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MOORE SPACES IN PROPER HOMOTOPY

By

R. AYALA, E. DOM\’INGUEZ, A. M\’ARQUEZ and A. QUINTERO

Abstract. Moore spaces are defined in proper homotopy theory.
Some results on the existence and uniqueness of those spaces are
proven. An example of two non properly equivalent Moore spaces
is given.

Introduction.

The purpose of this paper is to provide the correct statements and details
of the results announced in [4]. Namely, we prove the existence of proper
Moore spaces of types of type $(S;n)$ for certain objects $S$ in the abelian category
of towers of groups (tow-JZ $b,$ $\llcorner fb$ ) and $n\geqq 2$ (Theorem 2.9). Nevertheless objects
can be of projective dimension 2 in (tow-db, $\iota Ab$ ), and this fact determines an
obstruction to the uniqueness of proper Moore spaces (Theorem 3.2). In fact,
an example of two non properly equivalent Moore spaces is given in Appendix
A. As a consequence of Theorem 3.2 two sufficient conditions for the uni-
queness of proper Moore spaces are stated (Corollary 3.7 and Proposition 3.9).

The existence of Moore spaces in proper homotopy was already announced
in [4], but in that paper the obstruction from Theorem 3.2 was not considered
and the uniqueness of such spaces was wrongly asserted.

For towers of projective dimension 1, proper Moore spaces behave in a very
similar way to ordinary Moore spaces. In particular, for projective dimension
1, proper Moore spaces define proper homotopy groups, and a coefficient exact
sequence which generalize the various proper homotopy groups known in the
literature and their corresponding Milnor exact sequences (Examples 2.15).

1. Preliminaries and Notations

CATEGORIES OF TOWERS. Given a category $c$ , the category of towers of
$C$ , tow-C, is the category of inverse sequences $s=\{A_{1}\leftarrow A_{2}\leftarrow\cdots\}$ in $C$ where a
(tow-C)-morphism $f:S\rightarrow S^{\prime}$ is represented by a sequence of C-morphisms
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$f_{k}$ : $A_{n_{k}}\rightarrow A_{k}^{\prime},$ $ n_{1}<n_{2}<\cdots$ , such that given $r>s$ there exists $j>n_{r},$ $n_{s}$ making

commutative the diagram

$A_{n}\uparrow^{f}\underline{f_{f}}A_{r}^{\prime,}$

$A_{j}$

$A\downarrow_{n},$

$\underline{f_{1}}A$ ;

where the maps without name are bonding maps.

We are interested in the full subcategory of $\ovalbox{\tt\small REJECT}_{ot}$ (tow-C) whose objects are
arrows $f:X\rightarrow A$ where :IE7 is a (tow-C)-object and $A$ is a C-object regarded as

a constant tower whose bonding maps are the identity. This category is

denoted (tow-C, $C$ ). A (tow-C, $C$ )-morphism from $f:x\rightarrow A$ to $g:\eta\rightarrow B$ can be

regarded as a $C$ -morphism between $A$ and $B$ and a (tow-C)-morphism from ec
to $Qf$ such that both morphisms are compatible via the bonding maps.

It is convenient to represent (tow-C, $C$ ) as follows. Objects are towers $X=$

$\{X_{0}\leftarrow X_{1}\leftarrow\cdots\}$ ; a morphism consists of a map $f:X\rightarrow Y$ in tow-C, together with

a compatible map $f_{0}$ : $X_{0}\rightarrow Y_{0}$ in $C$ .
We shall specially use the above constructions for $c=\mathcal{F}_{0}p,$ $\mathcal{G}_{t},$

$\llcorner flb$ ; the cate-

gories of topological spaces, groups and abelian groups respectively.

Since $tow- \mathcal{A}6$ and (tow-X6, a6) are abelian categories (see [1]) we can de-
fine kernels and images and state exact sequences in a natural way. In parti-

cular, we can use projective objects and define the functor Ext. See [10] for

details.

PROPER CATEGORY. A proper map (p-map) is a continuous map $f:X\rightarrow Y$

such that $f^{-1}(K)$ is compact for each compact subset $K\subseteqq Y$ . Proper homotopy

(p-homotopy), proper homotopy equivalence, etc $\cdots$ can be defined in the natural
way.

We shall deal with the category $\mathcal{P}$ of $T_{2}$-locally compact $\sigma$ -compact spaces

and p-maps. One can check that $\mathcal{P}$ is a cofibration category in the sense of

H. Baues (see [5] and [3]) whose cofibrations are the $p$-maps with the Proper

Homotopy Extension Property. We call these $p$-maps proper cofibrations (p-cofibra-

tions). It can be shown that any p-cofibration is a closed embedding. We

denote p-cofibrations by arrows \rangle $\rightarrow$ .
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Glven a space $X$ in $\mathcal{P}$ , a system of $\infty$ -neighbourhoods of $X$ is the object of
$tow- \mathcal{G}_{op},$ $\epsilon(X)=\{U_{1}\leftarrow U_{2}\leftarrow\cdots\}$ where $\overline{X-U}_{j}=K_{j}$ is compact, $K_{j}\subseteqq K_{j+1}$ and $X=$

$\cup\{intK_{j} ; j\geqq 1\}$ .
We recall that a CW-complex $X$ is said to be strongly locally finite if $X$

can be covered in a locally finite way by finite subcomplexes. In that case, it
is known that $X$ admits a countable locally finite cover by finite subcomplexes

and so the $\infty$ -neighbourhoods of $X$ can be chosen to be subcomplexes. Finite
dimensional locally finite CW-complexes and locally finite simplicial complexes

are strongly locally finite (see [11]).

If $f:X\rightarrow Y$ is a p-map and $\{U_{j}\}$ and $\{W_{j}\}$ are systems of $\infty$ -neighbourhoods

of $X$ and $Y$ respectively, for each $j$ there exists $k(j)$ such that $f(U_{k(j)})\subset W_{J}$ and
therefore we get a morphism $\epsilon(f):\epsilon(X)\rightarrow\epsilon(Y)$ (see [10] for more details).

Given a space $X$ in $\mathcal{P}$ a Freudenthal end of $X$ is an element of the set
$\mathcal{F}(X)=\lim_{\leftarrow}\pi_{0}(U_{j})$ where $\pi_{0}(-)$ denotes the set of connected components.

