
Multiple criteria minimum spanning trees

Pedro Cardoso ∗ Mário Jesus † Álberto Márquez ‡

Abstract

The NP multiple criteria minimum spanning tree as several applications into the network
design problems. In this paper, we first introduce some properties than can help to characterize
the problem, as well as to produce heuristics to solve it in a more efficient way. In the second
part, we propose an application of the Multiple Objective Network optimization based on the
Ant Colony Optimization (MONACO) algorithm to find out an approximation to the set of the non-
dominated solutions of the problem. The MONACO algorithm uses as many pheromone trails as the
number of criteria and some local operators to increase the speed of the process and the quality
of the results.

1 Introduction

When developing a mathematical model, the majority of the real-world problems require the simulta-
neous achievement of several, often conflicting, goals, taking us into the area of multiple objective, or
criteria, optimization. Due to does opposing objectives, improving some of them, usually, will worse
the others, just as hardly ever exists a single solution that optimizes all of them. Therefore, a set of so-
lutions that represents the best compromise between the conflicting objectives, usually called efficient
set, is most suitable, being left the final verdict, of picking one of those solutions, to a Decision Maker
[4]. Network design problems do not escape from the multiple criteria exigencies and network designers
are challenged to give their best to maximize factors like: productivity, reliability, longevity, efficiency
or quality. At the same time other conflicting factors, like the product final cost, the maintenance cost
and the weights, are to be minimized.

In this paper, we centre our attention on a network design problem known as the spanning tree
problem, focused in the multiple criteria minimum spanning trees. There are several geometric network
design and application problems with solutions based on spanning trees, like for instance: VLSI circuits
[1], telecommunications (IEEE-802.3D standard known as the spanning tree protocol, Quality of Service
problems [13]), road network design and medical imaging. In [11] Eppstein says that the spanning trees
and spanners problems can be very easily stated as:Connect a collection of n sites by a ”good” network.
Mathematically, a spanning tree is an acyclic complete connected graph. Several spanning tree problem
variants are known depending on the metric used or on the restrictions applied to the network [9, 11].
An exhaustive list of variants for spanning tree problem, including several NP cases, can be found in
[2].

The multiple objective minimum spanning tree, even in its unconstrained form, is NP-hard and
NP-# (in the worst case can have as many solutions as the number of trees that goes up to (nn)nn−2,
Cayley’s theorem, for the complete graph, Knn

) [7]. Algorithms to scan all spanning trees have an high
order of complexity with one of the best taking O(nST + nn + ne) time (where nST is the number of
spanning trees, nn the number of nodes and ne the number of edges) and O(nn +ne) space [12] which,
usually, became untreatable for a small networks. Brute force algorithm, like the recursion algorithm
from Ramos et al. [?], can only solve, in reasonable time, very small problem instances.

∗Dept. de Engenharia Electrotecnica, EST, Universidade do Algarve, Faro, Portugal, pcardoso@ualg.pt
†Dept. de Engenharia Civil, EST, Universidade do Algarve, Faro, Portugal, mjesus@ualg.pt
‡Dept. de Matemática Aplicada I, Universidad de Sevilla, Sevilla , España, almar@us.es

In the last decades, following the increasing computational capacities, a set of computationally
demanding meta-heuristical techniques based in stochastic processes, were developed and had very
expressive success to approximate solutions for some of the most demanding optimization problems.
These global optimization methods are established over biological or physical principles and are based
on the use of pseudo-random processes and specific heuristics, to establish near-optimum solutions
for the proposed problems. This kind of meta-heuristics proved to be versatile and robust when well
adapted. Some examples of this kind of algorithms are the Genetic Algorithms based on the Dar-
win’s evolutionary theory of the species, the simulated annealing algorithms based on metal annealing
process, the Ant Colony Optimization (ACO) algorithms based on the foraging behaviour of the ants
colonies [6], and some others.

In this paper, we apply the Multiple Objective Network optimization based on the Ant Colony
Optimization algorithm (MONACO) to the multiple criteria minimum spanning tree. The process uses
several levels of pheromone trails (one for each objective) that are used to build the spanning trees in
two phases: first a set of disjoint sub-trees are created and after this sub-trees are combined to obtain
the final spanning tree.

