of rules finally applied to Ct is selected non-deterministically
from R′.

153

– Bounded-by-rule parallel derivation mode (boundB1,...,Br
): Let {a, b, . . . }

be the set of different types of rules present in a P system. Bi can be of the
following forms:

• Bi = j, j ∈ {a, b, . . . };
• Bi = βn(B1i , . . . , Bri), being n ∈ N, and for eachBj = βmj

(B1j , . . . , Brj),
j ∈ {1i, . . . ri}, mj ≤ n;

• As a restriction, a label for a type of rule cannot appear more than once
in the whole definition of the derivation mode.

We say that n is the bound of Bi = βn. We say that a type of rule (j) is in
the context of Bi if:

• There exists Bi = βn(j) (we call Bi its immediate context); and
• There exists Bi = βn(B1i , . . . , Bri) such that Bj is a context of the type

of rule (j).

This mode is defined recursively, and we can understand the applicability

of the rules in a defined bounded-by-rule parallel derivation mode in the
following sense:

• In a context βn(B1, . . . , Br), the number of rules that can be applied in
parallel in a P system in a configuration Ct is n; and

• In a bounded-by-rule parallel derivation mode boundB1,...,Br
, if Bi =

j(j ∈ {a, b, . . . }), being 1 ≤ i ≤ r, then rules of type j can be applied in
a maximal way.

With this mode, we can define the classical mode used in P systems with
active membranes, that is, evolution rules (a) can be applied in a maximal
parallel mode, while the other types of rules (send-in communication rules
(b), send-out communication rules (c), dissolution rules (d), division rules
for elementary (e) and non-elementary (f) membranes) can be applied at
most once per membrane at each computation step. It would be defined as
bounda,β1(b,c,d,e,f). If Rj is the set of rules from R of the type j, we formally
define the bounded-by-rule maximally parallel mode by

R′ = { R | R ∈ R
∧ | {r | r ∈ R, r ∈ Rj} |≤ n for all j in the context of Bi = βn

∧ ̸ ∃R′ ∈ R : R ! R′
}

Thus, a model type can be defined in P-Lingua by aggregating the allowed
rule patterns and its corresponding derivation modes, the syntax is as follows:

@model(id) = rule-type-id1,..., rule-type-idN;

where id is an unique identifier for the model and rule-type-id1 ,...,
rule-type-idN are unique identifiers for the corresponding allowed rule pat-
terns. By default all rules behave in maximally parallel derivation mode, but
rules can be grouped in sets to behave in bounded parallel derivation mode as
follows:

154

@model(id) = @bound{rule-type-id,..., rule-type-idN};

where bound is a natural number defining the maximum number of rules in the
group that can be applied to a given configuration. In Section 6, several examples
of model definitions in P-Lingua are given.

4 A command-line tool for generating ad-hoc simulators

A GNU GPLv3 command-line tool called pcc has been implemented in C++
language with Flex [28] and Bison [29]. The source code including examples and
instructions can be downloaded from https://github.com/RGNC/plingua.

The tool provides three main functionalities:

– Parsing P-Lingua files while printing the syntactic and semantic errors
to the standard error output. In this sense, the tool acts as a conventional
compiler, showing the name of the file, as well as the number of the line
and column for each error with a short description. The analysis of semantic
errors is done by using the rule patterns and derivation modes defined in the
own P-Lingua files. Several files can be compiled together like conventional
programs, furthermore standard makefiles can be also used. The developer
can decide to write the rule patterns and derivation modes in a set of files
and reuse them in several projects. More explanations can be found in the
website.

– Generating JSON files. The tool is able to translate the definitions con-
tained in P-Lingua files to JSON format [30] for compatibility with third-
party simulators. The translation is done after parsing the input files, thus
the JSON files are free of syntactic/semantic errors and the third-party ap-
plications do not have to check them. Several P-Lingua files can be combined
together in one JSON file, including also the selected derivation modes.

