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Abstract

Bar visibility graphs were introduced in the seventies as a model for some VLSI layout problems.
They have been also studied since then by the graph drawing community, and recently several
generalizations and restricted versions have been proposed.

We introduce a generalization, witness-bar visibility graphs, and we prove that this class encom-
passes all the bar-visibility variations considered so far. In addition, we show that many classes of
graphs are contained in this family, including in particular all planar graphs, interval graphs, circular
arc graphs and permutation graphs.

1 Introduction and preliminary definitions

Given a set S of disjoint horizontal line segments in the plane (called bars hereafter) we say that G is a
bar-visibility graph if there is a bijection between S and the vertices of G, and an edge between two of
these if and only if there is a vertical segment (called line of sight) between the corresponding bars that
does not intersect any other bar. We also say that S is a bar visibility representation (or a bar visibility
drawing) of G.

Bar visibility graphs were introduced by Garey, Johnson and So [15] as a modeling tool for digital
circuit design (see also [20]). These representations are also a useful tool for displaying diagrams that
convey visual information on relations among data, which is why many variations of these graphs have
been considered by the graph drawing community [7, 9, 10, 11, 14, 17, 18].

We need some definitions before we can pose precisely our problem; we use standard terminology as
in [6]. We call v-segment any vertical segment. We call e-segment any axis aligned rectangle having
width € > 0 (intuitively, a thick vertical segment). Let s and ¢ be two horizontal bars. We say that a
v-segment connects s and ¢ if its endpoints are in s and ¢. We say that an e-segment connects s and ¢
if its horizontal sides are contained in s and t.

Let S be a set of non-overlapping horizontal segments (bars). Two bars s,t € S are visible if, and
only if, there is a v-segment connecting s and t intersecting no other segment in .S. We say that s and ¢
are e-visible if, and only if there is an e-segment connecting s and ¢ intersecting no other segment in S.

With the preceding definition, bar visibility graphs as defined in the first paragraph of this section take
as nodes a set of disjoint bars, and there is an edge between two nodes if and only if the corresponding bars
are visible (this is also called a strong visibility representation of the graph [21]). If instead of visibility
we require e-visibility, then we get bar e-visibility graphs or, equivalently, an e-visibility representation
of the graph. The latter have been characterized as those graphs that admit a planar embedding with
all cutpoints on the exterior face [21, 22].

A graph G is a weak bar visibility graph if its nodes can be put in bijection with a set of disjoint bars
and the nodes corresponding to every edge in G are e-visible (note that not every e-visibility need be
an edge). This family of graphs is exactly the class of all planar graphs [12].

Finally, we say that G is a bar k-visibility graph if there is a bijection between a set of bars S and
the vertices of G, and an edge between two of these if and only if there is a v-segment joining the
corresponding bars that intersects at most k other bars. This generalization has been introduced in
recent years [10, 14].
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In this paper we introduce a stronger generalization, witness-bar visibility graphs, and we prove that
this representation approach encompasses all the bar-visibility variations considered so far. In addition,
we show that many classes of graphs are contained in this family, including in particular all planar
graphs, interval graphs, circular arc graphs and permutation graphs.

For the definition of witness-bar visibility graphs we consider, in addition to the set S of bars that are
in correspondence one-to-one with the vertices of the graph being constructed, a set of green bars that
“favor” visibility, and a set of red bars that “obstruct” visibility. Green bars act as positive witnesses
while red bars correspond to negative witnesses. The bars from S neither favor nor obstruct visibilities.

For the ease of description it is useful to consider also purple bars that obstruct visibility in a slightly
different way than red bars.

Definition 1 Let S, Sg, Sp and Sg be four sets of horizontal segments (bars, green-bars, purple-bars,
and red-bars, respectively) such that any two elements in S U Sg U Sp U Sg are disjoint. We define:

1. The green-bar visibility graph of S with respect to S has one vertex for every element in S, and
two bars s,t € S are adjacent if and only if there is an e-segment connecting s and t that crosses
at least one green bar.

