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Abstract

In this paper we present an Ant Colony Optimisation based algo-
rithm to determine the Pareto set for the Multiple Objective Travelling
Salesman Problem. Our results are then compared with the ones ob-
tained with a genetic algorithm.

1 Introduction

When developing a mathematical model, the majority of the real-world pro-
blems require several goals to be fulfilled at the same time, taking us in
the area of Multiple Objective Optimisation (MOO). One of the most used
approaches, simplifies the computational procedures by aggregating all the
objectives in a function, followed by the application of known single objec-
tive optimisation techniques. Usually, that function is defined as a weighted
linear combination of the multiple costs that, most of the times, produces
an artificial value due to the different nature of the parcels. Furthermore,
hardly ever exists a single solution that optimises simultaneously all the
objectives and, therefore, a set of solutions that represents the best com-
promise between the conflicting objectives is most suitable. This paper de-
scribes a multiple pheromone trails Ant Colony Optimisation (ACO) with
local search algorithm for the Multiple Objective Travelling Salesman Prob-
lem (MOTSP). Therefore, in the next section we will introduce some ideas
related to MOO, MOTSP and ACO. In the third section, we present the
optimisation procedure used to solve the MOTSP. Finally, we report on
our experiments, present some succinct observation over the experimental
results and some future work.
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2 Preliminaries

This section will be dedicated to introduce the problem as well as the basic
heuristic used to solve it.

Multiple objective optimisation The MOO can be mathematically de-
fined as ”minimize” (f1(x), f2(x), . . . , fm(x)) subject to x ∈ S, where S is
the set of feasible solutions and ”minimize” requires the determination of a
set of points from S, that optimises the costs over some defined order rela-
tion in IRm. A formal definition of optimality for the MOO, introduced by
Vilfredo Pareto, says that: x∗ ∈ S is a Pareto optimum when there exists no
other x ∈ S such that fi(x) < fi(x∗), i = 1, 2, . . . , m. The set of all points
satisfying the above condition is named Pareto set. Therefore, the Pareto
set is the best collection of solutions to the problem, i.e., one of the objective
functions can only be improved at the expense of increasing at least one of
the others.

Multiple objective travelling salesman problem The single objec-
tive TSP is one of the best-known combinatorial optimisation problems.
In this paper we consider the MOO variant that can be stated as follow:
”Given a network N = (V, C) where V = {v1, v2, . . . , vn} is a set of nodes
and C = {ci : i ∈ {1, 2, . . . , m}} is a set of cost functions between nodes
(ci : V × V → IR), determine the Pareto set for the minimum length Hamil-
tonian cycles”.

Ant Colony Optimisation The ACO, introduced by Marco Dorigo, is
one of the most recent meta heuristics. As the name suggests, the op-
timisation process mimics the colonies of ants, in particular their forager
behaviour. The process is based in a set of artificial ants that communicate
using artificial trails of pheromone. Those trails reflect the experience of
the ants that have already solved the problem and favour the creation of
new solution. The method comprises a set of iterations where collections of
solutions are obtained. At the end of each iteration, the pheromone trails
are updated considering the known solutions as well as a certain pheromone
evaporation. The ACO as been applied to some of the most demanding com-
binatorial optimisation problems like, for example: the TSP, the Quadratic



Assignment and the Vehicle Routing (a more extensive list of application
and references can be found in [Dorigo, 2000]). Related to the MOO, in
[Cardoso, 2003] an algorithm based on the ACO was used to optimise flows
over a multiple objective network under a time window.

3 Multiple Objective TSP based on ACO

In this section, we introduce the logic used to determine the Pareto set for
the MOTSP based on ACO algorithm and a local search heuristic.

Hamiltonian cycle construction Each ant, initially placed randomly in
one of the nodes, creates a Hamiltonian cycle by the successive selection of
nodes, from the ones not yet visited. The order in which the nodes are cho-
sen, is made pseudo randomly according to the pheromone trails and a local
greedy heuristic that gives preference to nearest nodes. Mathematically, the
probability of moving from node u to node v is given by:
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cost of edge (u, v) and α1, α2, . . . , αm and β1, β2, . . . , βm are parameters that
emphasis the costs and the local greedy heuristic importance, respectively.

Pheromone update As referred, the process is based in a set of m

pheromone trails, each one associated to a cost. Those trails, initially set
equal, are updated after each iteration of the ACO according to τ
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where Q is an adjustable parameter related
to the amount of pheromone that each ant leaves, P is a set of Hamiltonian
cycles such that (u, v) ∈ P and T

(k)
a is the k cost of the a cycle.

Local search heuristic The local search used is based in a simple cycle
modification that can be described as a node exchange heuristic. In essence,



each pair of nodes is tested looking for switches that improve the cycle costs,
i.e., a switch is performed if, by doing so, none of the costs are increased
and at least one is diminished.

4 Results and conclusions

Figure 1 compares the Pareto set ob-

Figure 1: Pareto set obtained for the
combination of kroa50 and kroa50
with our ACO based algorithm and
MOGLS

tained with our algorithm and the one
determined with MOGLS (Multiple
Objective Genetic Local Search) [Jas-
zkiewicz, 2000], for the combination
of kroa50 and krob50 [TSPLIB, 2003].
Parameters α1, α2, β1, β2 varied in
{1, 5, 10}, ρi = 0.1, i = 1, 2, . . . , m

and only the elements in the Pareto
set contributed to the variation of the
pheromone trail at the end of each it-
eration.

Conclusions As conclusion, the local search was used to face the fact that
the pure ACO (with m pheromone trails) produced good initial approxima-
tions but had difficulties to improve those solutions. Therefore, as further
work, the use of a more specific local search heuristic will probably reveal
better performances.
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