Now let $\mathcal{P}^{J}$ be the category $\mathcal{P}$ under $ J=[0, \infty$ ) such that for every $\mathcal{P}^{J_{-}}$

object $J\rightarrow iX,$
$\iota$ is a p-cofibration. The category $\mathcal{P}^{J}$ is a category of cofibra-

tions where the notion of proper wedge $(V_{p})is$ defined in a natural way. The

set of p-homotopy classes in $\mathcal{P}^{J}$ will be denoted by $[$ –, $-]_{p}^{J}$ .
(1.0.1) The category over $J,$ $\mathcal{P}_{J}$ , is again a cofibration category, and it

allows the definition of proper quotients. More explicitly, if $r:X\rightarrow J$ is a $\mathcal{P}_{J^{-}}$

object, and $A\succ X$ the proper quotient $X/pA(r)$ is defined by the push-out $\ln \mathcal{P}$

$r$

$_{1}I_{1}|q$

$\vee|$

$i$

$J\succ---------*X/pA(r)$

Notice that $\overline{i}$ is a p-cofibration whose image is $q(A)$ . In particular, $q(A)$ is
homeomorphic to $J$ . Furthermore, this shows that the proper quotient has the
same ordinary homotopy type as the usual topological quotient.

(1.0.2) It can be shown that any space in $\mathcal{P}$ admits an onto p-may $h:X\rightarrow J$

([10; 6.5.3]). Actually, $h$ can be chosen to be a retraction of a given p-cofibra-

tion $i:J\subseteqq X$ . Indeed, since all $p$-maps on $J$ are p-homotopic one can find

a p-homotopy $H:J\times I\rightarrow J$ connectlng $h|J$ to $id_{J}$ . Then by using the proper

H. E. P. one gets a $p$-homotopy $H^{\prime}$ : $X\times I\rightarrow J$ extending $H$, and $H_{i}^{\prime}$ is a p-retrac-

tion of $i$ .
(1.0.3) The proper homotopy type of $X/pA(r)$ does not depend on the map
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$r;X\rightarrow J$ . Moreover, given another p-map $r^{\prime}$ : $X\rightarrow J$, there exists a p-homotopy
equivalence $\xi:X/pA(r)\rightarrow X/pA(r^{\prime})$ such that $q\circ\xi=q^{\prime}$ . This is due to the homo-
topy invariance of push-outs in cofibration categories ([5: II. 1. $2b$)]), since all
proper maps on $J$ are properly homotopic.

When it is clear which map $r$ is involved in the quotient, we shall drop the
map $r$ from the notation.

(1.0.4) Finally, let $\mathcal{P}^{*}$ denote the category under and over $J$ . It can be
shown that $\mathcal{P}^{*}$ is a cofibration category where we can define proper wedges
and proper quotients as well as proper cones $(c_{p})$ , and proper suspensions $(\Sigma_{p})$ .
For a space $J\succ X\rightarrow J$ in $\mathcal{P}^{*}$ , these constructions do not depend on the p-
retraction $r$ (up to p-homotopy equivalence in $\mathcal{P}^{J}$ ). Moreover, the set $[\Sigma_{p}X, Y]_{p}^{J}$

is endowed of a natural group structure for any space $Y$ in $\mathcal{P}^{J}$ . See [3] for
details.

A strongly locally finite CW-complex $X$ will be considered as a space in $\mathcal{P}^{*}$

by choosing a cellular embedding $i:J\subseteqq X^{1}$ , and a $p$-retraction of $i$ . See (1.0.2)

above.

If (X, $\alpha$ ) is a space in $\mathcal{P}^{J}$ the $(tow- \mathcal{G}_{t}, 9_{t})$-object

$\Pi_{n}(X, \alpha)=\{\pi_{n}(X, *_{0})-\pi_{n}(U_{1}, *_{1})-\pi_{n}(U_{2}, *_{2})\cdots\}$ $(n\geqq 1)$

is called the n-th homotopy tower of the pair (X, $\alpha$ ), where $\alpha(t_{j})=*J$ with
$\alpha([t_{j}, \infty))\subseteqq U_{f}$ and the bonding maps are induced by the inclusions and the base-
point change isomorphisms.

(1.0.5) $A$ space $X$ is said to be properly k-connected if $\mathcal{F}(X)=\{*\}$ and
$\Pi_{r}(X, \alpha)\cong 0$ in $(tow- \mathcal{G}_{t}, \mathcal{G}_{i})(0\leqq r\leqq k)$ . Similarly for proper pairs (X, $A$ ) with
$\mathcal{F}(X)=\mathcal{F}(A)=\{*\}$ . It is worth pointing out that although $\alpha$ and $\alpha^{\prime}$ represent
the same Freudenthal end, the towers $\Pi_{n}(X, \alpha)$ and $\Pi_{n}(X, \alpha^{\prime})$ need not to be
isomorphic (see [23; p. 13]). Nevertheless, if $X$ is properly l-connected there
is no dependence on the ray $\alpha$ . In fact, any $p$-homotopy $H:\alpha\cong\alpha^{\prime}$ induces a
pro-isomorphism $H_{\$}$ ; $\Pi_{n}(X, \alpha^{\prime})\rightarrow\Pi_{n}(X, \alpha)$ . In addition, if $H:f\cong g$ is a p-
homotopy there is a commutative diagram

$\Pi_{x}(X\underline{\alpha)\overline{g^{*}f_{*}\sim}},’\prod_{\Pi_{n}}n(Y,f\circ\alpha)(Y,g\circ\alpha)\downarrow G_{l}$

where $G=H\circ(\alpha\times id)$ .
The towers $\Pi_{n}(X, A, \alpha)(n\geqq 2)$ are also defined for pairs (X, $A$ ) in $\mathcal{P}^{J}$ . In
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addition, if $A=J$ we have the identification $\Pi_{n}(X, J;\alpha)=\Pi_{n}(X, \alpha)(n\geqq 1)$ .
We recall that E. Brown in [7] gives a functor $P:tow- \mathcal{G}_{s}\rightarrow \mathcal{G}_{t}$ which carries

the tower $\Pi_{n}(X, \alpha)$ to the Brown-Grossman group $\pi_{n}^{\infty}(X, \alpha)$ . In a similar way
we can define a functor $P_{0}$ : $(tow- \mathcal{G}_{f}, \mathcal{G}_{i})\rightarrow \mathcal{G}_{f}$ which maps $\Pi_{n}(X, \alpha)$ to the global
Brown-Grossman group $\pi_{n}(X, \alpha)$ (see [17]).

