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Abstract

This paper deals with the maximum value of the difference between the determining
number and the metric dimension of a graph as a function of its order. Our technique
requires to use locating-dominating sets, and perform an independent study on other
functions related to these sets. Thus, we obtain lower and upper bounds on all these
functions by means of very diverse tools. Among them are some adequate constructions of
graphs, a variant of a classical result in graph domination and a polynomial time algorithm
that produces both distinguishing sets and determining sets. Further, we consider specific
families of graphs where the restrictions of these functions can be computed. To this end,
we utilize two well-known objects in graph theory: k-dominating sets and matchings.

1 Introduction and preliminaries

Every resolving parameter conveys useful information about the behavior of distances in a
graph. Thus, considering several of those parameters together provides stronger properties
of the underlying graph, which is the reason for studying the relations among them. Indeed,
much effort has gone into relating metric dimension and other similar invariants including
partition dimension [9, 45], upper dimension [12, 26], and resolving number [13, 36], to name
but a few. Combining metric dimension and determining number allows us to obtain not
only metric properties of graphs but also an extra information about their symmetries. How-
ever, there are no many papers dealing with the connection between these two parameters:
the determining number of a graph is bounded above by its metric dimension [7, 22]. This
prompts the following question posed by Boutin [7]: Can the difference between the deter-
mining number and the metric dimension of a graph be arbitrarily large? To deal with this
question, which is the main problem of this paper, we next define these parameters.

Let G be a connected graph1. Given a set S ⊆ V (G), the stabilizer of S is Stab(S) =
{φ ∈ Aut(G) : φ(u) = u,∀u ∈ S}, and S is a determining set of G if Stab(S) is trivial. The
determining number of G, denoted by Det(G), is the minimum cardinality of a determining
set of G. A vertex u ∈ V (G) resolves a pair {x, y} ⊆ V (G) if d(u, x) 6= d(u, y), and S is a
resolving set of G if every pair of vertices of G is resolved by some vertex of S. The metric

1 Graphs in this paper are finite, undirected and simple. The vertex set and edge set of a graph G are
denoted by V (G) and E(G), respectively, and the order of G is n = |V (G)|. We denote by G the complement
of G. An automorphism of G is a bijective mapping f : V (G) → V (G) such that {f(u), f(v)} ∈ E(G) if and
only if {u, v} ∈ E(G). The automorphism group of G is written as Aut(G), and its identity element is denoted
by idG. The distance dG(u, v) between two vertices u and v is the length of a shortest u-v path. We write
NG(u) and NG[u] for the open and closed neighborhoods of any vertex u ∈ V (G), respectively. Finally, δG(u)
denotes the degree of u and δ(G) is the minimum degree of G. We drop the subscript G from these notations
if the graph G is clear from the context.
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dimension of G, written as dim(G), is the minimum order of a resolving set of G, and a
resolving set of size dim(G) is called a metric basis of G.

Determining sets were introduced in 2006 by Boutin [7], and independently by Erwin and
Harary [22], who adopted the term fixing set. However, this concept was defined in a more
general context in 1971 by Sims [41]: a base of a permutation group of a set is a subset
of elements whose stabilizer is trivial. Also in the 1970s, resolving sets were introduced by
Harary and Melter [28], and independently by Slater [42]. These two types of sets have been
widely studied in the literature because of their multiple applications in very diverse areas.
For instance, bases are useful tools for storing and analyzing large permutation groups [5],
and resolving sets are utilized for the graph isomorphism problem [3]. We refer the reader to
the survey of Bailey and Cameron [4] for more references on these topics.

As it was said before, there is a relationship between the determining number and the
metric dimension: every resolving set of a graph G is also a determining set, and consequently
Det(G) ≤ dim(G) [7, 22]. Let (dim−Det)(n) be the maximum value of dim(G)−Det(G) over
all graphs G of order n. Thus, the computation of this function is equivalent to answer the
above-mentioned question asked by Boutin [7] about the difference between our parameters,
which is widely studied by Cáceres et al. [8]. Namely, they provide the following bounds.

Proposition 1.1. [8] For every n ≥ 8,

⌊2
5
n⌋ − 2 ≤ (dim−Det)(n) ≤ n− 2.

Fundamental to our technique, which lets us improve significatively the above result, are
locating-dominating sets. Hence, we next introduce these sets together with the functions
(λ − Det)(n) and λ(n), for which we have to develop an independent study that is also of
interest.

A vertex u ∈ V (G) distinguishes a pair {x, y} ⊆ V (G) if either u ∈ {x, y} or N(x)∩{u} 6=
N(y) ∩ {u}, and a set D ⊆ V (G) is a distinguishing set of G if every pair of V (G) is
distinguished by some vertex of D. If D is also a dominating set of G, i.e., N(x) ∩D 6= ∅ for
every x ∈ V (G) \ D, then we say that D is a locating-dominating set of G. The minimum
cardinality of a locating-dominating set of G is its locating-domination number, denoted by
λ(G).

Distinguishing sets were defined by Babai [3] when constructing canonical labelings for
the graph isomorphism problem, while Slater [43] introduced locating-dominating sets in the
context of domination. However, these two concepts are in essence the same: one can easily
check that every distinguishing set becomes a dominating set by adding at most one vertex.
This implies the following observation.

Remark 1.2. For any distinguishing set D of a graph G, λ(G) ≤ |D|+ 1.

Every locating-dominating set of G is clearly a resolving set, and so Det(G) ≤ dim(G) ≤
λ(G) which leads us to pose a similar question to that of Boutin [7] but concerning the
difference λ(G) − Det(G). Thus, let (λ − Det)(n) and λ(n) be the maximum values of,
respectively, λ(G)−Det(G) and λ(G) over all graphsG of order n. Although the function λ(n)
equals n−1 (just take the complete graph Kn), we need to define it because we shall consider
a non-trivial restriction of λ(n) which is quite useful throughout the paper. Therefore, it is
straightforward that

(dim−Det)(n) ≤ (λ−Det)(n) ≤ λ(n) = n− 1. (1)
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This paper undertakes a study on the function (dim−Det)(n) which requires to develop
a parallel study on (λ − Det)(n) and the function λ|C∗ (n) described in Section 3. We thus
start by constructing appropriate families of graphs which provide new lower bounds on
(dim−Det)(n) and (λ−Det)(n), improving the lower bound of Proposition 1.1 by Cáceres et
al. [8]. Further, we conjecture that these are precisely the exact values of these functions. To
improve the upper bound, we require a more sophisticated method which uses the locating-
domination number of twin-free graphs, namely the function λ|C∗ (n). Indeed, we first prove
that this function is an upper bound on (dim−Det)(n) and (λ−Det)(n), and then conjecture
a presumable value of λ|C∗ (n) which will be supported through the paper.

Subsequently, we obtain two explicit upper bounds on λ|C∗ (n) in Sections 4 and 5, re-
spectively. For the first one, we give a different version of a classical theorem in domination
theory due to Ore [39]. This version leads us to a series of relationships between the locating-
domination number and classical graph parameters in twin-free graphs, similar to the relations
established among other domination parameters in many papers (see [30] for a number of
examples). Besides their own interest, these relations yield a first explicit bound on λ|C∗ (n)
by using a nice Ramsey-type result due to Erdős and Szekeres [21].

The second upper bound that we provide on λ|C∗ (n) is, until now, the best bound known
on (dim−Det)(n). It is obtained from the greedy algorithm described in Section 5 which
produces both distinguishing sets and determining sets of bounded size in polynomial time.
Hence, we also obtain a bound on the determining number of a twin-free graph.