2. The purple-bar visibility graph of S with respect to Sp has one vertex for every element in S, and
two bars s,t € S are adjacent if and only if there is an e-segment connecting s and t that does not
cross any purple bar.

3. The witness-bar visibility graph of S with respect to Sg and Sgr has one vertex for every element
in S, and two bars s,t € S are adjacent if and only if there is an e-segment connecting s and t
that crosses strictly more green bars than red bars.

The class of green, purple and witness-bar visibility graphs are denoted, respectively, by GBG, PBG
and WBG.

An illustration of the three types of graphs is shown in Figure 1 (on a black and white printer, node-
bars appear as thin lines, red bars as thick dark lines, purple lines as thick lines colored light grey, and
the green lines are seen as thick striped lines).
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Figure 1: Examples of graphs in the families GBG, PBG and WG, for the set of bars S = {a,b, ¢, d, e}.

This work is devoted to the study of the classes of graphs that can be represented via green, purple
or bar-visibility graphs and its properties. We start by considering the classes GBG and PBG, which
will be proved to be subclasses of WBG. Then we will enumerate classes of graphs that are contained
in WBG, as well as properties of this class related to planarity.

The terminology witness-bar visibility graphs is inspired by the concept of witness proximity graphs,
which focuses on deciding neighborliness relations among points in a finite set according to the presence of
some positive and/or negative witness points, a topic that has been studied in recent years [1, 2, 3, 4, 13].
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2 PBG and GBG are subclasses of WBG

We prove in this section that the classes PBG and GBG that we have introduced for the sake of clarity
in many proofs, are subclasses of WBG, the class that is our actual subject of study. It is worth noticing
first that if we consider a graph in WBG that has only green bars, then it is exactly a graph in GBG.
However, if we have a graph in WBG that has only red bars, then it is just an empty graph, because
for visibility we require the green bars crossed by a line of sight to be strictly more than the crossed red
bars. This is why we also consider the class PBG in which purple bars play a stronger obstruction role.

Lemma 1 The class of graphs WBG contains the classes GBG and PBG.

Proof. (Sketch) The fact that GBG C WBG is trivial; the green-bar visibility representation is also a
witness-bar visibility representation.
In Figure 2 we illustrate a method to obtain a WBG reprsentation of a PBG graph.
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Figure 2: a) and b): A graph and one of its purple-bar visibility representations. Visibility corridors
(e-segments) between adjacent vertices are shown. c¢) The green-bar visibility representation carried out
from b). The small red bar between uy and us is added to avoid the adjacency between uy and us caused
by the previously added green bars.

In Section 5 we will prove that the two inclusions in Lemma 1 are strict.

3 The graph class GBG

In this section we study the class GBG having as main objective to obtain properties of the superclass
WBG. In our way, we also explore some relationships with other graph classes.

Recall now that an interval graph is the intersection graph of a set of (closed) intervals on the real
line; this is, it has one vertex for each interval in the set, and an edge between every pair of vertices
corresponding to intervals that have nonempty intersection.

Theorem 2 Let G be a graph. If G is an interval graph, then G € GBG. The reverse is in general false.

Proof. Consider the intervals on the real line that define G. First of all, notice that we can extend
infinitesimally the intervals in such a way that every pair that intersected overlap in an interval of
positive length. Then assign arbitrary to these intervals different heights so that we have a set of bars
in the plane. To obtain a green-bar visibility representation of G it suffices to shield each segment with
two green bars of the same length, one above and one below. Notice that another representation using
less green bars may also exist.

The graph class inclusion is strict, as one can show that Cy is in GBG (Figure 3) while the interval
graph does not have cycles of length greater than three. O

A difference between the class of interval graphs and GBG is stated in next proposition, whose proof
is omitted here.

Proposition 3 The girth of any graph in GBG is at most four, and this value is achievable.
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Figure 3: a) Cy is a GBG graph but b) it is not an interval graph: a and b must not overlap. Since ¢
is adjacent to both vertices it covers the gap between them, as d should do. Therefore ¢ and d must be
adjacent in the interval graph.

