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Abstract 

This paper contains a study of the connectivity of infinite graphs and 2-complexes. Various 
connectivity types are defined and relationships among them are given. In addition new Menger- 
Whitney type theorems are stated for both graphs and 2-complexes. @ 1999 Elsevier Science 
B.V. All rights reserved 
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O. Introduction 

Many results concerning the notion of  connectivity can be found in graph theory. The 
classical result on connectivity is the well-known Menger-Whitney Theorem (MWT 
for short) which shows that for any two vertices of  a graph, the maximum number of  
pairwise disjoint paths joining them is equal to the minimum number of  vertices needed 
to separate them [11,13,9]. A two-dimensional analogue of the MWT for finite 2- 
complexes is given by Woon in [14], where a 2-path is defined as an ordered sequence, 
of  pairwise adjacent 2-simplices. In addition, Woon posed the question of extending 
his results to infinite 2-complexes. 
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The aim of  this paper is to answer Woon's question. We introduce various types 
of  connectivity concerning the ideal points at infinity of  an infinite 2-complex K and 
then we prove several MWT type theorems for such connectivity types. These results 
are contained in Sections 2 and 3. Incidentally, we provide a more general and shorter 

proof of  Woon's main theorem in Section 2. 
In pursuing our aim we have found and used several theorems related to already 

known extensions of  the MWT concerning the ideal points at infinity of  an infinite 
graph [12,5,8]. These results seem to be new in the literature and we have included 
them in Section 1. 

Finally, in Appendix A, we give several relationships among the different connec- 

tivity types introduced in this paper for both graphs and 2-complexes. 
We next give the basic notation we shall use along this paper. We recall that a 

simplicial complex, K, is a set of  simplices such that: 
(a) I f  a E K and ~ is a face of  ~r (~ < a ,  for short) then T E K. 
(b) I f  a, a ~ E K then a A & is empty or a common face of a and &. 
The complex K is locally finite if  any a E K is the face of  only finitely many sim- 

plices of  K. For a E K the star of  a in K is the subcomplex st(a; K)  = (#; ~ E K with 
# <T and a < z}. The link of a in K is the subcomplex l k ( a ; K ) =  {# E st(a;K);  a A 

~=O}. 
A subcomplex L of K is a complex whose simplices are simplices of  K. Given a 

subcomplex L c_ K, the notation K\L will stand for the subcomplex of  K generated by 

K - L ;  that is, K \ L =  {v E K; r < p  and p ~L}. The i-skeleton of K is the subcomplex 
ski K C K consisting of all simplices a E K with dim a ~< i. We say that K is purely 
n-dimensional when any simplex a E K is the face of  some n-simplex of K. For the sake 
of simplicity, we shall say that K is an n-complex when K is a purely n-dimensional 
locally finite connected complex. Let a be an (n - l)-simplex of an n-complex K. The 
valence of  a, val(a), is the number of  n-simplices in st(a; K). The valence of K is 

the number 

val(K) : min{val(a); dim a = n - 1 }. 

An ( n -  1)-simplex cr E K is said to be a boundary simplex when val(cr)= 1. Other- 
wise we say that ~r is an interior simplex. The boundary of K, OK, is the smallest 

subcomplex of K containing the boundary simplices. The boundary OK is said to be 
full when any simplex in K meets OK in a (possibly empty) face. 

Given an increasing sequence of  finite n-subcomplexes KiCintKi+~ (i~>1) with 
OG K = U i ~ l  Ki, a Freudenthal end of K is a decreasing sequence (Ci)i~>l of infinite con- 

nected components Ci C_K-  Ki (i>>, 1). We recall that there are only finitely many 
infinite connected components in K -  Ki for each i~>l. Let ~ ( K )  be the set of  
Freudenthal ends of  K. It easy to check that ~ ( K ) = o ~ ( s k  1K). Moreover, it can 
be proved that ~ ( K )  can be topologized in such a way that ~ ( K )  is homeomor- 
phic to a closed subset of  the Cantor set. See [4] for more details on the space 
~-(K). 
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1. Some Menger-Whitney type theorems for infinite graphs 

For a graph we mean a connected 1-complex G. In particular G will always be 

locally finite. Let V(G) denote the set o f  vertices o f  G. A path ~ : ao-  an between two 

vertices a0, an E G is a finite sequence o f  vertices {a0 . . . . .  an} such that ai ~ aj (i ~ j )  
and the segment (ai, ai+l) is an edge o f  G (O<~i<<.n - 1). A path ~ between the sets 

A,BC_ V(G) is a path c~:ao-an with ~ N A = { a 0 }  and ~NB---- {an}. A (one-way) ray 
R : a0 - ec starting at a0 E G is a sequence of  vertices {a0 . . . .  } such that ai :~ a/ (i C j )  

and (ai, ai+l) is an edge of  G. A ray between 17 c_ V(G) and infinity ( ~ ,  for short) 
is a ray R starting at some ee l7 ,  with I I •R={e} .  It is clear that a ray defines a 

unique Freudenthal end. Moreover it is not hard to show that the Freudenthal ends o f  

G can be described as equivalence classes o f  rays, where two rays R and R I are related 

if there exists a ray R" whose intersections with R and R' are infinite (see [12] for 

details). 

A ray R : a 0 - e  between a0 E V(G) and e E Y ( G )  is a ray starting at a0 which defines 
the end e. Similarly we can define a ray between the sets 17 C V(G) and F C_ ~ ( G ) .  

Finally, a biray (or two-way ray) with source e and target e /R  : e - e/ is a sequence 

o f  vertices indexed by the set of  integer numbers 7/{...  a - 2 , a - l , a 0 , a l ,  a2. . .}  such 

that aiCaj ( iC j ) ,  the segment (ai, ai+l) is an edge of  K, and R defines the ends 
e.,e' E Y ( G ) .  Similarly we can define a biray between F,F'C_ ~ (G) .  

Two paths (rays, respectively) ~, f l : a - b  (~,/3 : a - o o ,  resp.) are said to be indepen- 
dent when 7 N/3 = {a, b} (~ n/3 = {a}, resp.). Two birays are independent when they 
are disjoint. 

The dual notion to independent paths is the notion of  cut-set. When we introduce 

the ends and the infinity point oo o f  a graph, different notions of  cut-set can be con- 

sidered. Namely, given a (finite) set o f  vertices J C V(G) we say that J is a cut-set 

for a, bE V(G) if a and b lie in different connected components of  G -  J .  Notice 

that J exists since G is locally finite. Moreover, the set J is a cut-set for a E V(G) 
and oc if a lies in a finite connected component o f  G - J .  Given a E V(G) and 

E ~ ( G )  we say that J is a cut-set for a and e when a does not lie in the connected 

component ~ C_ G - J which defines e. Finally, J is a cut-set o f  ~,e t E ~- (G)  when 

For the sake o f  simplicity by a trajectory we shall mean a path, a ray, or a biray 

accordingly to the context. 

Various Menger-Whitney type theorems relating the different cut-sets and the corre- 

sponding sets o f  independent trajectories can be found in the literature. In order to deal 

with them in a simple way we consider the set o f  symbols {V(G),oo, Y ( G ) }  and we 
choose the pairs (V(G), V(G)), (V(G),oe), (V(G) ,Y(G) ) ,  and ( ~ - ( G ) , ~ ( G ) ) .  Any 

of  these pairs is called a connectivity pair. 
Given a connectivity pair (A,B) and a E A and b E B with a ~ b, the connectivity or- 

der of  (a, b) is the maximum number Conn(a, b) of  independent trajectories from a to b. 

The connectivity order o f  the pair A0 CA, B0 C B is the number Conn(Ao, B 0 ) =  min 
{Conn(a, b); a E Ao, b E B0, a ¢ b}. The connectivity order of type (A, B) of  G is the 
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number Conn(A,B). We say that G is n-connected of type (A,B) if Conn(A,B)>~n. 
Notice that for one-ended graphs only the connectivity orders of type (V(G), V(G) and 
(V(G), oo)) = (V(G), ~ ( G ) )  are defined. 

For the connectivity pair (A,B), let 6P(A,B) denote the family of all cut-sets of 
type (A,B), i.e. 5P(A,B)= U{Se(a,b); aEA, bEB, a ¢ b }  where 5e(a,b) is the fam- 
ily of all the cut-sets for a, b in G. Moreover, the cut-order of (a, b) is the number 
Sep(a,b) =min{[J[; J E 6e(a,b)}. Here IJI denotes the cardinal number of J.  Notice 
that these numbers are finite since G is locally finite. Then the following general form 
of the Menger-Whitney theorem holds. Indeed for the pairs (V(G), V(G)), (V(G), oo), 
(V(G), ~-(G)), and (~ (G) ,  ~ ( G ) )  the corresponding proofs can be found in [9, 7, 8,12] 
respectively. 

Theorem 1.1. For any connectivity pair (A,B) and a E A, b E B with a ~ b, Sep(a, b ) =  
Conn(a,b). In particular, the connectivity order Conn(A0,B0) coincides with the cut- 
order Sep(Ao, Bo) -- min{ [J I; J E 5P(a, b); a E Ao, b E Bo; a 5~ b} for any pair Ao C A 
and Bo C_ B. 