Finally, we devote the last two sections to the family of graphs not containing the complete
bipartite graph K2,k as a subgraph. Concretely, we provide bounds and exact values of our
main functions restricted to graphs without the cycle C4 as a subgraph in Section 6. For
this purpose, we obtain relationships between the locating-domination number of a twin-free
graph and other two well-known parameters: the k-domination number and the matching
number. Hence, we get bounds on these two invariants similar to other relations provided in
a number of papers (see Section 6 for the details). Furthermore, we compute the restrictions
of (dim−Det)(n) and (λ − Det)(n) to the family of trees in Section 7, thereby closing the
study initiated by Cáceres et al. [8] on this class of graphs.

2 Lower bounds on (dim−Det)(n) and (λ− Det)(n)

The question raised by Boutin [7] arose from the fact that all graphs G where she computed
dim(G)− Det(G) have a very small value of this difference. Thus, Cáceres et al. [8] found a
family of graphs with constant determining number and metric dimension with linear growth:
the wheel graphs W1,n = K1+Cn for which dim(W1,n)−Det(W1,n) = ⌊25n⌋− 2. This implies
a lower bound on the maximum value of this difference, i.e., a lower bound on the function
(dim−Det)(n) (see Proposition 1.1 above). In this section, we improve this bound and also
give a lower bound on (λ−Det)(n). To do this, we next provide two appropriate families of
graphs.

For an integer r ≥ 6, let Tr be a path (u1, ..., ur) with a pendant vertex u0 adjacent to
u3. The corona product G ◦ K1 is the graph obtained from attaching a pendant vertex to
every vertex of any graph G. Let Gr = Tr ◦K1 and let Hr be the graph resulting from Gr

by attaching a pendant vertex v′0 to u0 (see Figure 1).
The following lemma gives some evaluations of the main parameters considered in the
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Figure 1: The graphs (a) Gr and (b) Hr.

paper for the graphs Gr, Hr and their complements Gr and Hr. These are the key tools for
proving Theorem 2.2 below.

Lemma 2.1. For every r ≥ 6, the following statements hold:

1. Det(Gr) = 0 and Det(Hr) = 1.

2. dim(Gr) = r and dim(Hr) = r + 1.

3. λ(Gr) = r + 1 and λ(Hr) = r + 2.

Proof. Let V (Gr) = {u0, ..., ur, v0, ..., vr} and E(Gr) = E(Tr) ∪ {{ui, vi} : 0 ≤ i ≤ r}. Also,
let V (Hr) = V (Gr)∪{v′0} and E(Hr) = E(Gr)∪{{u0, v′0}}. The three statements are proved
one by one.

1. Det(Gr) = 0 since the automorphism group of Gr is trivial. On the other hand,
Aut(Hr) = {idHr , f} where f interchanges v0 and v′0, and fixes any other vertex. Hence,
S = {v0} is clearly a minimum determining set of Hr and so Det(Hr) = 1.

2. Observe that every resolving set S of Gr contains either ui or vi for every 0 ≤ i ≤ r,
except for at most one. Otherwise, there are ui, vi, uj , vj 6∈ S for some i 6= j, which
implies that d(u, vi) = 1 = d(u, vj) for every u ∈ S and so S is not a resolving set
of Gr; a contradiction. Therefore, dim(Gr) ≥ r and equality is given by the set S =
{u0, u1, ..., ur−2, ur} which is a metric basis of Gr.

The same arguments apply to prove that S ∪ {v′0} is a metric basis of Hr, and then
dim(Hr) = r + 1.

3. Let D be a locating-dominating set of Gr. Note that either ui or vi belongs to D for
every 0 ≤ i ≤ r (otherwise N(vi) ∩D = ∅ and so D is not a dominating set of Gr; a
contradiction). Hence, λ(Gr) ≥ r+1 and equality holds since D = {u0, ..., ur} is clearly
a locating-dominating set of Gr.

Arguing as above, we can check that D ∪ {v′0} is a minimum locating-dominating set
of Hr and so λ(Hr) = r + 2.

With these values in hand, we next obtain lower bounds on (dim−Det)(n) and (λ −
Det)(n) which in particular improve Proposition 1.1 above due to Cáceres et al. [8].
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Theorem 2.2. For every n ≥ 14,

(dim−Det)(n) ≥ ⌊n
2
⌋ − 1 and (λ−Det)(n) ≥ ⌊n

2
⌋.

Proof. To prove that (dim−Det)(n) ≥ ⌊n2 ⌋ − 1 we only need to show that, for every n ≥ 14,
there exists a graphG of order n such that dim(G)−Det(G) = ⌊n2 ⌋−1. If n is even then letG =
Gn

2
−1. Indeed, Gn

2
−1 has order n and Lemma 2.1 yields dim(Gn

2
−1)−Det(Gn

2
−1) = ⌊n2 ⌋ − 1

(note that Det(G) = Det(G) holds for any graph G since Aut(G) = Aut(G)). Otherwise, n is
odd and we set G = H n−1

2
−1, whose order is n and satisfies dim(H n−1

2
−1)−Det(H n−1

2
−1) =

⌊n2 ⌋ − 1, by Lemma 2.1.
Considering the graphs Gn

2
−1 (when n is even) and Hn−1

2
−1 (when n is odd), one can use

the same arguments as above to show that (λ−Det)(n) ≥ ⌊n2 ⌋.

In the remainder of the paper, we shall exhibit wide classes of graphs where the restrictions
of (dim−Det)(n) and (λ−Det)(n) do not exceed n

2 . Thus, there are reasons to believe that
the bounds given above are the exact values of these functions. We state this as a conjecture.

Conjecture 1. There exists a positive integer n0 such that, for every n ≥ n0,

(dim−Det)(n) = ⌊n
2
⌋ − 1 and (λ−Det)(n) = ⌊n

2
⌋.

3 An upper bound on (dim−Det)(n) and (λ− Det)(n)

In this section, we assemble all the necessary machinery in order to prove that (dim−Det)(n)
and (λ−Det)(n) are bounded above by the function λ|C∗ (n) which is the maximum value of
λ(G) over all twin-free graphs G of order n (see Theorem 3.6). The proof requires basically
the following two ideas: the construction of a twin-free graph G̃ from an arbitrary graph G
based on the so called twin graph described in Subsection 3.1, and the relationship between
λ(G) and λ(G̃) given in Subsection 3.2.

3.1 The twin graph G∗

For a graph G, the twin graph G∗ is obtained from G by identifying vertices with the same
neighborhood. This construction and any of its variations (depending on the choice of closed
and/or open neighborhoods) completely characterize the original graph, which is the reason
why they have been considered for solving many problems in graph theory (see for instance
[29, 31, 35, 40]). In this subsection, we provide some properties of G∗ and a bound on Det(G)
in terms of |V (G∗)|, each of which is useful in the paper. The twin graph is formally defined
as follows.

Two different vertices u, v ∈ V (G) are twins if N(u) = N(v) or N [u] = N [v], i.e., no
vertex of V (G)\{u, v} distinguishes {u, v}. It is proved in [35] that this definition induces an
equivalence relation on V (G) given by u ≡ v if and only if either u = v or u and v are twins.
Thus, let u∗ = {v ∈ V (G) : u ≡ v} and consider the partition u∗1, ..., u

∗
r of V (G) induced by

this relation, where every ui is a representative of u∗i . The twin graph of G, written as G∗,
has vertex set V (G∗) = {u∗1, ..., u∗r} and edge set E(G∗) = {{u∗i , u∗j} : {ui, uj} ∈ E(G)}. Note
that, for every x ∈ V (G), we shall consider x∗ as a class in V (G), as well as a vertex of G∗.
The twin graph G∗ has the following properties.
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Lemma 3.1. [35] For every graph G, the following statements hold:

1. The graph G∗ is independent of the choice of the representatives ui, i.e.,

{u∗i , u∗j} ∈ E(G∗) ⇐⇒ {x, y} ∈ E(G) ∀x ∈ u∗i , y ∈ u∗j

2. Every class u∗i either induces a complete subgraph or is an independent set in G.

A vertex u∗i ∈ V (G∗) is of type (1) if |u∗i | = 1; otherwise u∗i is of type (KN). According
to Statement 2 of Lemma 3.1, a vertex u∗i of type (KN) is of type (K) or (N), depending on
weather u∗i induces a complete subgraph or is an independent set in G. Note that N [x] = N [y]
for every x, y ∈ u∗i whenever u

∗
i is of type (K), and N(x) = N(y) for every x, y ∈ u∗i whenever

u∗i is of type (N). For more properties of G∗ we refer the reader to [35].
Now, we give two lemmas considering the twin graph G∗ which will be helpful in the

remainder of the paper.