As a consequence of the previous result, it follows that the green-bar visibility graph class does not
contain any of the bar-visibilities classes described in the introduction of this paper, because C,, can be
represented as weak/e/strong bar visibilty graph for every n > 3 [21].

Let us recall next some definitions [8].The dimension of a partially ordered set P (poset) is the smallest
possible number of total orders whose intersection is the partial order in P. The comparability graph
induced by a poset P = (X, <) is the graph with vertex set X in which z,y € X are adjacent if and only
if either z < y or y < z in P; in other words, it is the undirect graph underlying P. Alternatively [16],
a comparability graph is a graph such that every generalized cycle of odd length has a triangular chord
(a generalized cycle is a closed walk that uses each edge of the graph at most once in each direction). A
comparability graph has dimension 2 if it is the comparability graph of a poset of dimension 2 (it has
been shown that this concept of dimension is well defined [8]).

These definitions can also be considered from a geometric point of view [19]. Let R? be the Euclidean
2-dimensional space. A method of ordering the points of R? is the following: (z;,v;) < (z;,y;) if, and
only if, z; < z; and y; < y;; we say that (z;,y;) is dominated by (x;,y;). A poset P = (X, <) has
dimension at most 2 if it can be embedded in R? in such a way that the order is preserved. Moreover,
changing the coordinates slightly if required, we can assume that the embedding is such that no two
elements of X have equal = or y coordinate. As a consequence, any comparability graph of dimension
2 can always be thought as a point set in R? with the dominance order. This geometric representation
applies in Euclidean d-dimensional space to comparability graphs of dimension d.

Theorem 4 There are graphs in GBG that are not comparability graphs.

Proof. The graph depicted in Figure 4 a) is not a comparability graph since the generalized cycle
V] — Vg — Vg — U5 — Vg — U3 — g — v1 has odd length (seven) but has no triangular chords. Figure 4 b)

shows a green-bar visibility representation of this graph. O
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Figure 4: a) A graph that is not a comparability graph and b) a green-bar visibility representation of
this graph.
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4 The graph class PBG

In this section we turn our attention to the class PBG, having again as main objective to obtain properties
of the superclass WBG. In our way we explore as well some relationships with other graph classes.

On may think that the classes GBG and PBG are related by complementation, possibly by switching
purple and green bar coloring, but it is not the case. For example the union of two disjoint triangular
cycles is in GBG, as seen in the preceding section, but its complement is K3 3, which is not in PBG, a
fact that we prove below.

Reversely, the fact that G € PBG does not imply that G¢ € GBG. A simple example is obtained by
considering G = G° = Cj, which admits a purple-bar visibility representation (see Figure 5), but we
have proved in Proposition 3 that C5 ¢ GBG.

Figure 5: A purple-bar visibility representation of Cj.

It is neither true that the complement of a graph in PBG is in PBG. Consider G = K§ 5, which consists
of the union of two triangles and hence G' € PBG (triangles are interval graphs) but G¢ = K33 ¢ PBG
as will be shown in Theorem 7.

On the other hand, Cj is also an example that the class PBG contains some non-perfect graphs. Recall
that a perfect graph is a graph in which the chromatic number of every induced subgraph equals the
size of the largest clique of that subgraph. The largest clique in C5 is Ko, however x(C5) = 3, therefore
C5 is not perfect.

On the positive side, let us see that interval graphs admit a purple-bar visibility representation and
prove a lemma that will be useful later.

Theorem 5 If G is an interval graph, then G € PBG (and therefore G € WBG ).

Proof. Consider the intervals on the real line that define G and lift them to arbitrary different heights
so that we have a set of bars in the plane. This is already a purple-bar visibility representation of G. [

Lemma 6 Let G be a triangle-free graph. If G € PBG then G is a planar graph.

Proof. (Sketch) Given a graph G € PBG we can use the visibility windows in order to obtain a plane

representation of G as it is depicted in Figure 6. O
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Figure 6: A purple-bar visibility representation of a triangle-free graph and the corresponding construc-
tion of its planar embedding -in blue-.
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Theorem 7

1) K33 ¢ PBG.
2) K,, € PBG, Vn.
3) The property of admitting a purple-bar visibility representation is not inherited by subgraphs.