Therefore, the remainder of the paper is organized as follow. In the second section, we introduce
some preliminary results over multiple criteria decision and MONACO algorithm. In Section 3, we intro-
duce some properties concerning the multiple objective minimum spanning trees. In the last sections,
we explain the adaptation made to the MONACO algorithm to solve the present problem, present some
results and draw conclusions.

2 Preliminaries

2.1 Multiple criteria decision making

Real world combinatorial problems require the optimization of multiple criteria. In this case, the
feasible set of solutions, S, is defined as a subset of the power of a finite set A = {a1, a2, . . . , an},
S ⊆ 2A (for example, in the spanning tree case A is the set of edges of a network) and for each solution
s ∈ S the typical objective function is the sum objective wi(s) =

∑

a∈s zi(a), i = 1, 2, . . . ,m, where
zi : A → IR is the i component of the weight associated to each of elements of A.

Therefore, we can mathematically define the multiple criteria combinatorial optimization problem
as optimizes∈SW(s) where W(s) = (w1(s), w2(s), . . . , wm(s)) is the weight vector associated to solution
s and optimize means that we either want to minimize or maximize the weights, wi (i = 1, 2, . . . ,m).
In this paper we will always consider that all the objectives are to be minimized since that, if some of
the objective, wk, is to be maximized we can apply the duality principle, min−wk.

Now, for instance, we could define optimize as mins∈S maxi=1,2,...,m wi(s), called the max-ordering
problem (often also called min-max problem) or, as we shall follow in this work, the definition intro-
duced by Vilfred Pareto called Pareto efficiency and that we will define next.

Let us first define the dominance relation, ≺, that is a strict partial order relation: anti-reflexive
(∀s,t∈S : s ≺ t ⇒ s 6= t), asymmetric (s ≺ t ⇒ t 6≺ s) and transitive (∀r,s,t∈S : r ≺ s ≺ t ⇒ r ≺ t). A
solution s ∈ S dominates t ∈ S, and we write s ≺ t, if wi(s) ≤ wi(t) for all i ∈ {1, 2, . . . ,m} and for
at least one j ∈ {1, 2, . . . ,m} we have wj(s) < wj(t).

Given the dominance definition, we can define the Pareto set as the best collection of solutions,
in the sense that, for those solutions one objective function can only be improved at the expense of
increasing at least one of the others. So, a solution s∗ ∈ S is called a Pareto optimal if there exists
no other s ∈ S such that s ≺ s∗ and the non-dominated set of the feasible solutions is the Pareto set,

Pareto front or efficient set.

Due to the complexity inherent to most of the multiple criteria problems, several techniques were
developed that take use of single objective algorithms. One example, is the weighted sum where, for
some pondering weights li > 0, usually such that

∑m
i=1 li = 1, we want to mins∈S

∑m
i=1 liwi(s) which,

providing the existence of an algorithm for the associated single objective problem, returns efficient
solutions, as we can see in the following theorem.

Theorem 2.1. For each weight vector l = (l1, l2, . . . , lm) with li > 0, the solution of the single objective

problem defined by mins∈S
∑m

i=1 liwi(s) is a Pareto solution of optimizes∈SW(s).

To prove this result, suppose that s∗ is a solution of mins∈S
∑m

i=1 liwi(s) but is not a Pareto
solution. Then, exists s ∈ S such that s ≺ s∗, i.e., wi(s) ≤ wi(s

∗) for all i ∈ {1, 2, . . . ,m} and exists
j ∈ {1, 2, . . . ,m} such that wj(s) < wj(s

∗). Therefore, for vector l = (l1, l2, . . . , lm), with li > 0,
we have

∑m

k=1 lkwk(s) <
∑m

k=1 lkwk(s∗) which contradicts our hypotheses that s∗ is a solution of
mins∈S

∑m
i=1 liwi(s) and, therefore, s∗, solution of mins∈S

∑m
i=1 liwi(s), must belong to the Pareto

front.

Although Theorem 2.1 guarantees efficient solutions, it can not be used to solve all multiple ob-
jective problems since that, for instance, different weight vectors need not necessarily lead to distinct
solutions, as well as the associated single-objective problem might not have an efficient algorithm to
solve it.