Lemma 3.2. For every graph G, no two different vertices u∗i , u
∗
j ∈ V (G∗) of type (1) are

twins in G∗.

Proof. Since u∗i 6= u∗j there exists a vertex u ∈ V (G)\{ui, uj} distinguishing {ui, uj}. Without
loss of generality, assume that ui ∈ NG(u) and uj 6∈ NG(u). Also, observe that u is not
contained in u∗i or u∗j since they are of type (1). Therefore, u∗i ∈ NG∗(u∗) and u∗j 6∈ NG∗(u∗),
which implies that u∗i and u∗j are not twins in G∗.

Let ΩG =
⋃

1≤i≤r u
∗
i \ {ui} which is composed by all but one vertex of every class of type

(KN). Clearly, this set has cardinality n− r and satisfies that no two vertices of V (G) \ΩG

are twins in G. Observe that ΩG is also independent of the choice of the representatives ui.
Using this set, we can prove the following result.

Lemma 3.3. Let G be a graph of order n such that G∗ has order r. Then,

Det(G) ≥ n− r.

In particular, λ(G)−Det(G) ≤ r − 1.

Proof. Let u∗i be a class of type (KN) in V (G). For each x, y ∈ u∗i , let f ∈ Aut(G) fixing
every vertex of G but x and y, which are interchanged. Obviously, f ∈ Stab(V (G) \ {x, y})
and f 6= idG. Hence, every determining set S of G contains either x or y. It follows that S
contains all but one vertex of each class of type (KN), i.e., |ΩG| = n− r vertices. Therefore,
Det(G) ≥ n− r and combining this with λ(G) ≤ n− 1 yields λ(G)−Det(G) ≤ r − 1.

3.2 Using locating-dominating sets of twin-free graphs

In this subsection, we provide an upper bound on the functions (dim−Det)(n) and (λ −
Det)(n) based on the locating-domination number of twin-free graphs. These graphs are
important for their own sake [1, 2, 10, 44], and also for their many applications to other
problems in graph theory [25, 29, 38]. Here, we construct a twin-free graph G̃ for every
graph G (whenever G∗ 6∼= K2) in such a way that we can obtain locating-dominating sets
of G from those of G̃. This construction and the relation between λ(G) and λ(G̃) given in
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Lemma 3.5 below are the key tools to prove the above-mentioned bound on (dim−Det)(n)
and (λ−Det)(n) (see Theorem 3.6).

A graph G is twin-free if it does not contain twin vertices. Observe that G∗ is not neces-
sarily twin-free (see for instance Figures 2(a) and 2(b)). However, we shall use this graph to
associate a twin-free graph G̃ to G. Indeed, let G̃ be the graph obtained from G∗ by attaching
a pendant vertex to every u∗i ∈ V (G∗) of type (KN) whenever u∗i has some twin in G∗ (see

Figure 2(c)). Thus, let us denote V (G̃) = V ∗ ∪L, where V ∗ = {u∗1, ..., u∗r} and L is the set of
pendant vertices adjacent to vertices of V ∗. Note again that, for every x ∈ V (G), x∗ denotes
a class in V (G), a vertex of V (G∗), as well as a vertex of V ∗ ⊆ V (G̃).

(1)

(1)

(1)

(1)

(K) (N)

(1)

(K) (K)

(a) (b) (c)

Figure 2: (a) A graph G and its classes in G∗, (b) the twin graph G∗ and (c) the associated
graph G̃.

We next provide two technical lemmas about G̃ which are useful in the proof of Theo-
rem 3.6 and other proofs of this paper.

Lemma 3.4. Let G be a graph of order n such that G∗ is not isomorphic to K2. Then, the
graph G̃ has order ñ ≤ n and is twin-free.

Proof. When obtaining G∗ from G, we ”lose” at least one vertex for each class of type (KN)
since they contain at least two vertices. Thus, every time we attach a pendant vertex to a
vertex of type (KN) for constructing G̃ from G∗, we do not exceed the order of G. Hence,
ñ ≤ n.

Now, we prove that G̃ is twin-free. On the contrary, suppose that G̃ has a pair of twins,
say u, v ∈ V (G̃). If u, v ∈ V ∗ then it is easy to see that they are also twins in G∗. Hence, at
least one of them is of type (KN), by Lemma 3.2, and so they are distinguished in G̃ by the
corresponding pendant vertex of L; a contradiction. Moreover, no two pendant vertices of L
are twins since they are adjacent to different vertices of V ∗. Therefore, we can assume that
u ∈ V ∗ and v ∈ L.

Let u = u∗i and let u∗j be such that N
G̃
(v) = {u∗j} for some 1 ≤ i, j ≤ r. Since u and v

are twins, we can assume that N
G̃
(u) = N

G̃
(v) = {u∗j} (otherwise N

G̃
[u] = N

G̃
[v] = {v, u∗j}

and so G̃ ∼= K2 since G̃ must be connected, which implies that G∗ ∼= K1; a contradiction
since G∗ ∼= K1 implies that G̃ ∼= K1). Hence, u∗i 6= u∗j and, by construction of G̃, u∗j must
have a twin in G∗, say u∗k. Clearly, u∗k 6= u∗i (otherwise u∗i and u∗j are twins in G∗ and so
G∗ ∼= K2 since N

G̃
(u∗i ) = NG∗(u∗i ) = {u∗j}; a contradiction). Thus, u∗k ∈ NG∗(u∗i ) since u∗j
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and u∗k are twins and we know that u∗j ∈ NG∗(u∗i ) but NG̃
(u∗i ) = NG∗(u∗i ) = {u∗j}, which is a

contradiction.

The following lemma establishes a relationship between λ(G) and λ(G̃), and is a key result
for proving Theorem 3.6.

Lemma 3.5. Let G be a graph of order n such that G∗ has order r. Then,

λ(G) ≤ λ(G̃) + n− r.

In particular, λ(G)−Det(G) ≤ λ(G̃).

Proof. Let S ⊆ V (G̃) be a minimum locating-dominating set of G̃. Observe that, for every
u ∈ V (G̃), there is a unique ui ∈ V (G) with 1 ≤ i ≤ r such that either u = u∗i or N

G̃
(u) =

{u∗i } (depending on whether u ∈ V ∗ or u ∈ L). Thus, let π(u) be such ui and π(S) = {π(u) :
u ∈ S}. Clearly, the set π(S) satisfies |π(S)| ≤ |S| = λ(G̃) because π(u) = π(v) whenever
u, v ∈ S with u ∈ V ∗, v ∈ L and N

G̃
(v) = {u}. Therefore, we will obtain the expected bound

by proving that S′ = π(S) ∪ ΩG is a locating-dominating set of G since |ΩG| = n− r.
First, observe that π(u) = ui implies that u∗i ⊆ S′ whenever u ∈ S. We claim that S′

is a distinguishing set of G. Indeed, given x, y ∈ V (G) \ S′, we shall prove that {x, y} is
distinguished by some vertex of S′. Obviously, we can assume that x∗ 6= y∗ in G∗ (otherwise
either x or y belongs to ΩG ⊆ S′; a contradiction since x, y ∈ V (G) \ S′). Since S is a
locating-dominating set of G̃, then there is u ∈ S distinguishing {x∗, y∗} in G̃, and we can
suppose that u 6= x∗ 6= y∗ (otherwise either u = x∗ ⊆ S′ or u = y∗ ⊆ S′; a contradiction).