– Generating source code. The tool can generate all the source files for
a command-line executable in C++ which is a complete ad-hoc simulator
optimized for the design given by the input files. The generated program is
able to simulate computations for the defined P system following the specified
derivation modes. It interacts with the user by the command-line as common
Linux console applications. Generic front-ends could be easily implemented
because the command-line options are common to all the simulators. The
simulations could be interrupted and resumed since intermediate configura-
tions can be saved in JSON files. Initial multisets can also be defined before
the simulation, as well as setting different halting conditions, such as simu-
lating a fixed number of computation steps or running until the execution
of a rule marked in the P-Lingua file as halting rule.
The pcc tool performs several analyses over the input files in order to op-
timize the memory and time that is going to be used for the simulator.
The C++ structures used to represent the membrane tree are selected de-
pending on the type of rules that can be used, for instance, if there are

155

not send-in/send-out rules, then C++ pointers to parent/child membranes
are not necessary. The generated code can be compiled with the GNU g++
tool [31], makefiles can also be used to automatize all the process from the
P-Lingua files to the Linux executable. Instructions and examples can be
found in the web page.

5 The simulation algorithm

The compiler presented in Section 4 generates the source code in C++ for an
ad-hoc simulator which is able to reproduce computations for the input design
written in P-Lingua. The generated code follows the scheme shown in Fig. 1.
The simulation is provided by a sequential loop where each iteration simulates
one step of computation. For each iteration, the simulator determines the mul-
tiset of rules which is going to be applied and then, it applies it to the current
configuration Ct obtaining the next configuration Ct+1. The halting condition is
checked after each iteration.

Fig. 1. The main simulation loop

The algorithm used to select rules is described in Pseudocode 1. It returns a
multiset B of pairs (m, r) and a configuration C ′

t. One pair (m, r) means that rule

156

r has been selected once to be applied over membrane m in Ct. The configuration
C ′

t contains a copy of Ct after applying the left-hand side of the selected rules,
i.e, after removing from Ct the multisets of objects specified by the left-hand side
of the selected rules. On the other hand, the applicability function determines
the maximum number of possible applications for a rule r over a membrane m
in configuration C ′

t. It considers the left-hand side, the charges in the right-hand
side, as well as the derivation mode of r. A membrane m in C ′

t is marked as
fixed if at least one pair (m, r) is contained in B or unfixed otherwise. A rule r
cannot be selected if it would change the electrical charge of a fixed membrane.

Finally, Algorithm 2 receives the partial configuration C ′

t and generates the
next configuration Ct+1 by applying the right-hand side of the selected rules.

Algorithm 1 SELECT RULES

Require: Current configuration Ct; Set of rules R;
M ← ∅;B ← ∅;C′

t ← Ct;
for each membrane m in C′

t do

Am ← R; // Copy the set of rules
M ← M ∪m

Mark m as unfixed
end for

while |M | > 0 do

m ← Randomly select one membrane in M

r ← Randomly select one rule in Am

k ← applicability(C′

t, r,m)
if k = 0 then

Remove r from Am

if |Am| = 0 then

Remove m from M

end if

else

n ← A random natural number in [1, k]
C′

t ← apply left hand side(C′

t, r,m, n)
B ← B ∪ {(m, r)n}
Mark m as fixed

end if

end while

return (C′

t, B)

6 Examples

6.1 Transition P systems

!transition_evolution /* Limited to rules with 3 inner membranes */
{

[a -> v]’h;

157

Algorithm 2 APPLY RULES

Require: Partial configuration C′

t; Multiset of selected rules B;
Ct+1 ← C′

t;
for each pair (m, r) in B do

Ct+1 ← apply right hand side(Ct+1, r,m)
end for

return Ct+1

[a -> v, @d]’h;
(?) [a -> v]’h;
(?) [a -> v, @d]’h;

[a []’h1 --> v [w]’h1]’h;
[a []’h1 --> v [w]’h1]’h;

(?) [a []’h1 --> v [w]’h1]’h;
(?) [a []’h1 --> v [w]’h1]’h;

[a []’h1 []’h2 --> v [w1]’h1 [w2]’h2]’h;
[a []’h1 []’h2 --> v [w1]’h1 [w2]’h2]’h;