In order to keep this section within a sensible length we shall give the relation- 
ships among the different connectivity types in Appendix A. We now proceed to give 
some consequences and variations of the Menger-Whitney theorem stated above for 
the various connectivity types defined here. They are the analogues of already known 
results involving the connectivity type (V(G), V(G)) and the classical Menger-Whitney 
theorem. 

For the connectivity type (V(G),oo) we can prove the following theorems 

Theorem 1.2 (Dirac [3, Theorem B]). Let G be an infinite graph, then the following 
statements are equivalent: 
(a) G is n-connected of type (V(G),oo). 
(b) Let A = {vl, . . . ,  Vp} be a finite set of vertices of G. Given any family {al . . . . .  ap} 

of positive integers with ~P=~ ai = n there exist n independent rays from A to oo 
such that ai of them start from vi, for all i. 

(c) Given any set of vertices A C V(G) with [A[ = n there exists a family of n disjoint 
rays from A to c~. 

Proof. (a) =~ (b): It is a particular case of Proposition 1.7 below; see Remark 1.8. 
(b) =~ (c): It is obvious. 
(c) ~ (a): Clearly, condition (c) implies that val(G)~>n. Otherwise, if v E V(G) is a 

vertex with val(v)~<n- 1, we can form a set A C_ V(G) containing {v} Ulk(v; G) with 
[A[ = n  and (c) does not hold for A. 

As val(G)~>n, then Ilk(v; G)[ ~>n for all v E V(G), and by condition (c) we can find 
n disjoint rays starting at n vertices in lk(v; G), and these rays yield n independent 
rays starting at v. This finishes the proof. [] 
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Theorem 1.3 (Linck [10]). Let G be an infinite graph. Then the following statements 

are equivalent: 

(a) G is n-connected o f  type (V(G),cxD). 

(b) Given a set AC_ V(G) with IAI--n- 1, for any vertex y E A  there exists a birav 

R C G  with R N A = { v } .  

(c) Given a set B c V(G) with IBI = n, for any vertex v E B there exists a ray R c_ G 

with R n ~ =  {v}. 

Proof.  ( a ) ~ ( b ) :  Given AC_ V(G) with [ A l = n -  1, we take yEA.  Since G is n- 

connected o f  type (V(G) ,oo)  we can find n independent rays starting at v. Hence at 

least two rays do not contain vertices in A other than v. These two rays define a biray 
R with R NA = {v}. 

(b) ~ (c): There exists a biray R which contains v and at most a vertex v~ E B. Then 

it is clear that we can find a ray R~C_ R containing v with R~N B = 0. 

(c) ~ (a): Let J C V(G) be any set o f  vertices with IJI ~ < n -  1, Given any vertex 

v E G - J ,  by using (c) we can find a ray R C G such that v E R and R n J  : 1~. Therefore, 
the connected component o f  v in G - J  is infinite, and Jf~A~(V(G),oc) .  [] 

Theorem 1.4 (Dirac [2] and Halin [6]). Let G be an infinite s-connected 9raph. Then 

the following statements are equivalent: 
(a) G is n-connected o f  type (V(G),cx~). 

(b) For A = {vl,...,Vn--1} ~ V(G) and 1 ~<m~<min{s + 1,n - 1} there exists a biray 
R C G with R NA = {vl . . . . .  Vm}. 

(c) For B =  {vl . . . . .  vn} C_ V(G) and 1 ~<m~<min{s ÷ 1,n} there exists a ray R C_ G 

with R NA = {Vl . . . . .  vm}. 

Proof.  (a) ~ (b) The case m --- 1 is Theorem 1.3. Assume we have already proved (b) 

for m<<,k - 1 <<,s. Let R be a biray with R N A  = {vl . . . . .  Vk-1}. Given vk EA, by using 

Theorem 1.2b we can find k +  1 independent rays L~ . . . . .  L~+j from vk to oc which do 

not meet {vk+l . . . . .  v,-1}. When RNLi  7&0, let ai E V(Li) denote the first vertex in R 

( l<~ i~<k+  1). 
The vertices vl . . . . .  vk-1 define a decomposition o f  R into k -  2 paths R1 . . . . .  Rk-2 

and two rays R _ ~ ,  R~ .  Assume that two vertices as, at lie in the same path (ray) 

Rj ( l < ~ j < ~ k -  2, j =  + cx~). Then a biray can be found in RUL~.ULIt containing 
{vl . . . . .  vk}. Here L~ C_Li denotes the path from vk to ai. Therefore, we can now assume 

that at least one ray Li does not meet R. 

In case that only Ll misses R, we can assume that each ai (2<~i<~k + 1) defines a 

unique path or ray Rj(i) (1 <~j(i)<~k - 2 ,  j ( i ) =  4 - ~ ) .  Hence, a suitable biray can be 

found in R U L1 U LI 0 where j ( io )=  4 - ~ .  At this point it will suffice to assume that at 

least two rays Li miss R. 
As G is s-connected we can also find a set o f  s independent paths 7j:vk - vj 

( j ¢ k ) .  Let biE~'i ( l<~ i<~k-  1) denote the first vertex in 7inR.  I f  no b~ lies in 
R _ ~  U R n ,  there must exist a path R/ containing two vertices bp, bq and hence a biray 
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R 'CRUVpUTq can be easily found with {vl . . . . .  vk}CR' .  Here 7pC),p denotes the 
path from v~ to bp. 

Assume now bl ERos. As there are two rays Lp,Lq which are disjoint with R, we 

can assume without loss of  generality that Lp AVl = {vk}, and it is clear that a biray 
can be found in RULp UTl containing {vl . . . . .  vk}. 

The proof of  (a)=:> (c) is similar and we omit it. Moreover, ( b ) ~  (a) as well as 
(c) ~ (a) follow from Theorem 1.3. [] 

Example 1.5. Any infinite tree G with all vertices of  valence n~>4 shows that 
Theorem 1.4 does not hold without the hypothesis on the connectivity of  G. Indeed, 

G is 1-connected of type ( V ( G ) , V ( G ) )  but n-connected of type (V(G),oo).  More- 
over, G does not satisfy either (b) or (c) in Theorem 1.4 for m : 2. 

We next give similar theorems for the connectivity type ( V ( G ) , ~ ( G ) ) .  We start 
with the following characterization 

Theorem 1.6 (Dirac [3, Theorem B]). Let G be an infinite 9raph, then the follow& 9 
statements are equivalent: 
(a) G is n-connected o f  type ( V ( G ) , ~ ( G ) ) .  
(b) Given two sets A = {vl . . . . .  Vp} C_ V(G) and B = {el . . . . .  ~q} C_ ~ ( G )  and two sets 

o f  positive integers {al . . . . .  ap} and {b~ . . . . .  bq} with ~-~f=lak= ~-~qh=~bh=n, 
there exist n independent rays from A to B such that ak o f  them start at vk 
and bh o f  them define eh for all k, h. 

Theorem 1.6 is an immediate consequence of the following more general proposition 
which will be used also for 2-complexes in Section 3 below. 

Proposition 1.7. Let G be an infinite 9raph A = {Vl . . . . .  Vp} C V(G), and M = {BI . . . . .  
Bq} a family o f  pairwise disjoint closed sets o f  Freudenthal ends o f  G. Assume that 
for  each pair (k,h) there exist n rays running from vk to Bh. Then 9iven two sets o f  
positive integers {al . . . . .  ap} and {bl . . . .  , bq} with ~-~Pl ak = ~-~q=l bh = n, there exist 
n independent rays from A to [-Jq=l Bh such that ak o f  them start at vk and bh of  
them end at B h for  all k, h. 

Proof. First we consider a family ~(k ,h )  of n pairwise disjoint rays from vk to Bh 

and let ~(k,h)C_Bh denote the set of  ends defined by the rays in ~(k,h) .  Then we 
choose a connected finite subgraph K C G such that st@k; G ) C K  for all vk EA and 
moreover the connected components V~ C_ G - K  determined by the ends e c U {~(k ,  h); 
1 ~<k ~< p, 1 ~<h ~<q} are pairwise disjoint in such a way that the rays in :~ = [_J {~(k, h); 
1 <~k<<.p, 1 <~h<~q} which meet V~ are exactly those determining e. Furthermore, for 
each R E ~(k ,h)  with end e E ~ ( k , h )  let TR C R N V~ be a subray of R. 

Given e E ~ ( k , h )  we form the family ~Y'-~. consisting of all rays TR where R E ~ ,  
and o~(R)= e and we choose a subfamily J/g~ _C ~ such that 

[J/~[ = max{[~vg~[; ~,~ C_ ~ and the rays in ~ are pairwise disjoint}. 
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Next for each R E ~ with ~ ( R )  = e and TR ~ ~/,: we choose n pairwise disjoint paths 

in V~ joining R to all rays in J/0.  We call them the net of  R and we denote it by ~.4~. 

Notice that some paths in JV8 may be degenerate one-point paths. 