2.2 Swarm Intelligence, ACO and MONACO

Some animals, like the insects, are not considered to be intelligent. Besides, the myth of the Ant Queen,
well personified for instance in the Antz film, does not have any relationship to the real ant colony
conduct, since that, neither the queen nor any of the ants has a command role in the colony dynamics.
However, the group behaviour of some of those social creatures, acting as a swarm, reveal aptitude
to solve very complex tasks [8]. Those swarms are complex adaptive systems that display emergent
behaviour and are the base idea for the called Swarm Intelligence algorithms. These algorithms mimic
those group actions to solve optimization problems, becoming an area of high interest in the last few
years. In general, the Swarm Intelligence algorithms employ a set of unfussy agents that react to
environmental signals, to solve the proposed problems, using environmental changes introduced by
other of agents, thus acting locally to produce complex global behaviour. Furthermore, the use of
multiple agents as the advantage of searching for solution in multiple places at the same time, having
the control distributed, as well as their robustness and flexibility, besides the fact that most of the
times this algorithms can be parallelized in a very straight and efficient way.

The Ant Colony Optimization (ACO) algorithms are, probably, the more spread Swarm Intelligence
algorithms [6]. Introduced by Marco Dorigo, the ACO is one of the most recent meta-heuristics that,
as the name suggests, mimics the forager behaviour of the ants’ colonies. To communicate the ants
use a chemical substance called pheromone to guide the ants between the anthole and the food. As
in the natural process, the artificial process is based in a set of artificial ants that communicate using
artificial trails of pheromones. Those trails reflect the experience of the agents that have already
solved the problem and favour the creation of new solutions. The method comprises a set of iterations
where collections of solutions are obtained. At the end of each iteration, the pheromone trails are
updated considering the known solutions as well as a certain pheromone evaporation. The ACO as
been applied to some of the most demanding combinatorial optimization problems like: the TSP,
the Quadratic Assignment problem, the Vehicle Routing problem [6] and logic circuit design (a more
extensive list of application as well as the respective references can be found in [5]).

In [3] an multiple objective algorithm based on the ACO algorithms called MONACO was used to
simulate network flows. Compared to the ACO, the main differences were the use of multiple levels
of pheromones, the existence of the Pareto set of solutions and the use of explicit local optimizers to
improve the ants’ solutions. In Figure 1 we can see sketched a low-level description of the MONACO

procedure.

In graph problems, those multiple pheromone trails present in each edge, usually represent the
value of that edge in the construction of good solution. Those values are strictly connected both, to
the number of times that the edge as belonged to solutions retrieved by the algorithm as well as to
the quality of those solutions. The pheromone trails are updated at the final of each iteration using
the formula: τk(u, v) = ρkτk(u, v) + ∆τk(u, v), for k = 1, 2, . . . ,m and (u, v) ∈ E , where τk(u, v) is the

• Initialize the pheromone trails and the Pareto set

• WHILE stopping criteria is not met DO

– FORALL ants DO

∗ Construct a new solution using the pheromone trails and apply local optimizer operators

∗ Evaluate the solution and update Pareto set

– Update the pheromone trails.

Figure 1: Low-level description of the MONACO Algorithm

quantity of pheromone associated to the k weight on edge (u, v), 0 ≤ ρk ≤ 1 are persistence factors
for the pheromone trails (1− ρk is the evaporation factor) and ∆τk(u, v) is the quantity of pheromone
placed by the ants. This quantity is in the inverse proportion to the solution k-weight. For instance, if
S is the set of solutions built in some iteration, wk(t) the k-weight of solution t ∈ S and Suv = {t ∈ S :
(u, v) ∈ t} is the set of solution to which (u, v) belongs, then ∆τk(u, v) =

∑

t∈Suv

Q
wk(t) , k = 1, 2, . . . ,m,

where Q is some constant related to the pheromone quantity that each ant leaves (usually a value of
the same magnitude of the solution).

3 Multiple criteria minimum spanning trees

Having an undirected graph N = (V, E ,Z), where V = {1, 2, . . . , n} is the set of nodes, E ⊂ V × V
is the set of edges and Z : E → IRm such that Z(e) = (z1(e), z2(e), . . . , zm(e)) is the weight vector
associated to the edges, we can define a spanning tree as any connected acyclic subgraph of N . Let
TN ⊆ 2E be the set of all spanning trees over N .