(?) [a []’h1 []’h2 --> v [w1]’h1 [w2]’h2]’h;
(?) [a []’h1 []’h2 --> v [w1]’h1 [w2]’h2]’h;

[a []’h1 []’h2 []’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;
[a []’h1 []’h2 []’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;

(?) [a []’h1 []’h2 []’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;
(?) [a []’h1 []’h2 []’h3 --> v [w1]’h1 [w2]’h2 [w3]’h3]’h;

}

@model(transition) = transition_evolution;

6.2 Active membranes with division rules

!dam_evolution
{

?[a -> v]’h;
?[a ->]’h;

}

!dam_send_in
{

a ?[]’h -> ?[b]’h;
}

!dam_send_out
{

?[a]’h -> b ?[]’h;
}

!dam_dissolution
{

?[a]’h -> b;
?[a]’h -> ;

}

!dam_division
{

?[a]’h -> ?[]’h ?[]’h;
?[a]’h -> ?[b]’h ?[]’h;
?[a]’h -> ?[]’h ?[b]’h;
?[a]’h -> ?[b]’h ?[c]’h;

}

@model(membrane_division) =
dam_evolution, @1{dam_send_in, dam_send_out, dam_dissolution, dam_division};

158

6.3 Tissue-like P systems with communication and cell division

!tissue_communication
{

[u]’h1 <--> [v]’h2;
}

!tissue_division
{

[a]’h -> []’h []’h;
[a]’h -> [b]’h []’h;
[a]’h -> []’h [b]’h;
[a]’h -> [b]’h [c]’h;

}

@model(tissue_division) =
tissue_communication, @1{tissue_division};

6.4 Population Dynamics P Systems

!pdp_evolution
{

u1 ?[v1]’h -> u2 ?[v2]’h :: ?;
}

!pdp_environment_communication
{

[[a]’e1 []’e2]’h -> [[]’e1 [b]’e2]’h :: ?;
}

@model(probabilistic) =
pdp_evolution, pdp_environment_communication;

7 Conclusions and future work

This paper presents for the first time a compiler for membrane computing which
is able to generate C++ source code for optimized ad-hoc simulators. The input
P systems are written in P-Lingua, a common language to define membrane
computing designs. In this paper we have extended the language to include
semantics ingredients, such as rule patterns and derivation modes. The compiler
can recognize the rule patterns and show syntactic/semantic errors during the
parsing process. The generated simulators are able to simulate computations
given by the derivation modes, even if the derivation modes are experimental.
Thus, the goal of this tool is twofold: On the one hand, it pretends to be a
good assistant for researchers while verifying their designs, even working with
experimental models. On the other hand, it provides optimized simulators for
real applications, such as robotics or simulation of biological phenomena.

Several lines are open for future work. From the point of view of the language,
the semantic ingredients that can be written in P-Lingua should be studied
in order to cover more types of models. For instance, defining bounds for the
multiplicities of objects in different compartments, such as the environment in
tissue-like P systems, where the multiplicity of objects can be infinite. On the
other hand, custom directives could be included in P-Lingua files and translated
to C preprocessor directives for the simulator. For example, if the design is

159

confluent, a directive could be written to optimize the simulation time, since it
is not necessary to simulate the non-determinism by using random numbers.

From the point of view of the generated simulators, it would be very interest-
ing to produce optimized code for different parallel hardware architectures such
as multi-core processors, GPUs or FPGAs. Until now, the faster simulators for
parallel architectures are relatively ad-hoc, since several optimizations should
be done by analysing the input design. A tool able to automatize this process
for a wide variety of input designs could approximate the membrane comput-
ing paradigm to other disciplines where it is needed efficient solutions to hard
problems. In particular, it could be applied to anytime algorithms for robotics,
such as social navigation in crowdy environments or automatic driving, where
the robot should have a fast response in real-time, but the solution could be
improved by using more computational time.

Acknowledgements

This work was supported by National Natural Science Foundation of China
(61672437 and 61702428) and by Sichuan Science and Technology Program
(2018GZ0185, 2018GZ0086) and New Generation Artificial Intelligence Science
and Technology Major Project of Sichuan Province (2018GZDZX0044).