If u ∈ L then, without loss of generality, let us assume that x∗ ∈ N
G̃
(u) and y∗ 6∈ N

G̃
(u).

Thus, π(u) = ui with u∗i = x∗ and so x∗ ⊆ S′; a contradiction with x ∈ V (G) \ S′. Hence,
u ∈ V ∗ and so u = u∗i for some 1 ≤ i ≤ r, which leads to π(u) = ui ∈ S′. Assuming
that x∗ ∈ N

G̃
(u) and y∗ 6∈ N

G̃
(u) (the opposite case is similar), we have that x ∈ NG(ui)

and y 6∈ NG(ui), by Statement 1 of Lemma 3.1, which implies that ui distinguishes {x, y}.
Therefore, S′ is a distinguishing set of G and a similar analysis shows that it is also a
dominating set.

We have just proved that λ(G) ≤ λ(G̃) + n − r, which combined with Det(G) ≥ n − r
(see Lemma 3.3) yields λ(G) −Det(G) ≤ λ(G̃), as claimed.

For any class of graphs C, we define (dim−Det)|C(n), (λ − Det)|C (n) and λ|C(n) as in
Section 1 but restricting their domains to the graphs of C. Let C∗ be the class of twin-free
graphs. Thus, the function λ|C∗ (n) can be considered for every n ≥ 4 since P4 is clearly the
smallest twin-free graph.

We now reach the main result of this section which improves significatively Expression (1).

Theorem 3.6. For every n ≥ 4,

(dim−Det)(n) ≤ (λ−Det)(n) ≤ λ|C∗ (n).

Proof. Since the first inequality is obvious, we only need to show that (λ−Det)(n) ≤ λ|C∗ (n).
We begin by proving the following two claims.

Claim 1. For a graph G, let H be the graph obtained from G by attaching a pendant vertex
u to a vertex v ∈ V (G). Then, λ(G) ≤ λ(H).
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Proof. Let S ⊆ V (H) be a minimum locating-dominating set of H. Clearly, if u /∈ S then
S ⊆ V (G) is also a locating-dominating set of G, and so λ(G) ≤ λ(H). Otherwise u ∈ S and
it is easy to check that S′ = (S \ {u}) ∪ {v} is a locating-dominating set of G. Therefore,
λ(G) ≤ |S′| ≤ λ(H).

Claim 2. λ|C∗ (n) ≤ λ|C∗ (n+ 1).

Proof. Consider a twin-free graph G of order n such that λ(G) = λ|C∗ (n). To prove the claim,
it suffices to find a twin-free graph H of order n + 1 such that λ(H) ≥ λ(G). Indeed, let H
be the graph obtained from G by attaching a pendant vertex u to a vertex v ∈ V (G) such
that no neighbor of v has degree 1 in G. Note that this is possible since G is not the disjoint
union of copies of K1 or K2, which is neither connected nor twin-free. Hence, H has order
n+1 and is clearly twin-free. Moreover, Claim 1 ensures that λ(H) ≥ λ(G), as required.

Now, we are able to prove the theorem. Thus, let G be a graph of order n such that
λ(G) −Det(G) = (λ−Det)(n). Lemma 3.5 yields

(λ−Det)(n) = λ(G) −Det(G) ≤ λ(G̃). (2)

On the other hand, if G∗ ∼= K2 then, by Lemma 3.3, we have (λ−Det)(n) = λ(G)−Det(G) ≤
1 < n

2 ; a contradiction with Theorem 2.2. Hence, G∗ 6∼= K2 and so Lemma 3.4 says that G̃ is

twin-free and ñ = |V (G̃)| ≤ n. Thus, we get

λ(G̃) ≤ λ|C∗ (ñ) ≤ λ|C∗ (n), (3)

the last inequality being a consequence of Claim 2. Therefore, combining Expressions (2)
and (3) gives the expected inequality.

The preceding theorem implies that bounding the function λ|C∗ (n) yields bounds on
(dim−Det)(n) and (λ − Det)(n). Thus, we will be mainly concerned with the locating-
domination number of twin-free graphs in the following two sections.

Theorems 2.2 and 3.6 give λ|C∗ (n) ≥ ⌊n2 ⌋ and, throughout this paper, we shall find
numerous conditions for a twin-free graph to satisfy λ(G) ≤ n

2 . Thus, we believe that the
following conjecture, which implies most of Conjecture 1, is true.

Conjecture 2. There exists a positive integer n1 such that, for every n ≥ n1,

λ|C∗ (n) = ⌊
n

2
⌋.

4 From minimal dominating sets to locating-dominating sets

In this section, we present a variant of a theorem by Ore [39] in domination theory which
leads us to a bound on λ|C∗ (n) (see Corollary 4.6) by means of a classical result due to Erdős
and Szekeres [21]. Further, this variant allows us to relate the locating-domination number
of a twin-free graph to classical graph parameters: upper domination number, independence
number, clique number and chromatic number. All these relations produce a number of
sufficient conditions for a twin-free graphG to verify λ(G) ≤ n

2 , i.e., they support Conjecture 2
in numerous cases (see Corollaries 4.3, 4.4 and 4.5).
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A set S ⊆ V (G) is a minimal dominating set if no proper subset of S is a dominating
set of G (minimal locating-dominating sets are defined analogously). The following theorem
due to Ore [39] is one of the first results in the field of domination, which is an area that has
played a central role in graph theory for the last fifty years. We refer the reader to [30] for
an extensive bibliography on domination related concepts.

Theorem 4.1. [39] Let G be a graph without isolated vertices and let D ⊆ V (G) be a minimal
dominating set of G. Then, V (G) \D is a dominating set of G. Consequently, γ(G) ≤ n

2 .

Observe that an analogue of this last result but for locating-dominating sets of twin-free
graphs would prove in the affirmative Conjecture 2. Unfortunately, the complement of a
minimal locating-dominating set of a twin-free graph is not necessarily a locating-dominating
set, as shown in Figure 3. However, we next provide a similar relation between minimal
dominating sets and locating-dominating sets which improves Theorem 4.1 in the twin-free
case.

Figure 3: A twin-free graph with a minimal locating-dominating set (depicted as square
vertices) whose complement is not a locating-dominating set.

Theorem 4.2. Let G be a twin-free graph and let D ⊆ V (G) be a minimal dominating set
of G. Then, V (G) \D is a locating-dominating set of G.

Proof. Let D be a minimal dominating set of G. By Theorem 4.1, we only need to prove that
V (G) \D is a distinguishing set of G. Thus, we shall show that, for every x, y ∈ D, there is
a vertex u ∈ V (G) \D distinguishing {x, y}. Indeed, it is proved in [39] that D is a minimal
dominating set if and only if each vertex x ∈ D satisfies that either N(x) ⊆ V (G) \ D or
N(u) ∩ D = {x} for some u ∈ V (G) \ D. Hence, if N(x), N(y) ⊆ V (G) \D then {x, y} is
distinguished by some u ∈ V (G) \D since G is twin-free. Otherwise, we can assume without
loss of generality that N(u) ∩D = {x} for some u ∈ V (G) \D and so {x, y} is distinguished
by u. Therefore, V (G) \D is a locating-dominating set of G, as claimed.

Now, we show a series of consequences of this last result which relate λ(G) to well-known
graph parameters when G is twin-free. The upper domination number Γ(G) of a graph G is
the maximum cardinality of a minimal dominating set ofG. This is a heavily studied invariant
which has been related to other well-known parameters in the area of domination (see [30] for
multiple examples). With the same spirit, the following consequence of Theorem 4.2 relates
the upper domination number to the locating-domination number of a twin-free graph, and
supports the validity of Conjecture 2.