We take a new finite subgraph G~c_ G containing K, all paths in the net ~.~ o f  

each R, and moreover a subpath in each R (in J//~ or not) passing through all points in 

R obtained as intersection o f  R with the paths in the nets. Furthermore, we require that 

each T E Jt'~; meets the frontier Fr(G') = G ~ N (G\G') in just one vertex. Here G\G' 
is the subgraph generated by G - G', see Introduction. 

Then for each k and h we consider the sets of  vertices Fk=lk(vk;G)-  A and 

Oh=Fr(G')N(U{T; TEJCI~ and eEB~}). Notice that Fk ¢i~ for all k since p<~n. 
We now construct a new graph Go as follows. We take pairwise disjoint sets 

{Dk}l<~k<~p and {Eh}l<~h<~q with IDkl=a~ and LEhl=bh. Then we form the com- 

plete bipartite graphs Lk =K(Dk,Fk) and L~ =K(Eh, Oh). Finally, we consider two 

further vertices c and c ~ and the complete bipartite graphs C=K(c,  U P  l Dk) and 

C'=K(c' ,Uq j Eh) and we set 

Go= (G'~C_LJst(vk;G))U (kO1Lk)U (j~,L~)UCUC'. 

We claim that Conn(c,c')>~n in Go. Indeed, let JCGo be a set of  vertices with 

[JI ~<n-  1. Then one finds x0 EDko - J  and Y0 EEho - J  for some k0 and h0. Moreover, 
there exists at least one ray R E ~(k0, h0) which does not meet J .  However, R may 

contain some other vertices vj E A-{vk0 }. We proceed to show that it is always possible 

to choose R in such a way that for any vj E A A R we have Di - J  7 ~ f). Otherwise, 

all rays in ~(ko, ho) which avoid J N G = J 7 1 G '  contain some viEA with D/C_J. 
Let I = {k;D~ c J}. Then one gets necessarily n = I~(k0,h0)[ <~ [J N G U {vk; k EI}[ .  
Moreover, since Dk C__ J for all k E I one gets also IJ N G] ~<n - 1 - ~kc~ ak. This leads 

to the contradiction n ~< [J A G[ + 1I[ ~<n - 1. 

Therefore, we have proved the existence o f  a non-empty subset 5a(k0, h0) C ~(k0, h0 ) 

consisting o f  rays R which do not meet J and for all vj ERNA we have D i - J  7~ ~. We 

consider the family o f  ends C~(ko, ho) = {e ~_ Y(k0,h0);  e = ,~-(R) with R E Lf(k0,h0)}. 
We call an end in W(k0, h0) a clean end. 

We next show that there exists a clean end e0 such that some To E J/~:,, does not 
meet J .  Otherwise, if  m,: = [.//g~.[ and I = {k;D~ C J} we have we have 

m~<~(n-1 ) -  ~ a k - r ,  
~C6(ko,ho ) k~l 

where r =  [J - U~.E~(k~,h0) ~[. In addition, if  w,: is the number o f  rays in :~(ko, ho) 
which defines the end e, the maximality o f  ~¢/~: and the above inequality yield 

w,: <~ ~-~ ( ko, ho )rn~ <. ( n - 1 )  - ~ w~:, 
~:~'(ko, ho ) ~c~ ~/G~-(ko, ho) ~ (k~l,ho) 

s i n c e  ~e,E,N(ko,ho)_~g;(ko,ho) W e, <<.r + III. Hence n = ~.~(~o,ho) w,: ~<n -- 1 which is a 
contradiction. 
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Therefore, we have proved that there exists eoECg(ko, ho) and ToEJ//~o with 
To A J = 0. Hence, there exists a ray Ro E La(k0, h0) with i f ( R 0 ) =  e0. In addition, the 
construction of  the graph G p allows us to choose a path 70 c G ~ from R0 to To such 
that the union U=7oURoUTo misses the set J .  Moreover, Afq(ToMT0)=0 and if 
(A - {Vko}) NRo ¢ ~ we can replace Vko by the last vertex in R0 NA since Dj - J ¢ 0 
for all vj E Ro A A. For this we use that R0 E 5¢(k0, ho). So, we can assume, without 
loss of  generality, that U A A = { v k o }  and then we easily connect c to c' in Go by a 
path passing through x0, U, and yo. 

We have checked that Conn(c,c~)>>.n in Go and the Menger-Whitney theorem for 
the connectivity pair V(G), V(G) in (1.1) provides n independent paths 71,72 . . . . .  7n 
in Go from c to c ~. In particular, ),jfq G ~ (1 <<.j<~n) are pairwise disjoint paths with 
7j M G' running from s o m e  I'k(j) to some Oh(j). Moreover, for each k and h only ak 
and bh, respectively, of  the paths 7j M G t verify k ( j ) = k  and h ( j ) = h ,  respectively. 
Now it is clear that {7j M G~}I <~j<~n can be extended to a family of n independent rays 
with the required properties. This finishes the proof. [] 

Remark 1.8. Since a ray starting at v is just a ray running from v to i f (G) ,  one gets 
(a) =~ (b) in Theorem 1.2 as a particular case of  Proposition 1.7 by setting q = 1 and 

B~ = i f (G) .  

Other results concerning the connectivity pair (V(G), ~ ( G ) )  are the following. 

Theorem 1.9 (Linck [10]). Let G be an infinite graph. Then the following statements 
are equivalent: 

(a) G is n-connected o f  type ( V ( G ) , ~ ( G ) ) .  
(b) Given AC_ V(G) with [A[=n - 1, for any vertex yEA  and any end e E l ( G )  

there exists a biray R C G with both ends ~ and R MA----{v}. 
(c) Given a set B C  V(G) with IBI =n, for any vertex v c B  and any end ~E~-(G)  

there exists a ray R C  G whose end is ~ and such that R M B =  {v}. 

The proof of Theorem 1.9 follows the same pattern as the proof of Theorem 1.3 
and we omit it. 

Moreover, since C o n n ( V ( G ) , ~ ( G ) ) =  Conn(V(G), V(G)) (see Proposition A.2) we 
get the following analogue of the (1.4) above 

Theorem 1.10 (Dirac [2] and Halin [6]). Let G be an infinite graph. Then the fol- 
lowing statements are equivalent: 
(a) G is n-connected o f  type ( V ( G ) , ~ ( G ) ) .  
(b) For A = { V l  . . . . .  vn_l} C_ V(G), eEJ~(G),  and l <~m<~n- 1 there exists a biray 

R whose only end is ~ and such that R NA ~- {vl ... Vm}. 
(c) For B = { v l  . . . . .  vn} C_ V(G), e E l ( G ) ,  and l <<.m<<.n there exists a ray R whose 

only end is ~ and such that R NA = {vl . . . . .  Vm}. 

The proof is similar to the proof of Theorem 1.4. We leave it to the reader. 
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Theorem 1.11. Let G be an infinite graph. Then the following statements are equiv- 
alent (n>~2 and I~(G)I >_-2): 
(a) G is n-connected of type (V(G),~.~(G)). 
(b) For A = {vt . . . . .  v ,_t}  C V(G), e, d E ~ ( G ) ,  and 1 ~m<~n-  1 there exists a biray 

R whose ends are e and d and such that RNA = {Vl . . . . .  Vm}. 

Proof. ( a ) ~ ( b ) :  By using (a) we can find two rays R1,R2 from vl to e, such that 
R i n A = { v l }  ( i =  1,2). Similarly there are two rays R~ ( j =  1,2) from vl to d with 

the same property. As e # d each intersection R~ n Rj is finite. It is now easy to con- 
struct a biray R C_RI UR2 UR'~ UR~ with J~ (R)=  {~,d} and RNA = {v~}. Hence, we 
have shown (b) for m = 1. At this point we can follow the pattern of  the proof of  
Theorem 1.4 to prove (b). The converse ( b ) ~  (a) follows from Theorem 1.9, [] 

For the connectivity pair ( ~ - ( G ) , ~ ( G ) )  we can prove an analogue of Theorem 1.6. 

Actually we shall use Proposition 1.7 to prove a more general result. Namely 

Proposition 1.12. Let G be an infinite graph and ~¢ = {Al . . . . .  Ap} and ~ = {Bt . . . . .  
Bq} two families of  closed sets of  Freudenthal ends of G such that the elements 
of  ~4UM are pairwise disjoint. Assume that for each pair (k,h) there exist n bi- 
rays running from Ak to Bh. Then given two sets of  positive integers {al . . . . .  ap} 
and {bl . . . . .  bq} with ~'~;-1 ak = ~-~q=l bh = n ,  there exist n independent birays from 

P A uq_l Bh such that ak of them start at Ak and bh of them end at B~ [br Uk=l k to 

all k, h. 