Authors from the University of Seville also acknowledge the support of the
research project TIN2017-89842-P, co-financed by Ministerio de Economı́a, In-

dustria y Competitividad (MINECO) of Spain, through the Agencia Estatal de

Investigación (AEI), and by Fondo Europeo de Desarrollo Regional (FEDER)

of the European Union.

References

1. M. Colomer, A. Margalida, and M.J. Pérez-Jiménez. Population Dynamics P Sys-
tem (PDP) Models: A Standardized Protocol for Describing and Applying Novel
Bio-Inspired Computing Tools, Plos One, 2013 8 (14), 1–13.

2. M. Cardona, M.A. Colomer, M.J. Prez-Jimnez, D. Sanuy, A. Margalida. Model-
ing ecosystems using P systems: The bearded vulture, a case study. Membrane
Computing, 9th International Workshop, WMC 2008, Edinburgh, UK, July 28-31,
2008, Revised Selected and Invited Papers. Lecture Notes in Computer Science,
5391 (2009), 137-156.

3. M. Colomer, I. Pérez-Hurtado, M.J. Pérez Jiménez, and A. Riscos-Núñez. Com-
paring simulation algorithms for multienvironment probabilistic Psystem over a
standard virtual ecosystem, Natural Computing, 11 (2012), 369–379.

4. R. Freund, S. Verlan. A Formal Framework for Static (Tissue) P Systems. Lecture
Notes in Computer Science, 4860 (2007), 271–284.

5. P. Frisco, M. Gheorghe, M. J. Prez-Jimnez. Applications of Membrane Computing
in Systems and Synthetic Biology. Emergence, Complexity and Computation (Series
ISSN 2194-7287), Volume 7. Springer International Publishing, eBook ISBN 978-
3-319-03191-0, Hardcover ISBN 978-3-319-03190-3, 2014, XVII + 266 pages (doi:
10.1007/978-3-319-03191-0).

160

6. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, and A. Riscos-Núñez. An overview of P-Lingua 2.0, Lecture Notes in

Computer Science, 5957 (2010), 264–288.

7. M. Ionescu, Gh. Păun, T. Yokomori. Spiking Neural P systems. Fundamenta In-

formaticae, 71, 2-3 (2006), 279-308.

8. L.F. Maćıas, I. Pérez-Hurtado, M. Garćıa-Quismondo, L. Valencia, M.J. Prez-
Jimnez, A. Riscos-Nez. A P-Lingua based simulator for Spiking Neural P systems.
Lecture Notes in Computer Science, 7184 (2012), 257–281.

9. C. Mart́ın-Vide, Gh. Păun, J. Pazos, A. Rodŕıghez-Patón. Tissue P systems. The-
oretical Computer Science, 296, 2 (2003), 295-326.

10. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez.
A P-Lingua based simulator for Tissue P systems. Journal of Logic and Algebraic

Programming, 79, 6 (2010), 374–382.

11. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, et al. DCBA:
Simulating population dynamics P systems with proportional objects distribution,
Lecture Notes in Computer Science, 7762 (2013), 257–276.

12. M.A. Mart́ınez-del-Amor, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, L. Valencia-
Cabrera, A. Riscos-Núñez, M.J. Pérez-Jiménez. Simulating P systems on GPU
devices: a survey. Fundamenta Informaticae, 136, 3 (2015), 269–284.

13. L. Pan, Gh. Paun, M. J. Prez-Jimnez, T. Song. Bio-inspired Computing: The-
ories and Applications. Communications in Computer and Information Science

(Series ISSN 1865-0929), Volume 472, Springer-Verlag Berlin Heidelberg, Print
ISBN 978-3-662-45048-2, Online ISBN 978-3-662-45049-9, 2014, XX + 672 pages
(doi: 10.1007/978-3-662-45049-9).

14. L. Pan, Gh. Păun. Spiking Neural P Systems with Anti-Matter. International Jour-
nal of Computers Communications & Control, 4, 3 (2009), 273–282.