For any spanning tree, T , the sum objective function also called weight or cost vector of T , is
equal to W(T) = (w1(T), w2(T), . . . , wm(T)) =

(
∑

e∈T z1(e), . . . ,
∑

e∈T zm(e)
)

=
∑

e∈T Z(e). For
m = 1 a spanning tree of N is called a minimum spanning tree if its weight is minimal over all
spanning trees weights. For the multiple objective case, m > 1, we use the definitions of dominance
and Pareto’s optimality (Section 2.1) to define the efficient set of the multiple criteria optimization
problem, mathematically defined as min∗

T∈TN
W(T) where min∗ indicates that all objectives are to

be minimized.

3.1 Some results on multiple objective minimum spanning trees

In this section we introduce some results to characterize the problem. Let us consider that euv ∈ E is
the edge defined by nodes u and v of V, Eu the set of edges with origin u, M = {1, 2, . . . ,m}, VT is the
set of nodes of subgraph T , ET the set of edges of T , E|T is the set of edges defined in N by VT and
N|T = (VT , E|T ,Z). To simplify our notation, let T ′ = T −{e} ∪ {f} represent the graph obtained by
removing edge e and adding edge f to a graph T , i.e., T ′ = (V, ET − {e} ∪ {f},Z).

Definition 3.1. A subtree T is efficient if T is efficient over N|T .

By Definition 3.1 a tree T ∈ TN is efficient if there is no other solution S ∈ TN such that S

dominates T .

Lemma 3.2. A spanning tree is efficient if and only if all its subtrees are efficient.

Proof. Suppose that T has a subtree T ′ that is not efficient over N|T ′ = (VT ′ , E|T ′ ,Z). Then, exists
S′ ∈ N|T ′ such that S′ ≺ T ′, that is, wi(S

′) ≤ wi(T
′) for all i ∈ M and exists j ∈ M such that

wj(S
′) < wj(T

′). Now, for S = T − T ′ ∪ S′ we have wi(S) = wi(T) − wi(T
′) + wi(S

′) ≤ wi(T) for all
i ∈ M and wj(S) = wj(T)−wj(T

′) + wj(S
′) < wj(T) for some j ∈ M which means that S dominates

T and consequently we have a contradiction.

To prove the reciprocal, suppose that all subtrees of a tree are efficient and T is not efficient. Then
exists S that dominates T and, since T is a subtree of it self, we have a contradiction which means
that T must be efficient.

Lemma 3.3. Let e be an edge of a non empty subgraph T of N . If f is an edge of E − ET and

f dominates e, f ≺ e, then the graph T ′ obtained by adding f to T and removing e from T , T ′ =
T − {e} ∪ {f}, dominates T .

Proof. Since f dominates e then zi(f) ≤ zi(e) for all i ∈ M and zj(f) < zj(e) for some j ∈ M .
Therefore, from the first equation for all i ∈ M we have wi(T

′) = wi(T)+zi(f)−zi(e) ≤ wi(T) and from
the second there is the guarantee that exists j ∈ M such that wj(T

′) = wj(T)+zj(f)−zj(e) < wj(T),
which proves that T ′ dominates T .

A cut of V is a partition of V in two non empty sets V1 and V2, i.e., V = V1 ∪ V2 and V1 ∩ V2 = ∅.
Let us also denote the set of the edges incident with one node in V1 and a node in V2 by E(V1,V2).

Lemma 3.4. Let T be a tree, euv ∈ ET and Vu,Vv the cut induced by the remotion of euv from T . If

ewz ∈ E(Vu,Vv) then T ′ = T − {euv} ∪ {ewz} is a tree.

Proof. Let Tu and Tv be the subtrees of T defined by Vu and Vv, respectively. Since T is a tree, Tu

and Tv are also trees (they are subtrees of T) and by hypothesis they are node-disjoint. Therefore,
for ewz ∈ E(Vu,Vv), T ′ = (V, ETu

∪ ETv
∪ {ewz},Z) can not contain any cycles and is connected which

proves that T ′ is a tree.

If N is a connected network we say that an edge euv ∈ E is a bridge if by removing it the network
becomes disconnected.

Definition 3.5. Let N = (V, E ,Z) be a network. An edge euv ∈ E is local or node efficient if euv

is not dominated by any edge in Eu (∀euw∈Eu
: euw 6≺ euv) and is local or node dominant if euv

dominates all edges in Eu − {euv} (∀euw∈Eu−{euv} : euv ≺ euw).