The n-th homology tower of $X$ can be defined as the tower $(n\geqq 0)$

$H_{n}(X)=\{H_{n}(X)-H_{n}(U_{I})-H_{n}(U_{2})-\cdots\}$

where the bonding maps are induced by the inclusions.
The chain complex of towers of $X,$ $C_{*}(X)$ is $\{\partial:C_{n}(X)\rightarrow C_{n-1}(X)\}$ where

$C_{n}(X)=\{C_{n}(X)\leftarrow C_{n}(U_{1})-C_{n}(U_{2})-\cdots\}$ .
Now a proper cohomology theory, $H^{n}$ , with coefficients in a (tow-db, $\cup tb$ ) $-$

object $S$ is defined as the homology of the complex

$...\leftarrow C^{n}(X)\leftarrow C^{n-1}(X)\leftarrow\cdots$

where $C^{n}(X)=(tow_{c}- Ab, Ab)(C_{n}(X), S)$ (see [14] for details).

Also relative versions of these functors for pairs (X, $A$ ) in $\mathcal{P}$ are defined.
Notice that the above functors (including $\Pi_{n}$ ) are well defined up to (tow-

$\mathcal{G}_{i},$
$\mathcal{G}_{t}$ )-isomorphisms.

Fundamental results on homotopy groups like the Blakers-Massey Theorem,

the Freudenthal Theorem or the Hurewicz Theorem can be translated to proper
homotopy by using the following proposition

1.1. $p_{ROPOSlT10N}.-([2;1.1])$ Let (X, $A$ ) be a connected strongly locally

finite CW-pair with only one Freudenthal end and assume that (X, $A$ ) is properly

k-connected. Then there exists a strongly locally finite CW-pair (X’, $A^{\prime}$ ) such
that

i) $X$ (respectively $A$ ) is a strong deformation p-retract subcomplex of $X^{\prime}$

(respectively $A^{\prime}$ ).

ii) $(X^{\prime})^{k}\subseteqq A^{\prime}$ .
In particular if $A=J,$ $X$ has the same homotopy type as a CW-complex $X^{\prime}$

with $(X^{\prime})^{k}=J$ .

We recall that for any pair in $\mathcal{P}$ and any proper map $\rho:X\rightarrow J$ , there is a
natural homeomorphism $J\cong q(A)$ , where $q:X\rightarrow X/pA(\rho)$ is the quotient (see

(1.0.1)). Therefore, for any ray $\alpha:J\rightarrow X$ the map $q$ induces morphisms of
towers
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$q_{*};$ $\Pi_{r}(X, A, \alpha)-\Pi_{r}(X/pA(\rho), q^{0}\alpha)$

1.2. THEOREM.–Let (X, $A$ ) be a strongly locally finite CW-pair such that
(X, $A$ ) is properly n-connected and $A$ is properly m-connected $(n, m\geqq 1)$ . Then
the morphism $q*defined$ above is an isomorphism if $2\leqq r\leqq m+n$ , and an epimor-
phism if $r=m+n+1$ .

PROOF. Firstly, we shall prove the theorem when $X^{n}\subseteqq A$ and $A^{m}=J$ .
Let $i:J\rightarrow A$ be the inclusion. According to (1.0.2), we can find a proper

retraction $r:X\rightarrow J$ of $i$ . Let $\{U_{j}^{\prime}\}$ be a system of $\infty$ -neighbourhoods of $X$ con-
sisting of subcomplexes. Without loss of generality we can assume that $r(U_{j}^{\prime})$

$\subseteqq[t_{j}, \infty)$ . Let $ U_{j}=U_{j}^{\prime}\cup[t_{f}, \infty$ ). It is clear that $\{U_{j}\}$ is a new system of $\infty-$

neighbourhoods with $ U_{j}^{1}=[t_{j}, \infty$ ), $(U_{j}, U_{j}\cap A)$ is n-connected and $A_{j}=U_{j}\cap A$ is
m-connected for any $j\geqq 0$ . Then, if $X/pA$ is the proper quotient constructed
with the retraction $r$ , it is easily checked that $\{U_{j}/pAj\}$ is a system of $\infty-$

neighbourhoods of $X/pA$ , where $U_{f}/pAj$ is constructed by using the restriction
$r|U_{j}$ : $ U_{j}\rightarrow[t_{j}, \infty$ ). Since proper quotlents has the same ordinary homotopy type

as ordinary quotients, we can levelwise apply the ordinary Blakers-Massey

Theorem [24; 6.22] to get isomorphisms

$q_{j*\ddagger}\pi_{r}(U_{j}, A_{j})\rightarrow\pi_{r}(U_{j}/pAf)$

if $r\leqq n+m$ and epimorphisms if $r=m+n+1$ . Now the result follows when $\alpha=i$

and $\rho=r$ . Moreover, we can use the naturality of the base ray change isomor-
phisms and the homotopical invariance of proper quotients (see (1.0.3), and
(1.0.5)) to prove the result for (X, $A$ ) as above and arbitrary $\alpha$ and $\rho$ .

The general case can be reduced to the previous case by using Theorem 1.1.

Using Theorem 1.2 and a proof similar to the ordinary case ([24; 6.23]) we
obtain

1.3. THEOREM.–Let $X$ be a properly n-connected strongly locally finite CW-
complex. Then there is a natural suspension $(tow- \mathcal{G}_{t}, \mathcal{G}_{t})$-morphism

$\Sigma_{*}:$ $\Pi_{k}(X)-\Pi_{k+1}(\Sigma_{p}X)$

which is an isomorphism if $k\leqq 2n$ and an epimorphism if $k=2n+1$ .

1.4. REMARK.–The results stating that $\Sigma$ and $q$ induce isomorphisms be-
tween the corresponding homology towers can be proved in a straightforward
way without using Proposition 1.1.
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Proposition 1.1 and the above remark give an easy proof of the following

theorem.

1.5. THEOREM. $-$([21; II.4.2.7]) Let $X$ be a properly n-connected strongly
locally finite CW-complex. Then the natural Hurewicz morphism $h;\Pi_{k}(X)\rightarrow H_{k}(X)$

is an isomorphism if $k=n+1$ and an epimorphism if $k=n+2$ .