Proof. First for each pair (k,h) we choose a family ~ (k ,h )  of n pairwise disjoint 

birays from Ak to Bh. Let ~.~(k,h)- C_Ak and ~ ( k , h )  + C_Bh denote the sets of  left and 
right ends, respectively, defined by the birays in ~(k,  h). Then we consider a connected 
finite subgraph K C_ G such that the connected components V~ c_ G - K defined by the 
ends c~E U k . ~ ( Y ( k , h ) - U ~ ( k , h )  +) are pairwise disjoint. Moreover, we also assume 
that the rays which meet V~ are exactly those birays determining a. Then if R E ~(k,  h) 
defines the left end t/, let TR C R n V~ be a subray of R contained in the component 
Vq. Given the left end q E ~ ( k , h ) -  we form the family Y ,  consisting of all rays TR 

with R E U{~(k,  h); 1 ~<k ~< p, 1 ~< h ~< q} and such that t / is the left end of R. Then we 
choose a maximal subfamily J/n C_ 3-'~ as in the proof of (1.7) as well as nets of paths 
,A~ from all R ~ J/~ to the rays in #/,l" 

We now extend the infinite subgraph K U {~;~ E Uk, hff(k,h)  +} to a new graph 
G' by adding finite subgraphs in each V, with r/E Uk, h ~ ( k ,h ) -  in such a way that 
G' contains all paths in the net JVR of each R as well as a subray in R pass- 
ing through all points obtained as intersection of R with the paths in J VR. Fur- 
thermore, we require that for every left end r/ each ray T E ~/~ meets the frontier 
Fr(G~) = G t N ( G \ G  ~) in just one vertex. Then for each k we consider the set of  ver- 
tices Fk=Fr(G')N(U{T;  T E J/ln and t/CA~}). We now construct a new graph Go 
as follows. We take pairwise disjoint sets {Dk}l<,k<~p with [Dk[ =ak.  Then we form 
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the complete bipartite graphs Lk=K(Dk,Fk) and C=K(c,t_JP=IDk) for some new 
P L vertex c. Then we set G0=G/U([_Jk=l k)UC.  Notice that for each h the ends in Bh 

are also ends of  Go. 
We claim that for each h ~<q there exist n rays in Go running from c to Bh. Indeed, 

let J be a set of  vertices of  Go with [Jl<~n- 1. Then one finds xEDko - J  for 

some k0. Moreover, there exists at least one biray R E ~(k0, h) which does not meet J .  
Let 5e(k0, h ) C  ~(k0, h) be the subset consisting of such birays. A left end r/E Y(k0, h) 
will be called a clean end if there exists {R E 5¢(ko, h)} with q E ~ ( R ) .  Let Cg(ko, h) 
denote the set of  clean ends for the pair (ko, h). A similar argument as in the proof 
of  Proposition 1.7 above shows that there exist a clean end q0 and a ray To E rig,0. 
Therefore one finds a biray R0 whose left end is q0 as well as a path V joining To 

to R0 in Go such that the union U = V tO To tA R0 does not meet J .  Now it is easy to 
construct a ray from c to Bh by using U. 

We have checked that for each h there exist at least n rays in Go running from 
c to Bh, and Proposition 1.7 applied to Go with A = {c} provides n independent 

rays from c to uq iBh such that bh of them end at Bh. Clearly at of  them 
necessarily pass through vertices in Fk and so we can extend these rays to birays in 
G with left ends in U;=lAk satisfying the required properties. This finishes the 
proof. [] 

We now have as an immediate consequence of Proposition 1.12 the analogue of 

Theorem 1.6 for the connectivity pair ( ~ ( G ) ,  ~ ( G ) ) .  Namely, 

Theorem 1.13 (Dirac [3, Theorem B]). Let G be an infinite 9raph, then the followin9 
statements are equivalent: 
(a) G is n-connected of  type (~ (G) ,  ~ (G) ) .  
(b) Given two disjoint sets of  ends F = ( t / l  . . . . .  qp}, and F ' =  {el,. . . ,eq}, and two 

sets of  positive integers {al . . . . .  ap} and {bl . . . . .  bq) with ~ff=l a k =  ~-~q=l bh 

= n, there exist n independent birays from F to F I such that ak of  them de- 
fine ilk and bh of them define eh for all k, h. 

Remark 1.14. For the usual connectivity type (V(G), V(G)), the single case p = q = n 
ai =bj  = 1 in (b) above is equivalent to (a) (see [14, Theorem 7A]). But this is 
not the case for the connectivity type (o~(G),o~(G)) as the following graph G 

shows: 

c L5 
The graph G satisfies (b) for p = q = n = 2, ai = bj = 1 but it is only 1-connected of 

type ( i f (G) ,  ~-(G)) .  Similarly for the pair (V(G), ~ ( G ) ) .  
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2. Connectivity of infinite 2-complexes 

Give a 2-complex P, a 2-path in P, ~:e0 - en, is a finite sequence of edges and 

triangles {eo, q,el,t2 . . . . .  tn,en} such that ti are triangles, e~ are edges and ei, ei-i <ti 
(1 ~<i ~<n). The corresponding notion of 2-ray joining e0 to w (or e E ~,~(P)) is now 
clear. Similarly the notion of 2-biray joining two Freudenthal ends e ,e 'E.~-(P)  is 

straightforward. 
The 2-paths in P induce a stronger notion of connectedness in any 2-complex P. 

Namely P is said to be 2-path connected when any two edges e, e' can be joined by 
a 2-path in P. The definition of 2-path connected component is now clear. Moreover, 

2-rays in P induce a new class of  ends in P. Namely a 2-end A is the equivalence 
class of  2-rays, where two 2-rays R, R', are equivalent if there exists a ray R" which 
meets both R and R' in infinitely many edges. This is equivalent to say that for any 
finite subcomplex K c_ p we have CK(R) = CK(R') where CK(R) C_ P - K denotes the 

2-path connected component containig a subray of R. 
Let Y2(P) denote the set of  2-ends of P. There exist clearly infinite connected 

2-complexes P with ~ 2 ( P ) =  0, for instance the following sequence P of squares: 

The following lemma shows that 2-path connected 2-complex P verifies ,~-2(P)~ 0. 
For the sake of simplicity, we shall say that P is an admissible 2-complex when P is a 
2-path connected 2-complex such that any triangle in P contains at most one boundary 
edge. Notice that this is the case when OP is full in P. 

Lemma 2.1. Let P be a 2-path connected infinite 2-complex. Then J~2(P)¢  (~. More 

explicitly, any connected component of  the complement of  a finite subcomplex defines 
at least one 2-end. 

Proof. Let K C_ p be a finite subcomplex. Given a connected component L C_ P - K we 
can find a subcomplex L' C_ L which is purely two-dimensional and L -  L' is finite. We 

claim that L' defines at least one 2-end. Otherwise, all 2-path connected components 
A i C L '  are finite. For each Ai we take an edge ei rA i  Since P is 2-path connected 
we can find 2-paths in P ~ i : e i -  ei+l. Moreover all these 2-paths meet P -  L' in 
edges. Let ai be the first edge in ~i N ( P -  L').  As P -  L' is finite we find an edge 
a = ai, = ai2 . . . .  which appears in infinite many 2-rays. This yields a contradition 
since P is locally finite. [] 

Definition 2.2. Given an admissible 2-complex P, we denote by 8 (P)  the set of interior 
edges of  P (see Introduction). The bipartite graph of  P, G(P), is defined as follows. 
Let V(G(P) )=  E U T where E is the set consisting of the barycenters ~ with e E Co (P), 
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and T is the set of barycenters of triangles of P. Now ~ E E is joined in G(P) to 
?E T when e<t .  Clearly G(P) is a subcomplex of  the 1-skeleton, skip 0), of the first 
barycentric subdivision p(O of P. 

Any 2-path (2-ray, 2-biray) in P yields a path (ray, biray) in G(P) and vice versa. 
In particular, P is 2-path connected if and only if G(P) is connected. Moreover, the 
Freudenthal ends of G(P) are in 1-1 correspondence with the 2-ends of  P. Indeed, 
it is easy to define the following bijection g : ~ ( G ( P ) ) _ ~  ~2(P).  Given e E ~ ( G ( P ) )  
defined by the ray {e6,~,~-T,~2 . . . .  } in G(P), we define g(e) as the 2-end defined by 
the 2-ray {e0, tl, el, t2 . . . .  } in P. 

In general ~ ( G ( P ) )  does not coincide with ~ ( P )  as the following example shows. 

Example 2.3. Let X C  ~2 be the subspace X =  [2,c~) × [ -4 ,4]  - U{Cn;n~> 1} where 
C, is the open disk of center 2n + 1 and radius I (n i> 1). Then P is the admissible 
2-complex obtained as a subdivision of the following cellular decomposition of  X 
without new vertices: 

The 2-complex P verifies ~-2(P)= 2 > 1 = ~-(P). In any case, we have 

Proposition 2.4. Let P be an admissible 2-complex. Then there exists a surjective 

map h : :~2(P ) ~ ~ ( P )  such that the following diagram is commutative: 

.T2(P) h , ~-(p) 

S 

where g was defined above and i .  is induced by the (topological) inclusion i : G(P) c P. 

Proof. The map h is defined as i ,g  -1. In order to show that h is onto, it will suffice to 
check that i ,  is onto. Let e E ~-(P) = ~-(sklP(O). We construct the following sequence 
of  vertices S c_ V(G(P)). Given an edge e c_ p we take ~ E S if e E 8(P).  Otherwise, 

E S where t is the unique triangle t E P with e < t. The sequence S defines at least 
one Freudenthal end t/E ~( (G(P) ) .  It is not hard to check that i , ( t / )=  ~. [] 
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Proposition 2.5. The map h in (2.4) is injective (and hence bijective) i f  and only i f  

f o r  any finite subcomplex K C P there exists another finite subcomplex L C_ P such 

that K C L and for  any connected component C C P - L two edyes e, e ~ in C can be 
jo ined by a 2-path in P - K. 