The following two theorems show that in some conditions an edge can be present in all the efficient
spanning trees.

Theorem 3.6. If euv is local dominant or euv is a bridge then euv belongs to all the efficient trees.

Proof. The case in which euv is a bridge is trivial. Suppose now, that euv is node dominant, T is an
efficient tree from TN , (u, u1, u2, . . . , up, v) is the path from u to v in T , euv does not belong to T and
S is the tree (Lemma 3.4) obtained by replacing edge euu1

by edge euv in T . Now, using Lemma 3.3
and since euv dominates euu1

, we can conclude that S dominates T . Therefore, T is not an efficient
tree, which contradicts our hypothesis and therefore euv must belong to all efficient trees.

Theorem 3.7. If for some cut V1, V2 of V there is an edge euv in E(V1,V2) such that euv dominates

all edges in E(V1,V2) − {euv} then euv belongs to all efficient spanning trees.

Proof. The case in which E(V1,V2) − {euv} = ∅ is trivial that euv belongs to any spanning tree, since
it is a bridge. Suppose now that E(V1,V2) − {euv} 6= ∅, euv does not belong to some efficient tree
T and let ewz ∈ E(V1,V2) − {euv} be an edge in T that connects V1 to V2. Then, by Lemma 3.4,
S = T − {ewz} ∪ {euv} is a spanning tree and, since euv ≺ ewz, from Lemma 3.3 can conclude that
S dominates T which contradicts our hypothesis that T is an efficient spanning tree. Thus euv must
belong to all spanning trees.

If T is a tree and e an edge not contained in T then T ∪ {e} contains an unique cycle denoted by
CT (e).

Theorem 3.8. If a spanning tree T is efficient and e belongs to E − ET then e does not dominate any

edge in the cycle CT (e), i.e., ∀e∈E−ET
∀f∈CT (e) : e 6≺ f.

Proof. Suppose that T is an efficient spanning tree and that exists an e ∈ E − ET and a f ∈ CT (e)
such that e ≺ f . Now, by Lemma 3.3, the tree S = T − {f} ∪ {e} ≺ T , since e ≺ f . This contradicts
our hypothesis so, T is an efficient spanning tree.

Theorem 3.9. If T is a spanning tree such that for all edges e of E − ET and for all edges f of

CT (e) − {e} we have f ≺ e then T is the unique efficient spanning tree.

Proof. Let S0 be a spanning tree, ES0
−ET 6= ∅ (if it was the empty set then S0 = T) and e and edge in

ES0
−ET . If we remove e from S0, we stay with two subtrees of S0: S′

0 and S′′
0 . On the other hand, we

know that e is dominated by all edges in the path CT (e)−{e} and S′
0∪S′′

0 ∪CT (e)−{e} will be connected
again (not necessarily a tree). If e′ is the edge that connects S ′

0 with S′′
0 and S1 = S0−{e}∪{e′} is the

tree obtained by removing e from S0 and adding e′ then W(S1) = W(S0)−Z(e)+Z(e′). Now, since by
hypothesis e′ ≺ e then for all i ∈ M it verifies zi(e) ≤ zi(e

′) and exist j ∈ M such that zj(e) < zj(e
′),

which implies that wi(S1) ≤ wi(S0) for all i ∈ M and exist j ∈ M such that wj(S1) < wj(S0) and,
therefore, S1 ≺ S0. Now, we can repeat this process while Si − T 6= ∅, obtaining a sequence of trees
such that Sk ≺ · · · ≺ S2 ≺ S1 ≺ S0, with k ≤ n − 1. At the end Sk = T , since Sk − T = ∅, which
implies that any tree is dominated by T .

4 MONACO applied to the multiple objective minimum spanning

tree problem

The construction of the spanning trees by MONACO is divided in two phases: in the first phase a set of
disjoint subtrees is built and in the second phase those trees are joined to form a final tree. In both
phases the process uses m pheromone trails associated to the m weights, τ (k) (k = 1, 2, . . . ,m), and
a local heuristic to improve search procedure. At the end, a local optimizer is applied to improve the
solution.