Corollary 4.3. Let G be a twin-free graph. Then,

λ(G) ≤ n−max {Γ(G),Γ(G)− 1}.
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In particular, λ(G) ≤ n
2 when either Γ(G) ≥ n

2 or Γ(G) ≥ n
2 + 1.

Proof. We deduce from Theorem 4.2 that λ(G) ≤ n−Γ(G) for every twin-free graph G. Also,
Theorem 7 of [34] shows that |λ(G)−λ(G)| ≤ 1 and so λ(G) ≤ λ(G)+1 ≤ n−Γ(G)+1 since
G is also twin-free. Therefore, λ(G) ≤ min{n − Γ(G), n − Γ(G) + 1}, which is the expected
bound.

Recall that the independence number α(G) and the clique number ω(G) are the maximum
cardinalities of an independent set and a complete subgraph of G, respectively. The following
result relates these two classical parameters to λ(G) when G is twin-free, and gives another
sufficient condition for G to have λ(G) ≤ n

2 .

Corollary 4.4. Let G be a twin-free graph. Then,

λ(G) ≤ n−max{α(G), ω(G) − 1}.

In particular, λ(G) ≤ n
2 when either α(G) ≥ n

2 or ω(G) ≥ n
2 + 1.

Proof. Observe first that every independent set I of order α(G) is a minimal dominating set
of G. Indeed, I is a dominating set since every x ∈ V (G) \ I has a neighbor in I (otherwise
I is not an independent set of maximum order) and it is minimal since N(u) ⊆ V (G) \ I for
every u ∈ I. Hence, α(G) ≤ Γ(G), and so ω(G) = α(G) ≤ Γ(G). Thus, combining these
inequalities with Corollary 4.3 leads us to the bound since G is twin-free and so is G.

The chromatic number of G, denoted by χ(G), is the smallest number of classes needed to
partition V (G) so that no two adjacent vertices belong to the same class. A classical result in

graph theory establishes that χ(G) ≤ n+ω(G)
2 (see for instance [14]). Applying this to G and

G, we can easily deduce from Corollary 4.4 the following bound on λ(G) in terms of χ(G)
and χ(G) which in particular supports Conjecture 2.

Corollary 4.5. Let G be a twin-free graph. Then,

λ(G) ≤ 2n−max{2χ(G), 2χ(G)− 1}.

Consequently, λ(G) ≤ n
2 when either χ(G) ≥ 3

4n or χ(G) ≥ 3
4n+ 1

2 .

Erdős and Szekeres [21] proved that every graph of order n contains either a complete

subgraph or an independent set of cardinality at least ⌈ log2 n2 ⌉. On account of this result and
Corollary 4.4, we obtain our first upper bound on λ|C∗ (n), and consequently on (dim−Det)(n)
and (λ−Det)(n) (by Theorem 3.6). Thus, the following corollary improves significatively the
bound (dim−Det)(n) ≤ n− 2 due to Cáceres et al. [8] (see Proposition 1.1 above).

Corollary 4.6. For every n ≥ 4,

(dim−Det)(n) ≤ (λ−Det)(n) ≤ λ|C∗ (n) ≤ n− ⌈ log2 n
2
⌉+ 1.
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5 A greedy algorithm for finding distinguishing sets and de-

termining sets of twin-free graphs

Babai [3] defined distinguishing sets because of their usefulness in the graph isomorphism
problem. Indeed, by constructing a canonical labeling, he proved that deciding whether a
graph G of order n is isomorphic to any other can be done in o(ns+3) time whenever G has a
distinguishing set of size s. Thus, Babai provided the following result on distinguishing sets
by means of a probabilistic argument.

Lemma 5.1. [3] Let G be a graph of order n and let k be such that |N(x)∆N(y)| ≥ k for
any x, y ∈ V (G). Then, G has a distinguishing set of cardinality at most ⌈2n logn

k+2 ⌉ provided
k > 4 log n.

Note that the graphs considered in this last result are twin-free. Thus, we deduce from
Lemma 5.1 and Remark 1.2 another result supporting Conjecture 2: a graph G of order
n ≥ 32 satisfies λ(G) ≤ n

2 whenever |N(x)∆N(y)| > 4 log n for any x, y ∈ V (G). Similarly,
we provide in this section a polynomial time algorithm that produces distinguishing sets of
bounded size but having no restriction on the twin-free graph G. Hence, we obtain one of the
main results of this paper which is an explicit upper bound on λ|C∗ (n) (see Subsection 5.1).
Also, this algorithm produces determining sets of bounded size and so an upper bound on the
determining number of a twin-free graph (see Subsection 5.2). To do this, we next provide
some notation.

For any set D ⊆ V (G), let us define a relation on V (G) given by u ∼D v if and only if
either u = v or {u, v} is distinguished by no vertex of D. It is easy to check that this is an
equivalence relation, and so we denote by [u]D the set of vertices v ∈ V (G) so that u ∼D v.
Thus, let D1 = {u ∈ V (G) \ D : |[u]D| = 1} and D>1 = V (G) \ (D ∪ D1). Observe that
D,D1,D>1 form a partition of V (G), where any of these sets may be empty. Actually, D is
a distinguishing set if and only if D>1 = ∅.

The following greedy algorithm gives a partition of V (G) into three sets so that, combining
them properly, one obtains distinguishing sets and determining sets of G of bounded size, as
we shall see in Lemmas 5.2 and 5.5.

Algorithm 1:

Input: A twin-free graph G and a vertex u0 ∈ V (G).
Output: An appropriate partition of V (G) into three subsets A,B,C.

1 A← {u0}
2 B ← A1

3 C ← A>1

4 while ∃ u, x, y ∈ C such that [x]A = [y]A and [x]A∪{u} 6= [y]A∪{u} do

5 A← A ∪ {u}
6 B ← A1

7 C ← A>1

8 end

9 return A,B,C

12



5.1 A better upper bound on λ|C∗ (n)

Colbourn et al. [18] showed that the problem of computing the locating-domination number
of an arbitrary graph is NP-hard. Hence, when designing polynomial time algorithms for
computing this parameter, it is necessary the restriction to specific families of graphs. Indeed,
linearity for trees and series-parallel graphs was proved in [18]. Likewise, for a twin-free graph
G, we next show that Algorithm 1 returns distinguishing sets of bounded size in polynomial
time. Further, this gives a bound on λ|C∗ (n) which improves that given in Corollary 4.6, and
consequently the upper bound of Proposition 1.1 by Cáceres et al. [8].

Lemma 5.2. Let A,B,C be the sets obtained by application of Algorithm 1 to a twin-free
graph G and any vertex u0 ∈ V (G). Then, A ∪ B, A ∪ C and B ∪ C are distinguishing sets
of G.

Proof. Note first that Algorithm 1 returns a partition of V (G) into three subsets A,B,C
such that B = A1, C = A>1 and no pair {x, y} ⊆ C with [x]A = [y]A is distinguished by any
u ∈ C \ {x, y}. G is twin-free and so there must be a vertex u ∈ V (G) \ {x, y} distinguishing
{x, y}, which implies that u ∈ A ∪ B. Hence, A ∪ B is a distinguishing set of G since every
pair {x, y} ⊆ C is distinguished by some u ∈ B whenever [x]A = [y]A (otherwise [x]A 6= [y]A
and so {x, y} is distinguished by some u ∈ A). Also, A∪C is a distinguishing set since every
x ∈ V (G)\(A∪C) = B is uniquely determined by A ⊆ A∪C. Finally, to prove that B∪C is
a distinguishing set, let x1, ..., x|A| be the elements of A sorted by appearance in Algorithm 1.
We shall prove that every pair {xi, xj} with i < j is distinguished by some vertex of B ∪ C.