Proof. Assume that the condition does not hold. Then we can find a finite subcom- 
plex K and an increasing sequence of finite subcomplexes (Li; i~>0} with L0 =K,  
P = Ui>~oLi, and Li C intLi+l such that for each i>~ 1 there exists a connected compo- 
nent Ci c_ p - Li and two edges el, e~ E Ci such that any 2-path ~ : ei - e~meets K. 

After choosing a subsequence, if necessary, we can assume without loss of generality 
that Ci+l C_ Ci for all i~> 1. 

Clearly, each C~ has two or more 2-path connected components. In fact, at least two 
of them are infinite. Otherwise, if C i' is the only infinite 2-path connected component 
of Ci, we could find Lj with j large enough to guarantee Ci C_ C[, and the two edges 
eJ, ej could be joined outside K by a 2-path in P - Li. 

Therefore, we can choose two decreasing sequences of infinite 2-path connected com- 
ponent Ci l, C 2 C_ Ci which define two different 2-ends A1, A2 C ~2(P),  respectively, such 
that h ( A l ) = h ( A 2 ) E  ~ ( P )  is the Freudenthal end defined by the sequence {Ci}i>~l. 
Hence, h is not injective. 

Conversely, assume now that the condition in Proposition 2.5 holds. Given two 
2-ends A1, A2 E ~2(P)  with h(Al )  = h(A2)- -  e, let {Li}i>~ 1 be an increasing sequence 
of finite subcomplexes as above and let {Ci} be the decreasing sequence of connected 
components Ci c_ p -  Li which defines the Freudenthal end e. 

Let R1 ={eo,  t l ,el  . . . .  } and Rtl ={e~o, 'tl,e l, ' . . .} be two 2-rays defining AI and A2, 
respectively. By the definition of h, and by choosing a subsequence, if necessary, we 

belong to Ci. By can assume, without loss of  generality, that the baricenters ~,, e i 
/ ! connectedness el, e i @ Ci, and then for each Li we can find Lj such that eg and e i 

can be joined by a 2-path outside Li. Therefore, the 2-path connected components 
of Ci which contain subrays of RI and R2 coincide, and so A1 = A2.  That is, h is 
injective. [] 

This rather technical proposition has the following interesting consequence: 

Corollary 2.6. Let  P be an admissible 2-complex such that lk(v;P) is connected for  

all v E V(G)  except  possibly a finite set. Then the map h in (2.4) is bijective. 

As an immediate consequence we have 

Corollary 2.7. Let  M n be a triangulated n-manifold with n>>-2. Then ~2(sk2M)= 
~(sk2M).  

Example 2.8. Corollary 2.6 does not give a sufficient condition as the following 
example shows. Let P be a triangulation of ~2 _ U{C~; n~>0} where C, is the unit 
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open disk of  center ( 2 n -  1,0). Then ~ 2 ( P ) = ~ ( P ) =  {,} but the links of  the points 
(2n, 0) are not connected. 

Proof  of Corollary 2.6. Let A denote the set of  vertices whose links are not con- 

nected. Given an increasing sequence of  finite subcomplexes {Li}i>~l as in the proof 
of  Proposition 2.5 we can assume that A C_ L1. Let Ni be the simplicial neighbourhood 

of  P - Li, Ni = { tr E P; tr ('1 ( P - Li ) # 0}. Given Zi, we can choose Lj with Nj fq Li = 0. 
Then any connected component C C p - L j  is contained in a 2-path connected com- 

ponent of  Li. Otherwise, let {Cr ~} be the set of  2-path connected components which 
meet C. By connectedness of  C, given C~ there exists at least a vertex v in an inter- 

section C~ fq C'~, N (P - Lj). Therefore, lk(v;P) = lk(v;N(Lj))  -- U{lk(v; C~'); v E C~)}. 
As lk(v; C~)Nlk(v; C],) = 0 when s # s  I, v EA which is a contradiction. 

Hence, for any pair of  edges e, e' E C we have a 2-path c~ : e - d outside Li and we 
can now apply Proposition 2.5. [] 

We are now ready to define various connectivity types for an infinite admissible 
2-complex P. First, notice that three new connectivity pairs from the set of  symbols 
{6~(P), c~, ~ ( P ) , ~ 2 ( P ) }  can be now added to the corresponding analogues of  those 

in Section 1. Namely (g(P),,~-2(P)), (~ - (P) ,~2(P) ) ,  and (~2(P) ,  °J2(P)). Given a 
connectivity pair (A,B), and a E A, b E B with a # b, the connectivity order of  (a, b) is 
the maximum number Conn(a, b) of  independent 2-trajectories from a to b. Here, by a 
2-trajectory we mean a 2-path, a 2-ray or a 2-biray according to the nature of  a and b. 
Notice that the type ( ~ ( P ) , ~ 2 ( P ) )  is defined for any pair e E o~(P), A E ~2(P) with 
h ( A ) ¢ e .  The connectivity order o f  type (A,B) of P, Conn(A,B), is now define in a 
similar way as in Section 2, that is Conn(A, B) = min{Conn(a, b); a E A, b E B; a # b}. 
The 2-complex is said to be n-connected o f  type (A,B) if  Conn(A,B)>.n. 

A set J of  triangles and/or edges of  P is a cut-set for a, b if  any 2-trajectory from 
a to b in P contains some element of  J .  I f  ha(a, b) is the family of  cut-sets for a, b, the 
cut-order Sep(a, b) is define as in Section 2. The following proposition is immediate 
from the definition of the bipartite graph G(P). 

Proposition 2.9. Let P be an infinite admissible 2-complex. Then the connectivity or- 
der o f  type (A,B) with A,B ¢~.~(P) coincides with Conn(G(A),G(B)). Here G(o~(P)) 
is the set E C_ V(G(P))  associated to interior edges, G ( o c ) =  o~ and G ( ~ 2 ( P ) ) =  
~ ( G( P) ) .  

The following result is an immediate consequence of Proposition 2.9 and 
Theorem 1.1. 

Proposition 2.10. Let P be an infinite admissible 2-complex and let A,B as in 
Proposition 2.9. Then the following statements are equivalent: 
(a) There is no cut-set J o f  type (A,B) with [J[ <n. 
(b) There exist n independent trajectories between any two elements a EA, b EB. 

That is, G is n-connected o f  type (A,B). 
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The corresponding result when one considers Freudenthal ends of P is also true. 
But it is not an immediate consequences of  Proposition 2.9 since we cannot identify 
~ ( G ( P ) )  with i f (P ) .  In fact, we have the following Menger-Whitney-type theorems 
for ends of P. 

Proposition 2.11. Let P be an infinite admissible 2-complex. Given a finite set of  
edges 17[ c g (P)  and any set F C ~ ( P )  of  ends the following two statements are 

equivalent: 
(a) The sets 17I and F cannot be separated by a cut-set with fewer than n edges 

and/or triangles. 

(b) There ex&t n independent 2-rays from 17 to F. That &, P is n-connected of  type 
(g(P),  i f ( P ) ) .  

Proof. Assume (a). Then there is no cut-set J c_ V(G(P)) with I J[ <~n - 1 for H = 
{~; e E H} C_ V(G(P))  and i,I(F)C_C_ ~ ( G ( P ) ) .  where i ,  is the map in Proposition 2.4. 
By [8] we can find n independent rays from H to i , l ( F )  in G(P), and hence these 
rays define n independent 2-rays from H to i , ( i , l ( F ) ) = F  since i ,  is onto by 
Proposition 2.4. 

The converse ( b ) ~  (a) is obvious. 5 

Proposition 2.12. Let P be an infinite admissible 2-complex, and let F ,H  C_ ~ ( p )  be 
two set of  Freudenthal ends such that F n el(H) = H  N cl(F) = 0 where cl(H), and 
cl(F) denote the corresponding topological closures. Then the following statements 
are equivalent: 

(a) F and H cannot be separated by a cut-set with fewer than n edges and/or 
triangles. 

(b) There exist n independent 2-birays from F to H. That is, P is n-connected oJ 
type ( ~ ( P ) ,  Y(P)) .  