Furthermore Theorem 1.2 and Remark 1.4 provide a relative version of
Theorem 1.5 for a proper pair $(X, A)$ of strongly locally finite CW-complexes

with $A$ properly l-connected and $X$ properly n-connected.
Finally Theorem 1.5, the Brown-Grossman functor $P_{0}$ in (1.0.5), and [7; $p$,

$43J$ lead to

1.6. THEOREM.–Given a p-map $f:X\rightarrow Y$ where $X$ and $Y$ are properly 1-
connected finite dimensional, locally finite CW-complexes such that $f_{*};$ $H_{r}(X)\rightarrow H_{r}(\}^{7})$

is an isomorphism for each $r$ , then the map $f$ is a p-homotopy equivalence.

2. Proper Moore Spaces.

We start with some notions in ( $tow_{c}- Ab,$ (Ab).

2.1. DEFINITION.–A free tower in (tow-.A6, A6) is a tower

$F(\mathcal{L})=\dagger F(L_{0})-F(L_{1})-\cdots\}$

where the following four conditions hold; i) $\mathcal{L}$ is a filtration $\mathcal{L}\equiv L_{0}\supseteqq L_{1}\supseteqq\cdots$

with $L_{0}$ a countable set. ii) $\bigcap_{j=1}^{\infty}L_{j}=\emptyset$ . iii) The differences $L_{k}\backslash L_{k+1}$ are finite.

iv) $F(L_{i})$ is the free group generated by $L_{i}$ and the bonding morphism are in-
duced by the inclusions.

Given the towers $F(\mathcal{L})$ and $F(\mathcal{L}^{\prime})$ , it can easily be checked that any bijec-

tion $L_{0}\cong L_{0}^{\prime}$ induces an isomorphism $F(\mathcal{L})\cong F(\mathcal{L}^{\prime})$ in (tow- A6, $\mathcal{A}b$ ). So the iso-
morphism class of $F(\mathcal{L})$ is determined by the cardinality of $L_{0}$ .

2.2. REMARKS. $-a$ ) Free towers are projective objects $\ln$ (tow-Ab, $\mathcal{A}b$ ) (see

[14]).

b) Given a strongly locally finite CW-complex $X$ , and a system of $\infty$ -neigh-
bourhoods $\{U_{j}\}$ consisting of subcomplexes, the tower of cellular n-chains of $X$ ,

$C_{n}(X)=\{C_{n}(X)-C_{n}(U_{1})-C_{n}(U_{2})-\cdots\}$

is obviously a free tower. Also the tower of cellular n-cycles
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$Z_{n}(X)=\{Z_{n}(X)-Z_{n}(U_{1})\leftarrow Z_{n}(U_{2})\leftarrow\cdots\}$

is a free tower. More generally, the kernel of any morphism between two
free towers is always a free tower (see [14; 5.1]).

2.3. DEFINITION.–A tower $S$ is said to be geometrically admissible if there
exists an exact sequence in (tow-Ab, $\mathcal{A}b$ )

$j_{s}$ $j_{2}$ $j_{1}$

$0-F(\mathcal{L}_{3})-F(\mathcal{L}_{2})-F(\mathcal{L}_{1})-S-0$

When $F(\mathcal{L}_{3})$ is trivial we say that $S$ has geometrical projective dimension (g.p. $d.$ )

1. 0therwise, we write $g$ . $p.d$ . $S=2$ .

2.4. REMARK.–For any strongly locally finite CW-complex $X$ the n-th
homology tower of $X$ is geometrically admissible since the exact sequence of
towers

$0-Z_{n+1}(X)-C_{n+1}(X)-Z_{n}(X)-H_{n}(X)-0$

is a free resolution. However, the short exact sequence

$0\rightarrow{\rm Im}\partial_{n+1}\rightarrow Z_{n}(X)\rightarrow H_{n}(X)\rightarrow 0$

is not always a free resolution. Indeed, let $X$ be the CW-complex obtained
from the cylinder $ S^{n}\times[0, \infty$ ) by attaching an $(n+1)$-cell at $S^{n}\times\{j\}$ by a map
$f:S^{n}\rightarrow S^{n}$ of degree $2^{j}(j\geqq 1)$ . Then one can check that ${\rm Im}\partial_{n+1}$ is not free
since $\partial_{n+1}$ has no right inverse.

2.5. REMARK.–In [9] Dymov introduced the notion of copresentation of a
tower $S$ . More explicitly, following [9] we say that $s=\{G_{0}\leftarrow G_{1}\leftarrow\cdots\}$ admits
a copresentation if there exist a levelwise epimorphism $\phi:F(\mathcal{L})\rightarrow S$ with $F(\mathcal{L})$

a free tower and subsets $R_{f}\subseteqq F(L_{f})$ with $R_{j}-R_{J+1}$ finite and $\cap\infty R_{j}=\emptyset$ , such
$j\Leftarrow 1$

that $Ker\phi_{j}$ is the subgroup $\langle R_{j}\rangle$ generated by $R_{j}$ . In general, the tower $\langle R\rangle$

$\equiv\langle R_{0}\rangle\leftarrow\langle R_{1}\rangle\leftarrow\cdots$ needs not to be projective.
It is easy to check that a tower $S$ is geometrically admissible if and only

if admits a copresentation (up to isomorphism). In fact, if $\langle 9\rangle\rightarrow fF(\mathcal{L})\rightarrow S\rightarrow 0$

is a Dymov copresentation, and $F(R)$ denotes the free tower consisting of the

free groups $F(R_{i})$ , there is a levelwise epimorphism $ F(R)\rightarrow k\langle R\rangle$ and an exact

sequence $F(R)^{fk}\rightarrow\langle R\rangle\rightarrow F(\mathcal{L})$ . By Remark 2.2(b), $Ker(f\circ k)$ is a free tower, and
so $S$ is geometrically admissible. Conversely, for any free resolution

$j_{3}$ $j_{2}$ $j_{1}$

$0\rightarrow F(\mathcal{L}_{3})-F(\mathcal{L}_{2})-F(\mathcal{L}_{1})-S-0$
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let $\{\varphi_{i} : F(L_{n(i)}^{2})\rightarrow F(L_{t}^{1})\}$ be a levelwise representative of $j_{2}$ . Then $s^{J}=$

{Coker $\varphi_{i}$ } is isomorphic to $S$ by exactness and admits the following copre-

sentation. Let $\phi:F(\mathcal{L}_{1})\rightarrow S^{\prime}$ be the natural levelwise quotient morphism. We

take $R_{i}=\varphi_{i}(L_{n(i)}^{2})\subseteqq F(L_{i}^{1})$ . Now, it is clear that $R_{i}-R_{i+1}\subseteqq\varphi_{i}(L_{n(i)}^{2}-L_{nti+1}^{2})$

is finite.