In the i-th step of the algorithm, a vertex u ∈ C is added to A and becomes xi because u
distinguishes a pair {x, y} ⊆ C such that [x]A = [y]A and so this class is splat into two new
classes [x]A∪{xi} and [y]A∪{xi}. Thus, any pair {α, β} with α ∈ [x]A∪{xi} and β ∈ [y]A∪{xi} is
distinguished by xi and non-distinguished by any of x1, ..., xi−1. Moreover, in the following
steps, it always remains one such pair {α, β} ⊆ B ∪ C. Indeed, when u is sent to A, there is
another vertex u′ ∈ [u]A which either stays in C or goes to B since C is formed by vertices
of non-unitary classes. It follows that for every pair {xj, xk} with j < k, there exists a pair
{α, β} ⊆ B ∪ C non-distinguished by xj but distinguished by xk. Thus, assume without
loos of generality that xj ∈ N(α) ∩ N(β) and xk ∈ N(α) \ N(β) (the remaining cases are
analogous). Hence, {xj , xk} is distinguished by β, which completes the proof.

The pigeonhole principle ensures that one set among A,B,C has cardinality at least ⌈n3 ⌉
and so one of A ∪ B,A ∪ C,B ∪ C has cardinality at most ⌊23n⌋. Then, by Lemma 5.2 and
Remark 1.2, we have the following result.

Theorem 5.3. Let G be a twin-free graph of order n ≥ 4. Then, there exists a locating-
dominating set of G of cardinality at most ⌊23n⌋ + 1 which can be computed in polynomial
time. In particular,

λ|C∗ (n) ≤ ⌊
2

3
n⌋+ 1.

The next corollary summarizes some of the main results of this paper, i.e., Theorems 2.2,
3.6 and 5.3. As far as we know, these are the best bounds on the function (dim−Det)(n).

Corollary 5.4. For every n ≥ 14,

⌊n
2
⌋ − 1 ≤ (dim−Det)(n) ≤ (λ−Det)(n) ≤ λ|C∗ (n) ≤ ⌊

2

3
n⌋+ 1.
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5.2 An upper bound on Det(G) for twin-free graphs

Blaha [5] showed that finding a minimum base of a permutation group is NP-hard and pro-
vided a greedy algorithm for constructing bases. The same algorithm was given by Gibbons
and Laison [27] in the particular case of automorphism groups of graphs: for a graph G of or-
der n, the algorithm returns a determining set of size O(Det(G) log log n). Observe that this
algorithm does not yield a bound on the determining number of G in terms of n. However,
we next show that Algorithm 1 gives an explicit upper bound on Det(G) when G is twin-free
by constructing a determining set of bounded size in polynomial time.

Lemma 5.5. Let A,B,C be the sets obtained by application of Algorithm 1 to a twin-free
graph G and any vertex u0 ∈ V (G). Then, A and B ∪C are determining sets of G.

Proof. We have proved in Lemma 5.2 that B ∪ C is a distinguishing set of G, which implies
that it is also a resolving set and so it is a determining set. To prove that A is a determining set
of G, we first claim that stab(A) = stab(A∪{x}) for every x ∈ B. Indeed, stab(A) ⊇ stab(A∪
{x}), by definition of the stabilizer. Also, note thatN(x)∩A is unique sinceB = A1, and recall
that automorphisms preserve adjacencies. Thus, no automorphism fixing every vertex of A
can interchange x with any other vertex of V (G). Hence, stab(A) ⊆ stab(A∪{x}). Therefore,
extending this argument to every vertex of B, we obtain that stab(A) = stab(A ∪ B). But
A∪B is a distinguishing set by Lemma 5.2 and so it is a determining set, which implies that
stab(A ∪B) = stab(A) = {idG}. It follows that A is a determining set.

Reasoning as in the previous subsection, we have that either A or B ∪ C has cardinality
at most ⌊n2 ⌋ and so, by Lemma 5.5, we obtain the following bound.

Theorem 5.6. Let G be a twin-free graph of order n ≥ 4. Then, there exists a determining
set of G of cardinality at most ⌊n2 ⌋ which can be computed in polynomial time. In particular,

Det(G) ≤ ⌊n
2
⌋.

Note that, although the graph depicted in Figure 4 does not prove tightness for this last
result, this construction shows that we are very close to a tight bound.

Figure 4: A graph G with a determining set (illustrated with square vertices) of size Det(G) =

⌊ |V (G)|
2 ⌋ − 1.
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6 Useful tools for the problems restricted to graphs without

K2,k as subgraph

6.1 k-domination

The concept of k-dominating set was introduced by Fink and Jacobson [24] as a generalization
of classical dominating sets of graphs. There is a wealth of literature about this variety of
domination (see [15] and the references given there). Specifically, the k-domination number
γk(G) has been related to other graph parameters such as the path covering number [19], the
order and the minimum degree [23] and the j-dependence number [24]. In this subsection, we
establish a relationship between γk(G) and λ(G) when G does not contain K2,k as a subgraph.
To do this, we require Lemma 6.1 below which, in addition, is a key result in the following
subsection for computing the restriction of (λ−Det)(n) to this class of graphs when k = 2.

Given a set D ⊆ V (G), a vertex x ∈ V (G) \ D and a positive integer k, we say that x
is k-dominated by D if |N(x) ∩D| ≥ k, and D is a k-dominating set of G if every vertex of
V (G) \ D is k-dominated by D. The k-domination number of G, denoted by γk(G), is the
minimum cardinality of a k-dominating set of G. It is straightforward that γ1(G) = γ(G)
and γk(G) ≤ γℓ(G) for every k, ℓ with 1 ≤ k ≤ ℓ.

Let K2,k denote the class of graphs not containing K2,k as a (not necessarily induced)
subgraph. The following lemma contains the main idea for proving Proposition 6.2.

Lemma 6.1. Let G ∈ K2,k, D ⊆ V (G) and x ∈ V (G) \D. If x is k-dominated by D then,
for every y ∈ V (G) \D, the pair {x, y} is distinguished by some vertex of D.

Proof. Let y ∈ V (G) \ D and A ⊆ N(x) ∩ D such that |A| = k. Clearly, some vertex of A
distinguishes {x, y} since otherwise A ⊆ N(y) and so the induced subgraph by A ∪ {x, y}
contains a copy of K2,k, which is impossible.

Hence, a k-dominating set of G is a locating-dominating set whenever G ∈ K2,k but the
converse is not true in general, as shown in Figure 5. Further, it was proved in [16] that
γk(G) ≤ k

k+1n for any graph G such that k ≤ δ(G). Thus, we have the following result.

Proposition 6.2. For every G ∈ K2,k, it holds that

γ(G) ≤ λ(G) ≤ γk(G).

In particular, λ(G) ≤ k
k+1n whenever δ(G) ≥ k.

Figure 5: A graph in K2,2 with a locating-dominating set (depicted as square vertices) which
is not a 2-dominating set.
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Let us denote by C4 the class K2,2, i.e., the set of graphs not having C4 = K2,2 as a
subgraph. The following corollary is a consequence of Proposition 6.2 when k = 2, and gives
essentially the same bound as the one provided by Corollary 5.4. However, this bound will
be improved in the following subsection (see Theorem 6.7).

Corollary 6.3. Let G ∈ C4 be such that δ(G) ≥ 2. Then, λ(G) −Det(G) ≤ 2
3n.

6.2 Matchings

The matching number α′(G) has been related to many domination parameters (see for in-
stance [6, 17, 32, 33]). As an example, Henning et al. [32] related the matching number to the
total domination number γt(G), i.e., the minimum size of a set of vertices dominating every
vertex of G. Concretely, they proved that γt(G) ≤ α′(G) whenever G is either a claw-free
graph or a k-regular graph with k ≥ 3. In the same vein, we obtain a similar relationship
between α′(G) and λ(G) when G is a twin-free graph in C4 (see Proposition 6.6). Besides
its independent interest, we apply this relation to study the functions (dim−Det)|C4 (n) and
(λ−Det)|C4 (n) (see Theorems 6.7 and 6.8).