Proof. It is similar to the proof of Proposition 2.11. The continuity of the map i .  in 
Proposition 2.4 yields the inclusion cl(i.l(A))C_ i . l (cl(A))  which implies cl(i.l(M)) N 
i . l ( B )  = 0 when cl(A)N B = 0 for arbitrary subsets A, B C ~ ( P ) .  By the main theorem 
of [12] there exist n-independent birays from i . I ( F )  to i . l ( H ) .  These birays define n 
independent 2-birays from F to H. [] 

Proposition 2.13. Let P be an infinite admissible 2-complex, and let F c_ ~ ( p ) ,  and 
H C Y z ( P )  be two subsets with F N cl(h(H)) = h(H) n el(F) = 0. Then the following 
statements are equivalent: 
(a) F and H cannot be separated by a cut-set with fewer than n edges and/or 

triangles. 
(b) There exist n independent 2-birays from F to H. That is, P is n-connected of  

type ( ~ ( P ) ,  ~2(P)) .  
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Proof. By using the same arguments as in the proof of  Proposition 2.12 we find 
n independent birays from i , l ( h ( H ) )  to i , I ( F ) .  These birays define n independent 

2-birays in P joining H to F. [] 

The previous propositions from Propositions 2.11 to 2.13 can be summarized in the 

following general Menger-Whitney Theorem for admissible 2-complexes: 

Theorem 2.14. Let P be an admissible 2-complex P. For any connectivity pair (A,B), 

i f  a E A, b E B and a ~ b then Sep(a, b) = Conn(a, b ). In particular, the connectivity or- 
der o f  type (A, B) coincides with the cut-order Sep(A, B) = min{Sep(a, b); a E A, b E B; 

a ~ b). Notice that these numbers are finite since P is locally finite. 

We finish this section with a theorem which allows us to consider cut-sets containing 
only edges for any type of connectivity. This theorem was originally proved by Woon 
[14, Theorem 3] for finite 2-complexes and connectivity pair (g (P ) ,g (P ) ) .  We give 

here a more general and simpler proof. 

Theorem 2.15. Let P be an infinite admissible 2-complex such that val(e)>>.n for any 
interior edoe e E g(P). Then P is n-connected of  type (A,B) i f  and only i f  there exists 
no cut-set J E 5a(A,B) N ~(P)  with IJ[ <n. 

Theorem 2.15 is an immediate consequence of the following 

Lemma 2.16. I f  J is a minimal cut-set o f  type ( A , B ) f o r  P with I J l= k  <n, then 
there exists a cut-set J '  E 6~(A,B) M ~ ( e ( P ) )  with IJ'I -- k. 

Proof. We shall prove the lemma inductively on the number m >~ 0 of  triangles in J .  
The case m = 0 is trivial. Assume that the result holds for m, and let J = {t, tl, t2 . . . . .  tm} 
U {am+l . . . . .  ak-1 } be a cut-set of  type (A,B) with triangles t, tl, t2 . . . . .  t,n. 

Given c E C, for any C E {8(P),  oo, ~ ( P ) ,  ~,~2(P)}, let Ac denote the set consisting 
of  all edges in P which can be joined to c by trajectories which do not meet J .  I f  
J is a cut-set for a E A and b E B we have Aa M Ab-----0. Moreover, since J is minimal 

there exists a set {7~}~ 6 J of  independent trajectories with 7~ A J = {~} for each ~ E J .  
Given 7t, let ea (eb respectively) denote the edge of t which appears in Aa f-17t (Ab A ~)t 
respectively). Finally, let e be the third edge of t. 

Assume A,B = 8(P).  
Case 1: AeAAa=O. I f  ea=a, as val(a)~>n there exist p triangles sl . . . . .  Sp in 

s t ( a ; P ) - J .  Moreover, since p > k -  m -  1 there exists an edge d < s j  with a t~J .  
Thus a t E Aa, and any 2-path from a t to b must meet J .  Furthermore, the assumption 

Ae nAa = 0 yields that any 2-path ~ : a ' - b  with ¢ N J  = {t} must contain a. Therefore 
J1 = {a, tl . . . . .  tm}U {am+l  . . . . .  ak--l} is a cut-set for a t and b with only m triangles. 
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If  a # e , ,  the assumption AenAa=O implies that J1 ={ea, tl . . . . .  tm}U{am+l . . . . .  
ak- l}  is a cut-set for a and b. 

Case 2: AenAa#O.  As AanAb=O, it follows that AeNAb=q), and we proceed in 
the same way by replacing a by b. 

Assume A = g(P) ,  and B # 8(P).  
In Case 1, the proof is the same as above. 

In Case 2, the set J2={eb, h . . . . .  t m } U { a m + l  . . . .  ,ak-I} is a cut-set for a,b with m 
triangles. 

Finally, assume A,BE{~2(P) , :~ (P)} .  In Case 1 the set J3={ea, t t , . . . , tm}U 
{am+l . . . . .  ak- l}  is a cut-set for a,b. In Case 2 the set ./2 above is a cut-set. 

We now apply the induction hypothesis to finish the proof. [] 

3. Some Menger-Whitney type theorems for 2-complexes 

This section contains the two-dimensional analogues of  the results stated at the end 
of Section 1. We recall that the analogues for (g(P),8(P))-connectivi ty are given 
in [14, Section 4] for finite 2-complexes. Actually, the same proofs work for infinite 
2-complexes. We shall start with the following theorems concerning the connectivity 
type (g(P) ,  o~). 

Theorem 3.1. Let P be an admissible infinite 2-complex with val(P)~>n, then the 
following statements are equivalent: 
(a) P is n-connected of type (8(P),  oo). 
(b) Given A = {el . . . . .  ep} C_ g(p)  and any family {al . . . . .  ap} of positive inteyers with 

~~P- 1 ai =- n there exist n independent 2-rays from A to oo such that ai of  them 
start from ei, for all i. 

(c) Given any set of  edges A C 8(P)  with IAI--n there exists a family of  n indepen- 
dent 2-rays from A to oe. 

Proof. ( a ) ~ ( b ) :  According to Proposition 2.9 C o n n ( E , ~ ) = n  for the set E 
of vertices of  G(P) associated to interior edges. Moreover, the set A yields a set 

, 4 = { ~ l , . . . , ~ n } C E  and Proposition 1.7 applied to G(P) (see Remark 1.8) shows 
that there exist n rays in G(P) ai of them starting at el. Clearly these rays defined 
the required 2-rays in P. 

(b) ~ (c): It is obvious. 
( c ) ~ ( a ) :  Let J be a cut-set for P. As val(P)~>n we can assume that JC_g(p)  

by Theorem 2.15. I f  IJ[<<,n- 1 and e E S ( P ) - J  we can apply (c) to J U { e }  to get 
a 2-ray R from e to ~ with R N J = 0  which is a contradiction. So IJl>>,n, and P is 
n-connected of  type (8(P) ,  oo). [] 

Theorem 3.2. Let P be an admissible infinite 2-complex with val(P)>~n. Then the 
following statements are equivalent: 
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(a) P is n-connected o f  type (8(P),  oo). 
(b) Given a set AC_g(P)  with [Al=n - 1, any edge e E A  is contained in a 2-biray 

which avoids the other n -  2 edges o f  A. 

(c) Given a set B C_ g (P)  with [B] = n, any edge in B is contained in a 2-ray which 

avoids the other n - 1 edges o f  B. 

Proof. ( a ) ~  (b): By using Proposition 2.9 we get Conn(E, cx~)= n in the the bipartite 
graph G(P). Here E is the set of vertices of G(P) corresponding to interior edges. 
Moreover, the set A defines a set A _C E. The same proof as in (a) ~ (b) of The- 
orem 1.3 yields a biray R in G(P) which contains a vertex ~E-~ and avoids the 
rest of vertices of _~. The biray R clearly defines a 2-biray in P with the required 
properties. 

(b) =~ (c): It is obvious. 
(c) =~ (a): It is similar to the proof of (c) =¢, (a) in Theorem 1.3. [] 

Theorem 3.3. Let P be an admissible infinite 2-complex. Assume that P is s-con- 

nected o f  type ( g ( P ) , 8 ( P ) )  and val(P)~>n. Then the following statements are 

equivalent: 

(a) P is n-connected o f  type (8(P),  oo). 

(b) For A ---- {el . . . .  ,en-1} C 8(P  ) and 1 <<,m <~ min{s+ 1,n - 1} there exists a 2-biray 

R C P with R N A  = {el . . . . .  era}. 
(c) For A = { e l  . . . . .  en} C 8(P)  and 1 <~m <<. min{s + 1, n} there exists a 2-ray R c p 

with R N A  = {el , . . . ,em}.  

Proof. ( a ) ~  (b): We know by Proposition 2.9 that Corm(E,c~)=n and Conn(E,E) 
= s for the set E of vertices of G(P) corresponding to interior edges of P. Moreover, 
the set A defines a set ,4=  {~1 . . . . .  es+l} C E and the inductive proof of ( a ) ~  (b) in 
Theorem 1.4 can be carried out here to obtain a biray R in G(P) with R N A =  
{el . . . . .  ~m}- The biray R yields the required 2-biray in P. 

The proof of ( a ) ~  (c) is similar and we omit it. Moreover ( b ) ~  (a) as well as 
(c) :=> (a) follow from Theorem 3.2. [] 

For the connectivity type Conn(g(P) ,~2(P) )  we have the following result which 
follows the pattern of  Theorem 3.2. We leave the proof to the reader. Notice that 
~2(P) )  is identified with ~ ( G ( P ) )  by Proposition 2.4. Compare with Theorem 1.9. 