Disjoint subtree In this phase the process determines a set of disjoint spanning trees. It starts
by randomly choose a node, u0, that does not belong to any subtree. From that node we create a path,
which is a subtree, through the order addition of nodes using the probabilistic formula:

puiui+1
=

∏m

k=1 τk(ui, ui+1)
αkwk(ui, ui+1)

−βk

∑

z∈{v:(ui,v)∈E} [
∏m

k=1 τk(ui, z)αkwk(ui, z)−βk]
, (ui, ui+1) ∈ E , (1)

where αk ∈ IR+
0 (k = 1, 2, . . . ,m) and βk ∈ IR+

0 (k = 1, 2, . . . ,m) are parameters related to the relative
importance of cost k and of the local heuristic, wk(ui, v)−βk , , respectively. This local heuristic favours
the addition of edges with lower weights. The spanning tree construction stops when the selected node
already belongs to some subtree. When that happens, if the last selected node does not belong to
the tree in construction, then we obtain a subtree by joining the subtree under construction with the
intersected tree. Otherwise, the chosen node already belongs to the tree in construction that is disjoint
from any other. In this case, this tree is kept and later joined with the other disjoint subtrees. The
process is repeated until all nodes belong to some subtree.

Fusion of the subtrees From the previous phase we have a set of subtrees T = {T1, T2, . . . , Tk}.
Now, we start by picking one subtree from T , Ti, and then we look for a good connection to one of the
other trees, T − {Ti}. That connection is made by randomly choosing an edge euv such that u ∈ Ti

and v 6∈ Ti, i.e., v ∈ tj , with tj ∈ T − {Ti}, using formula

puv =

∏m

k=1 τk(u, v)αkwk(u, v)−βk

∑

(x,y)∈Q [
∏m

k=1 τk(x, y)αkwk(x, y)−βk]
, (u, v) ∈ Q, (2)

where Q = {(x, y) ∈ E : x ∈ Ti ∧ y 6∈ Ti}. This process is repeated until there is only on tree. In
example 4.1 we can see a simulation of the process for a 8 node network.

Example 4.1. Consider the network in Figure 2 with associated edges weights (w1, w2). Suppose also that the process
has been running for some time, with parameters α1 = 1, α2 = 2, β1 = 2 and β2 = 2, and the pheromone trails have values
given by (τ1, τ2). Those values are resumed in Table 1, with entries of the form (w1, w2, τ1, τ2) and the process to build a
tree (Figure 2) can be described as follow:(a) Randomly select node: 1; The probabilities of adding each of the edges adja-

cent to node 1 are p1,2 =
(1
1)25(1

2)24
2

(1
1)25(1

2)242+(1
3)21(1

3)222+(1
2)24(1

2)242+(1
1)25(1

2)242+(1
2)22(1

3)222+(1
5)21(1

4)212+(1
7)21(1

5)222
=

0.452, p1,3 = 0.001, p1,4 = 0.090, p1,5 = 0.452, p1,6 = 0.005, p1,7 = 0.0 and p1,8 = 0.0: edge e1,2 is added; (b) From
node 2 the probabilities are p2,1 = 0.293, p2,4 = 0.704 and p2,5 = 0.003: edge e2,4 is added; (c) From node 4 the
probabilities are p4,1 = 0.044, p4,2 = 0.536 and p4,6 = 0.419: edge e4,2 is selected; Since it would create a cycle we
stop the construction of this subtree and randomly choose other node to restart the process: node 5; (d) From node 5
the probabilities are p5,1 = 0.389, p5,2 = 0.004 and p5,7 = 0.607: edge e5,1 is added; (e) Since node 1 belongs to other
subtree, the two subtree (the one in construction and the one to which node 1 belongs) are merged; (f) The process
in steps (a) to (e) is repeated until all nodes belong to one subtree; (g) Randomly choose a subtree, for example T1

and connect it to other according to probabilities p1,3 = 0.001, p1,6 = 0.003, p1,7 = 0.0, p1,8 = 0.0, p4,6 = 0.543 and
p5,7 = 0.453: selected edge e5,7; (h) Repeat last step until all subtrees are connected; (i) Final tree.

1 2 3 4 5 6 7 8
1 (1,2,5,4) (3,3,1,2) (2,2,4,4) (1,2,5,4) (2,3,2,2) (5,4,1,1) (7,5,1,2)
2 (1,2,5,4) (1,1,3,4) (3,3,2,3)
3 (3,3,1,2) (2,3,4,4) (1,2,4,5)
4 (2,2,4,4) (1,1,3,4) (2,1,6,5)
5 (1,2,5,4) (3,3,2,3) (1,2,5,5)
6 (2,3,2,2) (2,3,4,4) (2,1,6,5)
7 (5,4,1,1) (1,2,5,5) (1,3,2,3)
8 (7,5,1,2) (1,2,4,5) (1,3,2,3)

.