If $\tilde{S}^{n}$ ( $\tilde{B}^{n}$ respectively), is the space obtained by attaching finitely many

copies (possibly no copy) of $S^{n}$ ( $B^{n}$ respectively) $(n\geqq 2)$ at each $ m\in N\subseteqq[0, \infty$ ),

one checks that $\Pi_{n}(\tilde{S}^{n})(\Pi_{n}(\tilde{B}^{n},\tilde{S}^{n-1})$ respectively) can be identified in a natural

way with some $F(\mathcal{L})$ , with $L_{0}\subseteqq N$. Moreover the following result holds:

2.6. LEMMA.–Given a space $X$ in $\mathcal{P}^{J}$ , there is a natural bijection $\rho:[\tilde{S}^{n}, X]_{p}^{J}$

$\cong(tow- A6, Ab)(F(\mathcal{L})\rightarrow\Pi_{n}(X))(n\geqq 2)$ , given by $\rho([f])=f*\cdot$ Moreover, if $Z$ is

the mapping cone $X\bigcup_{f}\tilde{B}^{n+1}$ in the cofibration category $\mathcal{P}^{J}$ , then $f*can$ be also

regarded as the boundary operator $d_{n+1}$ ; $\Pi_{n+1}(Z, X)\rightarrow\Pi_{n}(X)$ .

PROOF.–Take $\varphi:F(\mathcal{L})\rightarrow\Pi_{n}(X)$ . After identifylng $\Pi_{n}(\tilde{S}^{n})$ with $F(\mathcal{L})$ , let

$\pi_{n}(\tilde{S}^{n})-\pi_{n}(\tilde{S}_{k(1)}^{n})-\pi_{n}(\tilde{S}_{k(2)}^{n}-\cdots$

$\downarrow$
$\downarrow$

$\downarrow$

$\pi_{n}(X)-\pi_{n}(U_{1})-\pi_{n}(U_{2})-\cdots$

be a levelwise representative of $\varphi$ , where $\tilde{S}_{k(t)}^{n}$ is obtained by deleting from $\tilde{S}^{n}$

the copies, $S_{j}^{n}$ , of $S^{n}$ placed at the points $1\leqq\int<k(t),$ $ k(1)<k(2)<\cdots$ .
We define $f|S_{j}^{n}$ as a representative of $\varphi_{h(j)}[l_{f}]$ where $l_{j}$ : $S_{j}^{n}\subseteqq\tilde{S}_{k(t)}^{n},$ $ k(t)\leqq$

$j<k(t+1)$ . One easily checks that $ f_{*}=\varphi$ . This proves that $\rho$ is onto. The
injectivity follows in a similar way.

Finally, we have the diagram

$\Pi_{n+1}(Z, X)\Pi_{n+1}(\tilde{B}^{n+1}\underline{p_{\cong^{*}}}\tilde{S}^{n})$

$\Pi_{n}\downarrow_{(X)}$ $-\Pi_{n}(\tilde{S}^{n})=F(\mathcal{L})\downarrow\cong$

where $p:\tilde{B}^{n+1}\rightarrow Z$ is the canonical p-map and $p_{*}$ is an isomorphism by Theorem

1.2 since $\tilde{B}^{n+1}/p\tilde{S}^{n}\cong\tilde{S}^{n+1}\cong Z/pX$ .

For the sake of simplicity, we shall use the single notation $\tilde{S}^{n}(\tilde{B}^{n})$ for all

the “strings” of spheres (balls) described above. The particular objects $\tilde{S}^{n}(\tilde{B}^{n})$

we are using in the future will be clear from the context. Similarly for $F(\mathcal{L})$ .
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2.7. REMARK.–Let $X$ be a strongly locally finite one-ended CW-complex.
Given a cellular embedding $J\subseteqq X^{1}$ , the $(n+1)$-skeleton $X^{n+1}$ turns out to be
properly equivalent to the mapping cone $X^{n}\bigcup_{f}\tilde{B}^{n+1}$ in $\mathcal{P}^{J}$ of a p-map $f:\tilde{S}^{n}\rightarrow X^{n}$ .
Indeed, up to a $p$-homotopy equivalence (see [18; 6.7] or [5; II. 1.2]), we can
assume that the attaching map $f_{\alpha}$ : $S_{\alpha}^{n}\rightarrow X^{n}$ of the $(n+l)$-cell $e_{\alpha}^{n+1}$ verifies $f_{a}(*)$

$=m_{\alpha}\in N\subseteqq J$ , where $*\in S^{n}$ is the base point.
Then we define $\tilde{S}^{n}$ by attaching at $k\in N$ all the spheres $S_{\alpha}^{n}$ with $m_{\alpha}=k$ .

In this way we can gather together all the attaching maps $f_{\alpha}$ to get a proper
map $f:\tilde{S}^{n}\rightarrow X^{n}$ extending the embedding $J\subseteqq X^{n}$ . It is clear that $X^{n+1}\cong p$

$X^{n}\bigcup_{f}\tilde{B}^{n+1}$ in $\mathcal{P}^{J}$ .

2.8. DEFINITION.–Given a tower $S$ and $n\geqq 2$ , a proper Moore space $R(S, n)$

is a properly l-connected finite dimensional, locally finite CW-complex such that
its q-th (reduced) homology tower is isomorphic to $S$ when $q=n$ and trivial
otherwise.

In $R(S, n)$ is a proper Moore space, the tower $S$ is geometrically admissible
by Remark 2.4. Conversely, we have

2.9. THEOREM.–Given a tower $S$ with free resolution

$j_{3}$ $j_{3}$ $j_{1}$

$0-F(\mathcal{L}_{3})-F(\mathcal{L}_{2})\rightarrow F(\mathcal{L}_{1})-S-0$

there exists a proper Moore space $R(S, n)$ , for any $n\geqq 2$ .