Theorem 3.4. Let  P be an admissible infinite 2-complex with val(P)~>n. Then the 

following statements are equivalent: 
(a) P is n-connected o f  type (g(P),  ~,~2(P)). 
(b) Given a set A C g (P)  with [A[ = n - 1, for  any edge e EA and any end 6 E ~2(P)  

there is a 2-biray R with both 2-ends A and such that R N A  = {e}. 
(c) Given a set B C ~(P)  with IBI = n ,  any e E B and any 2-end A there is a 2-ray R 

whose 2-end is A and such that B N R = {e}. 
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Since Conn(g(P), f f 2 ( P ) ) =  Conn(g(P), 8(P)) ,  we also get the following theorem. 

Theorem 3.5. Let  P be an admissible infinite 2-complex with val(P)>~n. Then the 

followin9 statements are equivalent: 

(a) P is n-connected o f  type Conn(g(P), ~2(P)) .  
(b) For A = {el . . . . .  e , - l  } C_ g ( p ) ,  A E .~-2(P), and 1 <~m<<.n - 1 there exists a 2-biray 

R whose only 2-end is A and such that R NA = {el . . . . .  em}. 

(c) For B = {el . . . . .  e,} C_ g(P),  A E ~2(P),  and 1 <<.m<~n there exists a 2-ray R whose 

2-end is A and such that R N B  = {el . . . . .  era}. 

Proof. We know by Theorem 2.9 that C o n n ( E , ~ ( G ( P ) ) =  Conn(E,E)=n .  Now we 
can argue as in Theorem 3.3 to show that (a) implies both (b) and (c). The converses 
follow from Theorem 3.4. 

Another result for the same connectivity type is the following theorem (compare 
Theorem 1.11) whose proof is also omitted. 

Theorem 3.6. Let  P be an admissible infinite 2-complex with val(P)>~n and 

1~-2(P)I/>2. Then the followin9 statements are equivalent: 

(a) P is n-connected o f  type Conn(8(P), ~-2(P)). 
(b) For A = { e l  . . . . .  e , _ l } C g ( P ) ,  A,A '  c o~2(P), and l <~m<~n - 1 there exists a 

2-biray R with 2-ends A,A ~ and such that R N A =  {el . . . . .  em}. 

For the connectivity type ( f f2(P) , f f2(P))  we can prove the two-dimensional ana- 
logue of (1.6) by applying (1.6) to the bipartite graph G(P)  of P. We leave the details 
to the reader. 

We finish this section by considering connectivity types of a 2-complex P involving 
Freudenthal ends. In general there is no bijection between the Freudenthal end of P 
and the Freudenthal ends of G(P).  However, the analogues of Theorems 3.2 and 3.3 
for the connectivity pair C o n n ( g ( P ) , ~ ( P ) )  hold. We leave to the reader the task of 
state and prove them. Next example shows that the hypothesis on the connectivity type 
(g(P),  g (P) )  is necessary for the analogue of Theorem 3.3. 

Example 3.7. Let M be any admissible 2-complex which is 3-connected of type (g(P),  
g (P) )  and with only one 2-end (e.g. the 2-skeleton of any one-ended open 3-manifold. 
See Corollary 2.7, and [1]). Let A = (x0 . . . . .  x . . . . .  } be any sequence of non-adjacent 
vertices of M. We consider three disjoint copies A i = ( x / }  C M /  (1 ~<i~<3) of A and 
M respectively and we construct the 2-complex P0 by identifying to a point y,  

i for each n. Given y0 c P0 we take three edges adjacent to y0, the three points x n 

7i = (yO, V i ) c m i  C Po, one in each copy Mi of M. Let c ~P0 and we consider the 
complex K0 with three triangles (c, yo, vi) (1~<i~<3). We take P = K o U P o .  Then P 
has only one Freudenthal end but three 2-ends. Moreover, P is 3-connected of type 
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(8(P), ~,~(P)) and only 1-connected of type (o~(P), g(P)). Clearly, P satisfies condition 
(a) but not condition (b) in the analogue of Theorem 3.3. A similar example can be 
constructed for condition (c). 

For Freudenthal ends the two-dimensional analogue of Theorem 1.13 also holds. 
More explictly, we have 

Theorem 3.8. Let P be an admissible infinite 2-complex; then the following state- 
ments are equivalent: 
(a) P is n-connected of  type ( ~ ( P ) ,  ~ (P) ) .  
(b) Given any two disjoint sets of  Freudenthal ends F = {~h . . . . .  ~/q} and F' = {el . . . .  , 

ep} and two sets of  positive integers {al , . . . ,ap} and {d 1 . . . . .  aq} with ~-~f=l ai = 

~-'~qi=l a~. = n, there exist n independent 2-birays from F to F' such that ai of  them 
define ~i and a~ of  them define tj, for all i, j. 

Proof. Clearly only (a) ~ (b) needs to be checked. For this we observe that according 
to Proposition 2.4 each Freudenthal end ~E~- (P)  defines a closed set A~ = i , 1 ( ~ ) C  
~ ( G ( P ) )  where G(P) is the bipartite graph of P. Therefore the sets F and F '  determine 
two families ~'F and dE, of pairwise disjoint closed sets of Freudenthal ends of G(P). 
As P is n-connected of type ( ~ ( P ) , ~ ( P ) )  it follows that Proposition 1.12 can be 
applied to d F  and dF,  in G(P) to show the existence of n disjoint birays in G(P) 
such that ai of them start at A~, and bj of them end at A~j. Moreover birays in G(P) 
can be regarded as 2-birays in P via the bijection g in Proposition 2.4 and now the 
diagram in Proposition 2.4 yields the result. [] 

Remark 3.9. We leave to the reader the statements and the proofs of the correspond- 
ing theorems for the connectivity pairs ( g ( P ) , ~ ( P ) )  and (~(P),~,~2(P)) by using 
Propositions 1.7 and 1.12, respectively. 

Appendix. Some relationships among the various connectivity types 

Here we give some relationships among the various connectivity orders already de- 
fined for graphs and 2-complexes in Sections 1 and 2, respectively. In this appendix 
we shall use the identity Sep(A,B)=Conn(A,B) provided by Theorems 1.1 and 2.14 
without any further comment. We shall start with the results concerning graphs. 

Lemma A.1. For a graph G the followin9 equalities hold: 
(a) 50(V(G), V(G)) = 6¢(V(G), ~ ( G ) ) .  
(b) / f  [~-(G)[~>2 then 6¢(V(G),c~)t_36¢(~(G),~(G))=~Sa(V(G),~(G)).  

Proof. (a) Let J E Sa(V(G), V(G)) be a cut-set for the vertices v,w E G. Let C~ and 
Cw be the connected components of v, and w in G - J .  If  both Cv and Cw are finite there 
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must exist a third infinite connected component Coo since J is finite. Then J separates 
v and w of any end e defined by C~, and so J E 6¢(V(G), Y(G)) .  If Cv (Cw) is infinite 
we proceed in the same way with Cw = C~ (C~, = C~, respectively). We have shown 
~(V(G) ,  V(G)) C_ 5P(V(G),~(G)) .  Conversely, i f J  separates v E V(G) of e E ~ ( G ) ,  
it is obvious that J separates v of any vertex w E V~. 

(b) If J E 6~(~(G) , J~(G))  then J separates two ends e,e~E ~ ( G ) ,  and therefore 
it separates ~ from any vertex in the connected component V,; C_ G -  J which de- 
fines d. Hence, 6P(~-(G), W(G))  C_ ~ (V(G) ,  ~ ( G) ) .  Moreover, if L E 6e(V(G), cxD) 
then J leaves some vertex v in a finite connected component C~, C_ G - L. Therefore, L 
separates v from the whole set ~ ( G ) ,  and so L E 6~(V(G),~(G)) .  

Now if K E : T ( V ( G ) , ~ ( G ) ) -  6 e ( ~ ( G ) , ~ ( G ) ) ,  K separates an end e E J~(G) of 
a vertex v E V(G) but the connected component C~, c_ G - K which contains v must be 
finite. Therefore K E.~(V(G),o~).  Hence, equality (b) holds. [] 

Proposition A.2. (a) Conn(V(G), V(G)) = Conn(V(G), ~ ( G ) )  <~Conn(J~(G), ~ ( G ) ) .  
(b) Conn(V(G), ~ ( G ) )  ~< Conn(VG), cx~ ). 
(c) In fact, when [~(G)L >/2 we have 

Conn(V(G), ~ ( G ) )  -- min{Conn(V(G), oo), Conn(~(G) ,  ~ ( G ) ) } .  

Corollary A.3. Conn(V(G), V ( G ) ) = Conn(V(G), ~,~ ( G ) ) is the smallest connectivity 
order of G. Moreover, for a one-ended graph the connectivity order Conn(~-(G), 
~ ( G ) )  is not defined and the other connectivity orders are the same. 

Proof of Proposition A.2. The parts (a) and (b) are direct consequences of 
Lemma A. 1. 

(c) Assume Sep(Y(G), ~ ( G ) )  = n < Sep(~(G) ,  ~ ( G ) ) .  Then any J E 5a(V(G), 
~ ( G ) )  with IJl=n does not belong to ~9~(~(G),~-(G)) and so J E 6 ~ ( V ( G ) , a c )  
by Lemma A.l(b). Hence Sep(V(G), c~)~<n, and by (b) we get Sep(V(G), c~)--n.  