Proposition 8 There are nonplanar graphs with triangles that do not admit a purple-bar visibility
representation.

An example is shown in Figure 7

Figure 7: A nonplanar graph G with a triangle (Agjk),such that G ¢ PBG.

Theorem 9 Every graph G that can be represented as strong/e/weak bar visibility graph admits as
well a purple-bar visibility representation (and therefore a WBG representation as well).

Proof. As every graph that admits the first or second representation is also realizable using weak
visibility [21], we only have to prove that the latter class of graphs is contained in PBG.

Let G be a graph realized as a weak bar visibility graph. Each node u of G is a bar, that has some
visibility corridors above and below (see Figure 8(a)). Observe that we can shrink all the visibility
corridors to still have positive width, yet determining disjoint intervals on u (Figure 8(b)). After the
shrinking, we can shield all the bars with purple bars on both sides, yet without crossing the corridors
of sight (Figure 8(c) and (d)). This is clearly a purple-bar visibility representation of G. O

a) b) c) d)

Figure 8: Constructing a purple-bar visibility representation of a bar visibility graph.

5 The class WBG of witness-bar visibility graphs

We start this section by observing that the contentions in Lemma 1 are strict, that is, the classes GBG
and PBG are strictly contained in WBG. Figure 9 shows a witness-bar representation of a subdivision
of K3 3. By Proposition 3, this graph is not in GBG since it contains chordless cycles of length five. On
the other hand, the graph is triangle-free and nonplanar, therefore it is not in PG by Lemma 6.

We claimed in the introduction that k-bar visibility is also generalized by witness-bar visibility. This
is precisely what we prove in the following theorem:
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Figure 9: A witness-bar representation of a subdivision of K3 3.

Theorem 10 Every graph G that can be represented as a bar k-visibility graph admits as well a
witness-bar visibility representation.

Proof. Let B be the set of bars in a bar k-visibility representation of G; recall that there is an edge
between two of these if and only if there is a v-segment joining the corresponding bars that intersects at
most k other bars. For the sake of clarity let us see that, if necessary, we can modify slightly the bars in
B to avoid some degeneracies, obtaining again a set of bars whose corresponding bar k-visibility graph
is still G.

Leu us consider a vertical line through each endpoint of all bars in B. If for any of these vertical lines
¢ there is a set L of bars in B whose right endpoint is on ¢, and a set R of bars in B whose left endpoint
is also on /£, we extend infinitesimally to the right all the bars in L, without jumping over any of the
other vertical lines. Clearly the new set of bars still induces G by bar k-visibility, as neither k-visibilities
are destroyed, nor new k-visibilities are created. Therefore we can assume, without loss of generality,
that no such coverticalities are present in B.

Leu us call consider the set of vertical lines through the endpoints of the bars in B. These lines
decompose the planes into strips; inside each strip we have a stack of (portions of) bars of equal length,
the width of the strip, placed at different heights. Let us focus in any of these strips (only if it is non
empty of bars), which we denote S. Let Bg the set of bars in S and let m be the number of bars in Bg.
Notice that at this step we disregard bars or portions of bars outside S.

Case 1: m < k + 2. In this case we use two auxiliary vertical lines to split S into three vertical strips
of equal width, which we call slabs. In the central slab, between any two consecutive bars, we place a
green bar. The graph WBG induced inside S is the complete graph, which was exactly the situation for
bar k-visibility.

Case 2: m > k + 2. Let us call by,...,b,, the bars in Bg, in order on increasing height. In this
case there are m — k — 1 subsets of k + 2 consecutive bars in Bg, namely By = {by,...,bgy2}, Bs =
(b bssh s Bkt = {bmttse - b}

Let us subdivide the strip S into 2(m — k — 1) + 1 = 2m — 2k — 1 vertical slabs, that we denote
Sty 82m—_2k—1. We are dealing inside slab Sy; with the WBG-visibility among the bars in B;, by
placing a green bar with the same width than S;; between any two consecutive portions of bar in B;,
and one stack of k + 1 red bars of the same width just below b; (but above b;_1) and another stack
of k+ 1 red bars of the same width just above b;; 11 (but below b;yr42). The graph WBG induced
inside Sy; for the bars B; is the complete graph, and no other WBG-visibilities appear in So;. Repeating
the construction, we have mimicked exactly the situation for bar k-visibility using WBG-visibility, as
claimed.