A matching M in a graph G is a subset of pairwise disjoint edges of G, and the matching
number of G, written as α′(G), is the cardinality of a maximum matching in G. We denote
by M the set of vertices of G in no edge of M . Observe that M is an independent set
when M is maximum (otherwise there is an edge e = {x, y} with x, y ∈ M and so the
matching M ′ = M ∪ {e} has more edges than M , which is impossible). The following is a
technical lemma that captures all possible situations for the edges of a maximum matching
(see Figure 6).

Lemma 6.4. Let M be a maximum matching in G. Then, for every {u, v} ∈M , exactly one
of the following cases holds:

1. N(u) ∩M = N(v) ∩M = ∅.

2. Either N(u) ∩M 6= ∅ or N(v) ∩M 6= ∅, but not both.

3. N(u) ∩M = N(v) ∩M = {x} for some x ∈M .

Proof. Let M be a maximum matching in G. It is enough to prove that there is no edge
e = {u, v} in M and vertices x, y ∈M such that x ∈ N(u) and y ∈ N(v). Indeed, (M \{e})∪
{{u, x}, {v, y}} would be a matching in G with more edges than M , which is impossible.

M

M

Figure 6: The three cases for the edges of a maximum matching M provided by Lemma 6.4.
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For every matching M in G, let us consider the set

UM = {x ∈M : N(x) ⊆ e for some e ∈M}.

Note that, when M is maximum, UM is formed by all vertices x ∈ M such that δ(x) = 1 or
N(x) = e for some e ∈ M . We next show another technical result which is required in the
proof of Proposition 6.6.

Lemma 6.5. Let G be a twin-free graph. Then, there exists a maximum matching M such
that UM = ∅ which can be computed in polynomial time.

Proof. Let M be a maximum matching in G. Observe first that no two vertices x, y ∈ UM

satisfy N(x), N(y) ⊆ e for any e ∈ M (otherwise Lemma 6.4 yields δ(x) = δ(y) = 1 and
N(x) = N(y), which contradicts the fact that G is twin-free).

If UM 6= ∅ then let x ∈ UM and e = {u, v} in M with N(x) ⊆ e. Thus, assuming that
u ∈ N(x), we claim that M ′ = (M \ {e}) ∪ {{u, x}} is a maximum matching in G such that

UM ′ = UM \{x}. Clearly, UM \{x} ⊆ UM ′ . Indeed, for every y ∈ UM \{x} ⊆M
′
there exists

an edge f ∈ M such that N(y) ⊆ f . As remarked above, f 6= e since x 6= y, which implies
that f ∈ (M \ e) ⊆M ′ and so y ∈ UM ′ .

We now prove that UM ′ ⊆ UM \ {x}. Let y ∈ UM ′ such that N(y) ⊆ f for some f ∈M ′.
If f ∈ M \ {e} then y ∈ UM \ {x} (note that y 6= v since v ∈ N(u) and so there is no
f ∈ M \ {e} with N(v) ⊆ f). Otherwise, f = {u, x}. If y 6= v then y /∈ N(x) since M is an
independent set, and then N(y) = {u}. However, N(x) ⊆ e and so Lemma 6.4 ensures that
N(x) = N(y) = {u}; a contradiction since G is twin-free. Therefore, y = v and we easily get
either N(v) = N(x) = {u} or N [v] = N [x] = {u, v, x}; again a contradiction. Thus, we have
proved that UM ′ = UM \ {x} and iterating this process gives a maximum matching M∗ with
UM∗ = ∅. Observe that M can be found in polynomial time [20] and M∗ is easily obtained
from M also in polynomial time. Hence, we can compute M∗ in polynomial time, as claimed.

We now reach one of the main results of this section which relates α′(G) and λ(G) when
G is a twin-free graph in C4.

Proposition 6.6. Let G ∈ C4 be a twin-free graph of order n ≥ 4. Then, there is a locating-
dominating set of G of cardinality α′(G) which can be computed in polynomial time, and
consequently

λ(G) ≤ α′(G).

In particular, λ(G) ≤ n
2 .

Proof. Let M be a maximum matching in G satisfying that UM = ∅, which exists by
Lemma 6.5. We consider a partition V (G) = V1 ∪ V2 ∪ M such that e ∩ V1 and e ∩ V2

are non-empty for every e ∈ M , i.e., V1 and V2 contain the endpoints of every e ∈ M , re-
spectively. By Lemma 6.4, for every e = {u, v} in M and x ∈ M with N(x) ∩ e = {u}, we
can assume without loss of generality that u ∈ V1. This means that every e = {u, v} in M
so that N(u) ∩M 6= ∅ and N(v) ∩M = ∅ satisfies u ∈ V1. Thus, we shall prove that V1 is a
locating-dominating set of G.

It is easy to check that V1 is a dominating set of G by construction of V1 and V2. Further-
more, every x ∈M is 2-dominated by V1. Indeed, N(x) intersects at least two different edges
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of M since UM = ∅. Thus, let u, u′ ∈ N(x) with {u, v}, {u′, v′} ∈ M for some v, v′ ∈ V (G).
Since we can suppose u, u′ ∈ V1, we have that x is 2-dominated by {u, u′} ⊆ V1.

To prove that V1 is a distinguishing set of G, we claim that every pair {x, y} ⊆ V2 ∪M
is distinguished by some u ∈ V1. By Lemma 6.1, we can assume that x, y ∈ V2 since every
vertex of M is 2-dominated by V1 and G ∈ C4. Thus, let u, u′ ∈ V1 such that {u, x}, {u′, y} ∈
M . Hence, one of u or u′ resolves {x, y} since otherwise u ∈ N(y) and u′ ∈ N(x), which
produces the cycle (u, x, u′, y); a contradiction with G ∈ C4. Therefore, we have proved that
V1 is a locating-dominating set of G (obtained in polynomial time by Lemma 6.5) and so
λ(G) ≤ |V1| = α′(G) ≤ n

2 , as claimed.

As an application of this last result, we next compute the exact value of (λ−Det)|C4 (n)
and give bounds on (dim−Det)|C4 (n), supporting again the validity of Conjecture 2.

Theorem 6.7. For every n ≥ 14, it holds that

(λ−Det)|C4 (n) = ⌊
n

2
⌋.

Proof. Mimicking the proof of Theorem 2.2 on (λ−Det)(n) yields (λ−Det)|C4 (n) ≥ ⌊
n
2 ⌋ since

the graphs considered belong to C4. To prove the reverse inequality, it suffices to show that
every graph G ∈ C4 of order n satisfies λ(G) − Det(G) ≤ n

2 . Indeed, let us assume first that

G∗ 6∼= K2 (otherwise λ(G)−Det(G) ≤ 1 < n
2 by Lemma 3.3). Thus, the graph G̃ described in

Section 3 satisfies λ(G) − Det(G) ≤ λ(G̃), by Proposition 3.5. Also, Lemma 3.4 guarantees
that G̃ is twin-free and has order ñ ≤ n. Hence, Proposition 6.6 gives λ(G̃) ≤ ñ

2 ≤ n
2 since it

is easily seen that G̃ ∈ C4. Therefore, we have proved that λ(G) − Det(G) ≤ λ(G̃) ≤ n
2 , as

required.

Theorem 6.8. For every n ≥ 49, it holds that

⌊2
7
n⌋ ≤ (dim−Det)|C4 (n) ≤ ⌊

n

2
⌋.