PROOF. By Lemma 2.6 we may regard $j_{2}$ as the induced morphism
$f_{2*};$ $\Pi_{n}(\tilde{S}^{n})\rightarrow\Pi_{n}(\tilde{S}^{n})0$“ a $p$-map $f_{2}$ : $S^{n}\rightarrow S^{n}$ . Let $X^{n}=\tilde{S}^{n}$ and $X^{n+1}=C_{f_{2}}$ . Now,
by Lemma 2.6 we may identify $C_{n+1}(C_{f_{2}})=\Pi_{n+1}(X^{n+1}, X^{n})$ with $F(\mathcal{L}_{2})$ , and
$\partial:C_{n+1}(C_{f_{2}})\rightarrow C_{n}(C_{f_{2}})=\Pi_{n}(X^{n})$ with the boundary operator.

Since $Kerj_{2}={\rm Im} j_{3}$ , from the diagram of unbroken arrows

$\Pi_{n+1}^{n+1}(\Pi(X_{i}^{n+1})_{X^{n})^{\underline{\varphi_{3}}}}F(\mathcal{L})\downarrow_{X^{*}n+I}\downarrow--F(\mathcal{L}^{j_{s_{2}^{3}}})$

$\Pi_{n}(X^{n})\downarrow d_{n+1}--F(\mathcal{L}_{1}^{j_{2}})\downarrow$

we get ${\rm Im} i_{*}\subseteqq{\rm Im} j_{3}$ , and the projectiveness of $F(\mathcal{L}_{3})$ yields a (tow- A6, $Ab$ ) $-$

morphism $\varphi_{3}$ : $F(\mathcal{L}_{3})\rightarrow\Pi_{n+1}(X^{n+1})$ . Again by Lemma 2.6, $F(\mathcal{L}_{3})$ may be regarded
as $\Pi_{n+1}(\tilde{S}^{n+1})$ , and we pick up a representative $f_{3}$ : $\tilde{S}^{n+1}\rightarrow X^{n+1}$ of $\varphi_{3}([id])$ . If
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we define $X^{n+2}=C_{f_{3}}$ , the boundary morphism

$\Pi_{n+2}(X^{n+2}, X^{n+1})$
$\Pi_{n+1}(X^{n+1} d_{n+2}X^{n})$

is now identified with $j_{3}$ . So $H_{m}(X^{n+2})$ is $S$ if $m=n$ and trivial otherwise.
Applying Theorem 1.6 we get the following results as corollaries of Theo-

rem 2.9.

2.10. COROLLARY.–Given two towers $S$ and $S^{\prime}$ as in Theorem 2.9 and proper
Moore spaces $R(S, n)$ and $R(S^{\prime}, n)$ , the wedge $R(S, n)R(S^{\prime}, n)$ is a proper
Moore space of type $(S\oplus S^{\prime}, n)$ , where $S\oplus S^{\prime}$ represents the coproduct of $S$ and
$S^{\prime}$ in (tow-J 6, A6).

2.11. COROLLARY.–Given a tower $S$ as in Theorem 2.9, if $K$ is a proper
Moore space of type $(S, n)$ then $\Sigma_{p}K$ is a proper Moore space of type $(S, n+1)$ .

For $n\geqq 3$ , Corollary 2.11 has the following converse

2.12. PROPOSIT10N.–Any proper Moore space of type $(S, n)$ with $n\geqq 3$ is the
proper $suspens\iota on$ of $a$ a proper Moore space of type $(S, n-1)$ . If g.p.d. $S=1$

then the result also holds for $n\geqq 2$ .

PROOF.–Let $X$ be of type $(S, n)$ as in the proof of Theorem 2.9. Then
$X^{n+1}$ is the proper mapping cone of some $f_{2}$ : $\tilde{S}^{n}\rightarrow\tilde{S}^{n}=X^{n}$ , and there exists $g$

such that $X^{n+1}\cong\Sigma Y^{n}pp$
’ with $Y=C_{g}$ , and $\Sigma_{p}g\cong pf_{2}$ . Since $n\geqq 3$ , we can apply

Theorem 1.3 and Lemma 2.6 to

$\Sigma_{*};$ $\Pi_{n}(Y^{n})-\Pi_{n+1}(\Sigma_{p}Y^{n})$

and we can find a proper map $h:\tilde{S}^{n+1}\rightarrow X^{n+1}\cong\Sigma Y^{n}pp$
’ with $\Sigma_{p}h$ properly homo-

topic to the attaching map $f_{3}$ of the $(n+2)$-cells of $X$ . Therefore $X=C_{f_{3}}$

$\cong_{p}\Sigma_{p}C_{h}$ , and obviously $C_{h}$ is a proper Moore space oi type $(S, n-1)$ .

2.13. DEFINITION.–Given a geometrically admissible tower $S$ and $n\geqq 3(n\geqq 2$

if $g$ . $p$ . $d$ . $S=1$ ), we know from Proposition 2.12 and (1.0.4) that for any proper
Moore space $R(S, n)$ , the set $[X(S, n), X]_{p}^{J}$ can be endowed of a group struc-
ture for any $X$ in $\mathcal{P}^{J}$ . When the space $R(S, n)$ is unique (up to $p$-homotopy),

the above group is called the n-th proper homotopy group of $X$ with coefficients
in $S$ and it will be denoted by $\pi_{n}(X;S)$ .

When $g.p$ . $d$ . $S=1$ we get the uniqueness of proper Moore spaces of type
$(S, n)(n\geqq 2)$ just by imitating the proof in ordinary homotopy and using Theo-
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rem 1.6. See also Corollary 3.5 below. Moreover, as in ordinary homotopy

one gets

2.14. PROPOSITION.–Given a space $X$ in $\mathcal{P}^{J}$ and a tower $S$ with g.p.d. $S=1$ ,

there exists an exact sequence

$0\rightarrow Ext(S, \Pi_{n+1}(X, A))\rightarrow\pi_{n}(X, A;S)\rightarrow(tow- Ab, \mathcal{A}b)(S, \Pi_{n}(X, A))\rightarrow 0$

We omit the proof which can be done by mimicing the ordinary case in
[18; Ch. 5]. However we shall give the following applications of this result

2.15. EXAMPLES.–Throughout these statements $X$ is a $\mathcal{P}^{J}$ -space with only

one Freudenthal end.

a) If $S\equiv\{0\leftarrow Z\leftarrow Z\leftarrow\cdots\}idid$ then $R(S, n)=R^{n+I}$ and $\pi_{n}(X;S)$ agrees with the
n-th proper homotopy group defined in [16] and [6]. Using basic properties of
the functor $Ext$ , Proposition 2.14 yields the diagram of exact sequences