O

We prove next that another interesting class of graphs is contained in WBG.

A circular-arc graph is the intersection graph of a set of (usually assumed to be open) arcs on the
circle. It has one vertex for each arc in the set, and an edge between every pair of vertices corresponding
to arcs that intersect.

Theorem 11 If G is a circular-arc graph, then G € WBG.
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Figure 10: A witness-bar representation of a circular-arc graph.

Proof. (Sketch) The realization steps are schematized in the example in Figure 10.

We prove next another interesting graph class containment in WBG.

Lemma 12 Let G be a graph. If G is a comparability graph of dimension 2, then G € WBG.

Proof. Let X = {(z1,y1),..., (Tn,yn)} be the vertex set of the dominance realization of G in the
plane, and assume, without loss of generality, that the vertices have been labeled in such a way that
T < To < ...< ZTp.

For i = 1,...,n, let us now represent vertex (z;,v;) as a bar in R? given by the segment s; with
endpoints (z1,y;) and (z,,y:).

We place above s; ¢ = 1,...,n, a red bar beginning at z-coordinate x1 and ending at x;, and a green bar
beginning at x-coordinate z; and ending at z,,. Below s;, we draw a green bar beginning at z-coordinate
21 and ending at z; and a red one beginning at z-coordinate z; and ending at z,, (Figure 11). It is not
difficult to see that this is a witness-bar visibility representation of G.
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Figure 11: Proof of Lemma 12.

O

A permutation graph is the intersection graph of a family of line segments that connect two parallel
lines. Equivalently, given a permutation (o1, 09, ...,0,) of the numbers 1,2, 3, ...n, a permutation graph
has a vertex for each number 1,2, 3, ...n and an edge between any two numbers that are in reversed order
in the permutation, i.e., an edge between any two numbers where the segments cross in the permutation
diagram. The class of permutation graphs has been widely studied [8], and since they are characterized
as comparability graphs underlying partially ordered sets that have dimension at most two, we can easily
infer that they are also contained in WBG.
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Theorem 13 If G is a a permutation graph, then G € WBG.

Given a graph G, let G be the graph resulting from subdividing once all edges in G. Then we have:
Lemma 14 Let G be a graph. If G € WBG then G is a planar graph.
Lemma 15 K33 ¢ WBG and K§ 5 € WBG.

Theorem 16 The class of the graphs that admit a witness-bar visibility representation is not closed
under complementation.

We conclude this section with another result on the class WBG, that discards the possibility of
characterizing the class by forbidden minors:

Theorem 17 The property of admitting a witness-bar visibility representation is not inherited by
subgraphs.

Proof. We know that K¢ € WBG from Theorem 7 and Lemma 1. On the other hand 1?3)3 is a

subdivision of a subgraph of K¢, but we know from Lemma 15 that I~(3,3 is not in WBG. This settles
the claim. O

6 Concluding remarks

Let us summarize the properties we have proved for the class WBG of witness-bar visibility graphs:
e Every graph G that can be represented as strong/e/weak bar visibility graph admits as well a
witness-bar visibility representation

e Every graph G that can be represented as a bar k-visibility graph admits as well a witness-bar
visibility representation

e The class of interval graphs is contained in the class WBG.
e If G is a circular arc graph, then G € WBG
e If G is a permutation graph, then G € WBG

e The class of the graphs that admit a witness-bar visibility representation is not closed under
complementation.

e The property of admitting a witness-bar visibility representation is not inherited by subgraphs,
which discards the possibility of characterizing the graph class WBG by forbidden minors.

We conclude that the graph class WBG is very rich and encompasses many other classes. However,
to obtain a characterization or a recognition algorithm appear to be quite challenging problems.
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