If Sep(V(G), ~ ( G ) )  = n < Sep(V(G), co), clearly J ~ Sep(V(G), cx~) when IJI = n. 
Therefore J E ~9~(~(G), ~ ( G ) )  by Lemma A.l(b) and so Conn(~(G) ,  ~(G))~<n,  and 
(a) yields Conn(~(G) ,  ~ ( G ) )  = n. [] 

The width of the end ~, w(e), is the maximum number of pairwise disjoint rays 
which define e. The number w(e) is attained [7], and it is also called multiplicity in 
[12]. The width of ~ ( G )  is the number w(G)=min{w(e);  e E ~ ( G ) } .  We can add 
to Proposition A.2 the following proposition whose proof is immediate. 

Proposition A.4. I f  w(G) and val(G) are the width and valence of G, respectively, 
then Conn(J~(G), ~ ( G ) )  <<.w(G) and Conn(g(G),  cxz) ~<val(G). 
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Remarks. A.5. (1) The simple examples below show that the 
Propositions A.2 and A.4 can be strict. 

(a) 

c--i: \1 / 

inequalites in 

Conn(V(G) ,~(G))=2 < C o n n ( ~ - ( G ) , ~ ( G ) ) =  3 < w(G)= 4. 

(b) 

G =  • . , ( ~ ' y ~ - ~ . .  
M_..I_.,/M...I._.JM...L_J 

Conn(V(G),,~(G))= 1 < Conn(V(G),oo) = 2 < val(G) = 3. 

(2) Notice that for fixed values val(G) and [~(G)[  it can be found arbitrary large 
values for Conn(~ ' (G) ,~ (G) ) .  We give an example with v a l ( G ) = 2  = I~(a)l. Let 
C, be a cycle with n edges. Then the graph G=C,  × Y_U{v × ~; vE V(C,)} verifies 
Conn(~-(G), ~ ( G ) )  = n. 

Now we turn our interest to 2-complexes. For them we have the following. 

Proposition A.6. Any infinite admissible 2-complex P with I~-(P)I ~>2 verifies: 
(a) Conn(g(P), ~2(P)) = Conn(g(P), #(P)) = min{Conn(e(P), ~-(P)), Conn(~z(P), 

:2(P))}.  
(b) max{Conn(8(P),~(P)),Conn(J~2(P), .-~2(P))}~< Conn(..~(P),.~2(P)) ~< min{Conn 

( i f (P ) ,  ~ ( P ) ) ,  w2(P)}. 
Here w2(P)=min{w(A),AE~2(P)} denotes the width of P and w(A) is the 

width of the 2-end A; i.e. the maximal number of independent 2-rays defining the 
2-end A. 

On the other hand, it is clear that Conn(g(P),cxz)~<val(P). Furthermore we can 
prove 

Proposition A.7. For an infinite admissible 2-complex P with [~2(P)[ I>2 the follow- 
ing equalities hold: 
(a) min {Conn (8(P),  cx~), Conn (~2(P),  ~2(P))}  = Corm (g(P),  J 2 ( P ) )  =Conn (g(P),  

#(P)).  
(b) min{Conn(~(P), c~), Corm(if(P),  ~-2(P))} = Conn(8(P), i f (P) ) .  
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Corollary A.8. The number Conn(~(P),  g (P ) )  = Conn(~(P),  ~2 (P) )  is the smallest 

connectivity order of  P. In addition, i f  P b an infinite admissible 2-complex with 
only one 2-end then all the connectivity orders defined for P are the same. 

The proof of  Propositions A.6 and A.7 need the following lemmas involving the 
family of  cut-sets 5~(A, B). 

Lemma A.9. For P as above we have: 
(a) o~(#(p),  y ( p ) )  C_ 6a(ov(P), ,,~2(P)) = ~(o#(P), ~f(P)). 

(b) ~5,(~(°~-(P), Y ( P ) )  c_ 6# (~ (p ) ,  ~ 2 ( P ) ) =  ~ ( ~ 2 ( P ) ,  ~2(P)) .  
(c) ~ ( e ( P ) ,  g (P ) )  = 5~(o~(P), i f ( P ) )  U 5~(ff2(P), ~-2(P)). 

Proof. (a) Clearly, if J separates the edge e from the end e then J separates e from 
any 2-end A E h - l ( e )  (see Proposition 2.4). In order to show the equality in (a) we 
just mimic the proof of  Lemma A.1 by using the identification f f 2 ( P ) =  ~ ( G ( P ) )  in 
Proposition 2.4. 

(b) I f  J separates e and d in Y ( P )  then J also separates e (d respectively) of any 
2-end A~E h-I(e ') (A E h- l (e)  respectively). 

(c) The inclusion 6 e ( ~ 2 ( P ) , ~ 2 ( P ) ) c  5P(eg(p), g(p ) )  follows from Proposition 2.4 
and the same proof as in (A.l(a)) ,  and so 5~(~2(P) ,~2(P) )USc(g(P) ) ,~ (P) )C_  
5¢(~(P),ov(P)) by (a). 

Assume now J E 5P(g(P), g(P)).  If  J ~ 5 P ( 8 ( P ) , ~ ( P ) )  the complement P -  J has 
at least two 2-path connected components and all of  them are infinite, otherwise J 
would be a cut-set in 5¢(g(P)),, ,~(P)). Hence J E 5~(Y2(P),~2(P)) .  

If  J ~ 5P(J2(P),  ~2 (P) )  the complement P - J has at least two 2-path components 
but only one of them can be infinite. Therefore J ~ 5e(g(P),  ~ ( P ) ) .  [] 

Lemma A.IO. For P as above we have 
(a) fD(~(p), oo) U o~(~2(P), o~2(P)) = &a(g~(p), ~2(P)) .  
(b) 5 ° (g~(P), ~o) U 5 P ( ~ ( P ) ,  o~2(P)) = 5 ~ ($(P) ,  o~ (p) )  = 5P (~(p) ,  oo) u ~ ( ~ ( P ) ,  

o~(p)). 

Proofl (a) This follows from the identification ~-2(P)=  ~ ( G ( P ) )  in Proposition 2.4 
and by the same proof as in Lemma A. l(b). 

(b) Given a cut-set J for e E o~(P) and oe, it is clear that J separates e from any 
Freudenthal end e E o j (p ) .  Similarly, given a cut-set J for e E o~(p) and A E o~2(P) we 
have that J separates e from any interior vertex in the connected component C j c_ P - J  
which defines A. 

Moreover, if J E S#(~(P), o~(p))  - c f ( g ( p ) ,  o~2(p)), j separates an edge e E ~(P)  
of a Freudenthal end e E o~(p), and by Lemma 2.1 e must lie in a finite connected 
component of P - J .  Therefore J E ~9°(¢(P), c~), and the first equality is proved. The 

second equality is checked in a similar way. [] 
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Proof of Proposition A.6. (a) By using Lemma A.9(a) and (c) we can easily check 

Conn(8(P), ~2(P) )  = Conn(6~(P), g (P) )  

< min{Conn(o~(g), ~ ( P ) ) ,  Conn(~2(P), J~2(P))}. 

Furthermore, if Conn(8(P), 8 (P) )  = n < Conn(¢(P), ~,~(P)), by Theorem 2.14 there ex- 
ists a cut-set J E ~(6~(P), 8 (P) )  with l J[ = n. In particular, J ~ H'(8(P),  ~ ( P ) ) ,  and 
hence J E ~9°(~2(P),~,~2(P)) by Lemma A.9(c). So Conn(~2(P) ,~2(B))  = n. 

In case n<Conn(~2(P) , ,~2(P)) ,  we can use Lemma A.9(c) again to show 
Conn(6~(P), ~-(P))  ----- n. 

(b) By using Lemmas A.9(b) and A.10(b) one gets Conn(~2(P),~2(P))~<Conn 
( ~ ( P ) ,  ~-2(P)) ~< Conn(o~(P), ~ ( P ) )  and Corm(e(P), #-(P))-<< Conn(~(P) ,  ~2(P)) .  

Finally, one easily checks Conn(~-(P),~2(P))<~w2(P). [] 

Proof of Proposition A.7. (a) Here we follow the same arguments as in the proof of 
A.2(c) by using Lemmas A.9(a), (c) and A.10(a). 

(b) It follows the same pattern as the proof of A.2(c) by using now A.10(b). [] 

Example A.11. The following admissible 2-complex P shows that the inequalities in 
Proposition A.6 can be strict. Let X be as in Example 2.3 and let X '  be the symmetric 
copy of X with respect to the axis OY. We consider the space Y -- [ -2 ,  -1 ]  × [ -4 ,4 ]U 
X UX' U [ -1 ,2 ]  × ([2,4] U [ -4 ,  -3] ) .  Then P is the admissible 2-complex obtained as 
a subdivision of  the following cellular decomposition of  X without new vertices: 

y = 

We have Conn(8(P), ~-(P))  = Conn(~2(P), ~2(P) )  = 1, Conn(Y(P) ,  ~-2(P)) = 2 
and Conn(~(P) ,  ~-(P))  = w2(P) = 3. 
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