$0$

$\downarrow$

Coker
$[k^{m}\downarrow\{\pi_{n+1}(U_{j})\}-\pi_{n+1}(X)]$

$0\rightarrow Ext(S;\downarrow\Pi_{n+1}(X))\rightarrow\pi_{n}(X;S)\rightarrow Ker[Lm\{\pi_{n}(U_{j})\}\rightarrow\pi_{n}(X)]\rightarrow 0$

$\varliminf^{1}\{\pi_{n_{0^{+1}}}(U_{j})\}\downarrow$

The exact row appears in $[3\tilde{\rfloor}$ .

b) If $S\equiv\{Z\leftarrow Zid\leftarrow Z\leftarrow id\ldots\}$ then $R(S, n)=S^{n}\times J$ and $\Pi_{n}(X;S)$ is the n-th
group defined in [8]. Proposition 2.14 yields the known sequence (see [22])

$0-\lim_{\leftarrow}^{1}\{\pi_{n+1}(U_{j})\}-\pi_{n}(X;S)-L^{m}\{\pi^{u}(U_{j})\}-0$

c) Finally, if $S\equiv\{Q\leftarrow Qb_{1}\leftarrow Qb_{2}\leftarrow\cdots\}b_{3}$ with $b_{k}(1)=1/k+1$ one can readily

check that $g$ . $p$ . $d$ . $S=1$ , and $R(S, n)$ is the rational sphere described in [13; $p$ .

21]. That is, the infinite telescope constructed from the diagram $\{S^{n}\leftarrow S^{n}J_{1}\leftarrow f_{2}$

$S^{n}\leftarrow\cdot\cdot\}f_{8}$. where $f_{k}$ is a map of degree $k+1$ . Moreover, Proposition 2.14 yields
an exact sequence

$0-L^{m^{1}}\{\pi_{n+1}(U_{j})\}^{Q}-\pi_{n}(X;S)-L^{m}\{\pi_{n}(U_{j})\}^{Q}-0$
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Here $\zeta A^{Q}$ denotes the tower constructed from $\cup q$ by replacing the k-th bonding

morphism $\gamma_{k}$ of a by $(k+1)\gamma_{k}(k\geqq 1)$ .
Notice that $S$ is isomorphic to the constant tower $Q$ in $tow- \mathcal{A}l$).

3. Uniqueness of proper Moore spaces.

The uniqueness of Moore spaces in ordinary homotopy is a consequence of

the fact that the category J6 has projective dimension 1. As was pointed out
in \S 1, (tow-tA/,, .A6) has projective dimension 2. That is, the second derived
functor $Ext2$ does not always vanish. In this section we shall define an obstruc-
tion in $certa\ln Ext^{2}$-term to the uniqueness of proper Moore spaces.

In order to define that obstruction, we shall use a natural action of (tow-

Ab, $Ab$ )$(C_{n+1}(X)_{j}\Pi_{n+1}(Y^{n+1}))$ on $[X^{n+1}, Y^{n+1}]_{p}^{J}$ for two strongly locally finite

properly $(n-1)$-connected CW-complexes $X$ and $Y(n\geqq 2)$ . Here $C_{n+1}(X)=$

$\Pi_{n+1}(X^{n+1}, X^{n})$ . The action is described as follows.
Let $D^{n}\subseteqq B^{n}$ be a copy of $B^{n}$ such that $D^{n}\cap S^{n-1}=\partial D^{n}\cap S^{n-1}=\{*\}$ . When

we shrink $\partial D^{n}$ to $\{*\}$ we get the wedge $B^{n}\vee S^{n}$ .
According to Remark 2.7, we can assume $X^{n+1}=X^{n}\bigcup_{f}B^{n+1}$ for certain

proper map $f:\tilde{S}^{n}\rightarrow X^{n}$ . The quotient space obtained from $X^{n+1}$ by identifying

a copy of $\partial D^{n}$ to point inside each $(n+1)$-cell of $X^{n+1}$ is clearly homeomorphic

to $X^{n+1}_{p}\tilde{S}^{n+1}$ , where $\tilde{S}^{n+1}$ is now the string of spheres $X^{n+1}/pX^{n}$ . Let $\mu:X^{n+1}$

$\rightarrow X^{n+1}_{p}\tilde{S}^{n+1}$ denote the quotient map.
Given $f:X^{n+1}\rightarrow Y^{n+1}$ and $\alpha;C_{n+1}(X^{n+1})\rightarrow\Pi_{n+1}(Y^{n+1})$ , the operation is defined

just as in ordinary homotopy. That is, the action of $\alpha$ on $[f],$ $[f]+\alpha$ , is

represented by the composition

$X^{n+1}X^{n+1}\tilde{S}^{n+1}-Y^{n+1}\underline{\mu}\underline{f\vee g}$

where $g$ is a representative of $\alpha$ by the identification (tow-di, $Ab$ )$(C_{n+1}(X^{n+1})$ ,

$\Pi_{n+1}(Y^{n+1}))^{(1)}\cong[\tilde{S}^{n+1}, Y^{n+1}]_{p}^{J}$ provided by Lemma 2.6.
Let $\Gamma_{7l+1}(Y)$ be the Whitehead tower

${\rm Im}[i_{*} : \Pi_{n+1}(Y^{n})-\Pi_{n+1}(Y^{n+1})]$ .

Since $\Gamma_{n+1}(Y)$ is a subtower of $\Pi_{n+1}(Y^{n+1})$ we may consider the restriction of

the above action to $(t_{0W-t}Ab, Ab)(C_{n+1}(X), \Gamma_{n+1}(Y))$ .

3.1. LEMMA–a) $(f+\alpha)_{*}:$ $\Pi_{n+1}(X^{n+1})\rightarrow\Pi_{n+1}(Y^{n+1})$ is $f_{*}+\alpha\circ j_{*}$ , where
$j_{*}:$ $\Pi_{n+1}(X^{n+1})\rightarrow\Pi_{n+1}(X^{n+1}, X^{n})=C_{n+1}(X)$ .
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b) $(f+\alpha)_{*}:$ $C_{n+1}(X)\rightarrow C_{n+1}(Y)$ is $ f_{*}+k_{*}\alpha$ , where $k_{*}:$ $\Pi_{n+1}(Y^{n+1})\rightarrow C_{n+1}(Y)$ .
In particular, $f_{*}=(f+\alpha)_{*}$ if $\alpha:C_{n\dashv 1}(X)\rightarrow\Gamma_{n+1}(1^{7})$ .