Proof. The upper bound follows immediately from Expression (1) and Theorem 6.7. For the
lower bound, we shall construct a graph G of order n not containing C4 as a subgraph such
that (dim−Det)(G) = ⌊27n⌋. Indeed, let n = 7q + s for some integers q, s with q ≥ 7 and
0 ≤ s < 7. The graph Tq,0 is given by attaching a copy of T6 to every vertex of Tq−1 as shown
in Figure 7(a) (recall that the tree Tr is described in Section 2). If s ∈ {1, 2, 3} then Tq,s is
obtained from Tq,0 by replacing the edge {u1, u2} by a path of length s+1 (see Figure 7(b)).
Otherwise, s ∈ {4, 5, 6} and Tq,s comes from Tq,0 by attaching a path of length s to u1 (see
Figure 7(c)). It is clear that aut(Tq,s) = idTq,s , which implies that Det(Tq,s) = 0. Further, the
metric bases illustrated in Figure 7 (see Section 7 for more information on metric dimension
of trees) show that

dim(Tq,s) =





2q if s ∈ {0, 1, 2, 3}

2q + 1 if s ∈ {4, 5, 6}
But n = |V (Tq,s)| and so dim(Tq,s) = ⌊27n⌋. Therefore, setting G ∼= Tq,s yields the expected
bound.
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u1 u2 u3 u4 u5 uq−3 uq−2 uq−1

u0

u1 u2 u3 u4 u5 uq−3 uq−2 uq−1

u0

(a) (b)

u1 u2 u3 u4 u5 uq−3 uq−2 uq−1

u0

(c)

Figure 7: Metric bases (depicted as square vertices) of the graphs (a) Tq,0, (b) Tq,3 and (c)
Tq,5.

7 Computing the functions restricted to trees

Cáceres et al. [8] started the study of the difference between the determining number and the
metric dimension of trees when trying to answer the question raised by Boutin [7]. Actually,
they constructed a family of trees where this difference is Ω(

√
n). This section completely

solves this particular problem showing that the trees Tq,s described in the preceding section
have the maximum value of dim(G)−Det(G) in the class of trees (see Theorem 7.4). Moreover,
we compute the maximum value of λ(G)−Det(G) restricted to trees (see Theorem 7.5).

Some of the terminology that we adopt in this section can be found in [11]. Given a tree
T , a vertex of degree at least 3 is called a major vertex of T . A pendant vertex ℓ is a terminal
vertex of a major vertex u if the major vertex closest to ℓ in T is u. The terminal degree of a
major vertex u, denoted by ter(u), is the number of terminal vertices of u. A major vertex
u is an exterior major vertex of T if it has positive terminal degree in T . The set of exterior
major vertices of T is denoted by Ex(T ).

The metric dimension of any tree is well-known (see for instance [11, 28, 37, 42]) and its
formula is exhibited next.

Proposition 7.1. [37] If T is a tree that is not a path, then

dim(T ) =
∑

u∈Ex(T )

(ter(u)− 1).
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First, we provide two technical lemmas which aid in proving Theorem 7.4. We denote
by ter′(u) the number of different distances between u and any of its terminal vertices. For
every u ∈ Ex(T ), we write Nu for the set of vertices in some u-ℓ shortest path, where ℓ is a
terminal vertex of u; the cardinality of Nu is denoted by nu.

Lemma 7.2. Let T be a tree and u ∈ Ex(T ). Then, ter′(u) ≤ 2
7nu + 1.

Proof. Let d1, d2, ..., dter′(u) with d1 < d2 < ... < dter′(u) be the different distances between u

and any of its terminal vertices. Thus, nu ≥ (

ter′(u)∑

i=1

di) + 1, and consequently

nu ≥ (

ter′(u)∑

i=1

i) + 1 =
ter′(u)(ter′(u) + 1)

2
+ 1.

Hence, an easy computation shows that ter′(u) ≤
√
8nu−7−1

2 ≤ 2
7nu + 1.

Lemma 7.3. Let T be a tree that is not a path. Then,

Det(T ) ≥
∑

u∈Ex(T )

(ter(u)− ter′(u)).

Proof. Let S be a minimum determining set of T . As shown in [22], we can assume that S
is only formed by pendant vertices. Consider a vertex u ∈ Ex(T ) and two of its terminal
vertices, say ℓ and ℓ′, such that d(u, ℓ) = d(u, ℓ′). Clearly, either ℓ or ℓ′ belongs to S (otherwise
there is an automorphism interchanging the u − ℓ path and the u − ℓ′ path, and fixing the
remaining vertices of V (T ) but S is a determining set; a contradiction). Therefore, at least
ter(u) − ter′(u) vertices of Nu are in S, and extending this argument to Ex(T ) yields the
bound.

We now achieve one of the main results of this section which provides the exact value of
the function (dim−Det)|T (n), where T denotes the family of trees.

Theorem 7.4. For every n ≥ 49, it holds that

(dim−Det)|T (n) = ⌊
2

7
n⌋.

Proof. We first prove that (dim−Det)(T ) ≤ ⌊27n⌋ for any tree T of order n. Thus, we can
assume that T is not a path since it is clear that dim(Pn) − Det(Pn) = 1 − 1 = 0 for every
n ≥ 2. By Proposition 7.1,

dim(T ) =
∑

u∈Ex(T )

(ter(u)− 1)

=
∑

u∈Ex(T )

(ter(u)− ter′(u)) +
∑

u∈Ex(T )

(ter′(u)− 1).

Hence, according to Lemma 7.3, we get

dim(T )−Det(T ) ≤
∑

u∈Ex(T )

(ter′(u)− 1) ≤ 2

7
n,
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the last inequality being a consequence of Lemma 7.2. This shows that (dim−Det)|T (n) ≤
⌊27n⌋ and equality is given by the graphs Tq,s constructed in the proof of Theorem 6.8, which
are trees.

We want to stress that this last result ensures that trees are not the appropriate family
of graphs for disproving Conjecture 1 and shows how far is the bound Ω(

√
n) due to Cáceres

et al. [8].
Since trees do not contain C4 as a subgraph, i.e., T ⊂ C4, then (λ − Det)|T (n) ≤ (λ −

Det)|C4 (n) = ⌊
n
2 ⌋, by Theorem 6.7. Further, the graphs in the proof of Theorem 2.2 are trees

and so we get the following result.

Theorem 7.5. For every n ≥ 14, it holds that

(λ−Det)|T (n) = ⌊
n

2
⌋.

8 Concluding remarks and open questions

In this paper, we have studied the function (dim−Det)(n) for which we have developed
an independent study on (λ − Det)(n) and λ|C∗ (n). Thus, we provide lower and upper
bounds on these functions which in particular improve those given by Cáceres et al. [8] for
(dim−Det)(n). To do this, we construct two appropriate families of graphs for improving the
lower bound. For the upper bound, we develop a technique which uses locating-dominating
sets as a main tool. Indeed, we show that (dim−Det)(n) and (λ − Det)(n) are bounded
above by the function λ|C∗ (n). To obtain bounds on this function, we first provide a variant
of a well-known theorem by Ore [39] which implies a number of consequences between the
locating-domination number and other graph parameters. One of these consequences yields
a first upper bound on λ|C∗ (n) by means of a classical result due to Erdős and Szekeres [21].

The second upper bound on λ|C∗ (n) comes from the designing of a polynomial time algo-
rithm that produces both distinguishing sets and determining sets of twin-free graphs. Thus,
we also obtain a bound on the determining number of a twin-free graph.

Finally, we restrict ourselves to graphs not having K2,k as a subgraph, thus relating
the locating-domination number to the k-domination number and the matching number.
These relations produce bounds and exact values of the restrictions of (dim−Det)(n) and
(λ − Det)(n) to the graphs without C4 as a subgraph and the class of trees. Specifically,
we solve the problem first considered by Cáceres et al. [8] about the difference between the
determining number and the metric dimension of a tree.

It would be interesting to settle Conjectures 1 and 2, which predict the exact values of the
functions (dim−Det)(n), (λ−Det)(n) and λ|C∗ (n) . Also, it remains open the computation
of the function (dim − Det)|C4 (n). Further, it would be also of interest to find particular
families of graphs where the restrictions of (dim−Det)(n) and (λ−Det)(n) may be computed.
Finally, the maximum value of the difference between the metric dimension and the locating-
domination number is still unknown and a study on this function may be proposed.
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