15. L. Pan, T.-O. Ishdorj. P Systems with Active Membranes and Separation Rules.
Proceedings of the Second Brainstorming Week on Membrane Computing, 2-7
February, 2004, Sevilla, Spain, pp. 325–341.

16. Gh. Păun, G. Rozenberg, A. Salomaa (eds.). The Oxford Handbook of Membrane

Computing, Oxford University Press, Oxford, 2010.

17. Gh. Păun. Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998.

18. Gh. Păun. Membrane Computing. An introduction. Springer-Verlag, Berlin, 2002.

19. Gh. Păun. P systems with active membranes: attacking NP–complete problems,
Journal of Automata, Languages and Combinatorics, 6 (2001), 75–90.

20. H. Peng, J. Wang, J. Ming, P. Shi, M.J. Prez-Jimnez, W. Yu, Ch. Tao. Fault diag-
nosis of power systems using intuitionistic fuzzy spiking neural P systems. IEEE
Transactions on Smart Grid, in press (2017) (doi: 10.1109/TSG.2017.2670602).

21. I. Pérez-Hurtado, L. Valencia-Cabrera, J.M. Chacón, A. Riscos-Núñez, M.J. Pérez-
Jiménez. A P-Lingua based Simulator for Tissue P Systems with Cell Separation.
Romanian Journal of Information Science and Technology, 17 , 1 (2014), 89–102.

22. I. Pérez-Hurtado, L. Valencia-Cabrera, M.J. Pérez-Jiménez, M. Colomer, and A.
Riscos-Núñez. MeCoSim: A general purpose software tool for simulating biological

phenomena by means of P Systems, IEEE Fifth International Conference on Bio-
inpired Computing: Theories and Applications (BIC-TA 2010), 637–643.

23. F.J. Romero-Campero, M.J. Prez-Jimnez. A model of the Quorum Sensing Sys-
tem in Vibrio Fischeri using P systems. Artificial Life, 14, 1 (2008), 95-109 (doi:
10.1162/artl.2008.14.1.95).

161

24. G. Zhang, M. J. Prez-Jimnez, M. Gheorghe. Real-life applications with
Membrane Computing. Emergence, Complexity and Computation (Series ISS-
N 2194-7287), Volume 25. Springer International Publishing, Online ISBN 978-
3-319-55989-6, Print ISBN 978-3-319-55987-2, 2017, X + 367 pages (doi:
10.1007/978-3-319-55989-6).

25. The P-Lingua web page: http://www.p-lingua.org.
26. The PMCGPU web page: https://sourceforge.net/projects/pmcgpu/
27. The MeCoSim web page: http://www.p-lingua.org/mecosim/.
28. The Flex web page: https://github.com/westes/flexl
29. The Bison web page: https://www.gnu.org/software/bison/
30. The JSON web page: https://www.json.org/
31. The GNU g++ compiler: https://gcc.gnu.org/

162

	Generating Context-Free Languages using Spiking Neural P Systems with Structural Plasticity
	Matrix Representation and Simulation Algorithm of Spiking Neural P Systems with Structural Plasticity
	
	Introduction
	MCFDS
	Input Data
	Topology Data of Power Systems
	Protection Configuration Data

	Network Topology Analysis Subsystem
	Suspicious Fault Component Analysis Subsystem
	Subsystem For Modeling Suspicious Fault Components with FRSN P system
	Fuzzy Inference Subsystem

	Experiments
	Conclusions

	
	Introduction
	Enzymatic numerical P systems
	Problem Statement
	The EDENP algorithm
	Mathematical model of EDENP
	The structure and execution process of EDENP
	Complexity and resources analysis

	Experiments and Results
	Performance evaluation
	Case study 1
	Case study 2

	Efficiency evaluation

	Conclusions

	
	Introduction
	Related works
	PSO
	The structure of membrane with OLMS

	The Proposed Approach
	The description of MIPSO with OLMS
	The modified MIPSO structure
	Hyperparameter optimization in MIPSO

	Experimental Results
	The relation of thresholding results and between-class variance
	The evaluation of time and between-class variance
	Statistical comparisons of test images
	The histogram distribution of test images
	The segmentation results

	Conclusions and future work