Table 1: Network and pheromone trail values: entries of the form (w1, w2, τ1, τ2)

Figure 2: Simulation of the building tree process.

Local optimization operator To accelerate the process and improve the quality of the solution
we use a local search operator. The procedure consists of trying to replace each edge euv of the tree by
an edge of E(Vu,Vv) such that the new tree is improved. The selected edge is the one that produces
the best improvement of the tree, for some weight randomly selected.

5 Computational results, conclusions and future work

Computacional results To test our method we used two types of complete graphs with integer
weights. Those weights were generated randomly (type 1) and such that the Pareto front is concave
(type 2). The last case is based in the graph generator presented in [10] for the k-degree problem. To
compare with our results, we used the efficient solutions obtained by the weighted sum with a single
objective algorithm to the minimum spanning tree problem (see Theorem 2.1) over 100 combinations
of the weight parameters, li. In Figure 3, we can see the Pareto fronts obtained for two networks with
50 nodes each.

0 500 1000 1500 2000 2500
W1

0

500

1000

1500

2000

2500

W
2

600 650 700 750
W1

600

650

700

750

W
2

MONACO

Weighted Sum

(a) (b)

Figure 3: Pareto front elements for: (a) the random and (b) the concave case. In case (b) we see that
the MONACO algorithm provides solutions of the concave region.

Conclusions and future work For the tested problems, the MONACO algorithm provides good
approximations to the efficient solutions, as well as it can find solutions in the concave regions of the
Pareto front. We also could see that for some problems, the use of the weighted sum with a single
objective algorithm provides a good Pareto front in a fraction of the time needed by the MONACO.

In the future, we would like to improve our theoretical results and apply them to formulas (1) and
(2), as well as in the local optimizer operator, in a more effective way. We would also like to produce
a benchmark to the problem in study.

References

[1] M. Atallah, Algorithms and Theory of Computation Handbook, CRC Press, 1999.

[2] G. Ausiello, A. Marchetti-Spaccamela, G. Gambosi, M. Protasi, P. Crescenzi, Viggo Kann, Com-

plexity and Approximation: Combinatorial Optimization Problems and their Approximability Prop-

erties, Springer-Verlag, Berlin, 1999.

[3] P. Cardoso, M. Jesus, A. Márquez, MONACO - Multi-objective Network Optimisation based on an

ACO, X Encuentros de Geometria Computacional, Universidad de Sevilla, Sevilla, 2003.

[4] K. Deb, Multi-objective Optimization using Evolutionary Algorithms, John Wiley & Sons, 2001.

[5] M. Dorigo, E. Bonabeau, G. Theraulaz, Ant Algorithms and Stigmergy, 16, Future Generation
Computer Systems, Elsevier, 2000.

[6] M. Dorigo, E. Bonabeau, G. Theraulaz, Swarm Intelligence: From Natural to artificial Systems,
Oxford University Press, 1999.

[7] H. Hamacher, G. Ruhe, On spanning tree problems with multiple objective, Annals of operation
research, Kluwer, 1994.

[8] S. Johnson, Emergence. The connected lives of ants, brains, cities, and software, Scribner, 2001.

[9] D. Jungnickel, Graphs, Networks and Algorithms, Springer-Verlag, Berlin, 1999.

[10] J. Knowles, D. Corne, Benchmark Problems Generators and Results for the Multiobjective Degree-

Constrained Minimum Spanning Tree Problem, Genetic and Evolutionary Computation Conference
(GECC-2001), 2001.

[11] J.-R. Sack, J. Urrutia Handbook of Computational Geometry, North-Holland, 2000.

[12] A. Shioura, A. Tamura, T. Uno, An Optimal Algorithm for Scanning All Spanning Trees of Undi-

rected Graphs, Journal on Computing, SIAM, 1997.

[13] H. Yu and S. Das, Y. Lim, M. Gerla, Efficient Building Method of Multiple Spanning Tree for

QoS and Load Balancing, GLOBECOM 2003, IEEE, 2003.