PROOF. a) We have the commutative diagram

$\Pi_{n=1}(X^{n+1})\oplus\Pi n(S^{n+1}n\frac{\backslash }{\prime}f_{*}\oplus^{+1}g*I^{+1}\Pi_{n}^{1}(Y^{(f_{\pi+}\bigvee_{1}g)_{*}}$

where $\oplus$ denotes the coproduct or sum in the abelian category $(tow- \mathcal{A}/)\mathcal{A}b)$

and (1) is a levelwise isomorphism with inverse the morphism $(p_{1}*, p_{2*})$ induced
by the proper projections

$p_{1}$ : $X^{n+1}\vee\tilde{S}^{n+1}-X^{n+1}J=X^{n+1}$

$p_{2}$ : $X^{n+1}\vee\tilde{S}^{n+1}-J\vee\tilde{S}^{n+1}=\tilde{S}^{n+1}$

(we recall that $X^{n+1}$ is properly l-connected). Thus

$(f+\alpha)_{*}=f_{*}\circ p_{1*}\circ\mu*+g_{*}\circ p_{2^{*}}\circ\mu*$

And one can check that $p_{1}\circ\mu=q_{1}\cong_{p}id|X^{n+1}$ , where $q_{1}$ shrinks the balls $D^{n}$ in

the $(n+1)$-cells of $X^{n+1}$ to point, and $p_{2}\circ\mu\cong pq_{2}$ where $q_{2}$ : $X^{n+1}\rightarrow\tau X^{n+1}/pX^{n}\cong^{k}\tilde{S}^{n+1}p$

with $\pi$ the canonical projection and $k$ the natural proper homotopy equivalence
which carries the complement of each $D^{n}$ to point.

$F_{\dot{1}}nally$ , the identification (1) given in the above definition of $ f+\alpha$ is in-
duced by $q_{*}^{\prime}$ in the following commutative diagram

Then, it follows that $\alpha\circ j_{*}=g_{*}\circ q_{2*}$ .
Part b) is essentially proven in the same way.

Now we can prove

3.2. THEOREM.–Let $Y$ be a properly $(n-1)$-connected, strongly locally finite
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CW-complex (we may assume that $Y^{n-1}=J$ , by Proposition 1.1). Given a com-
mutative diagram

$0-F(\mathcal{L}_{3})\rightarrow^{d_{n+2}}F(\mathcal{L}_{2})$
$d_{n+1}$

$F(\mathcal{L}_{1})-S-0$

$\downarrow\varphi_{n+2}$ $\downarrow\varphi_{n+1}$ $\downarrow\varphi_{n}$ $\downarrow\varphi$ $(^{*})$

$-C_{n+2}(Y)$ $C_{n+1}(Y)$
$d_{n+2}^{\prime}\rightarrow^{d_{n+1}^{\prime}}C_{n}(Y)-H_{n}(Y)-0$

where the upper row $\iota s$ a free resolution of $S$ , if $X$ is a proper Moore space of
type $(S;n)$ there is a well defined obstruction $c(\varphi)\in H^{n+2}(X;\Gamma_{n+1}(Y))$ such that
$c(\varphi)=0$ if and only if there is a p-map $f:X\rightarrow Y$ realizing the diagram $(^{*})$ .

REMARK.–As $F(\mathcal{L}_{i})$ is projective, when $H_{n+1}(Y)=0$ the morphism $\varphi$ always
yields morphisms $\varphi_{i}(i=n, n+1, n+2)$ such that the diagram $(^{*})$ commutes.

PROOF. From Lemma 2.6 we may realize $\varphi_{n}$ by a $p$-map $f_{n}$ : $ X^{n}=S^{n}\rightarrow$

$Y^{n}=S^{n}$ . We also have the commutative diagram of unbroken arrows

$g_{*}$

where we assume that $Y^{n+1}=\tilde{B}^{n+1}\bigcup_{g}Y^{n}$ and $X^{n+1}=\tilde{B}^{n+1}\cup X^{n}$ by Remark 2.7.
Then by Lemma 2.6 we may find a p-map $\zeta:S^{n}\rightarrow S^{n}$ making (1) commutative.
Therefore $ f_{n}\circ h\cong_{p}g\circ\zeta$ and by using the Proper Homotopy Extension Property
we may find a p-map $\gamma:(\tilde{B}^{n+1}, S^{n})\rightarrow(Y^{n+1}, Y^{n})$ extending $f_{n}\circ h$ and p-homotopic
to $\tilde{g}\circ\zeta^{\prime}$ , where $\zeta^{\prime}$ is the cone extension of $\zeta$ and $\tilde{g}:\tilde{B}^{n+1}\rightarrow Y^{n+1}$ is the natural
p-map defined by the characteristic maps of the $(n+1)$-cells of $Y$ .

We define $f_{n+1}$ : $X^{n+1}\rightarrow Y^{n+1}$ by $f_{n+1}|X^{n}=f_{n}$ and $f_{n+1}(\tilde{h}(x))=\gamma(x)$ where $\tilde{h}$
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is the p-map defined by the characteristic maps of the $(n+1)$-cells of $X$ . We

easily check that $f_{n+1*}=\varphi_{n+1}$ .
When one tries to go further an obstruction appears as follows. In the

diagram

$\Pi_{n+2}(X^{n+2}, X^{n+1})$ $\Pi_{n+1}(X^{n+1})$
$\partial_{n+2}-\Pi_{n+1}(X^{n+1}, X^{n})$

$\varphi_{n+2}\downarrow$ (1) $\downarrow f_{n+1*}$ $\downarrow f_{n+1*}=\varphi_{n+1}$

$\Pi_{n+2}(Y^{n+2}, Y^{n+1})$
$\Pi_{n+1}(Y^{n+1})-\Pi_{n+1}(Y^{n+1} \partial_{n+2}^{\prime}Y^{n})$

the square (1) needs not be commutative. One defines an element in $(tow-\Lambda b, \Lambda b)$

$(F(\mathcal{L}_{s});\Pi_{n+1}(Y^{n+1}))$ by the difference

$\beta(f_{n+1})=f_{n+12}\partial_{n+2}-\partial_{n+2}^{\prime}\varphi_{n+2}$

Since the other square is commutative we have, by definition of $Kerj_{*}$ in (tow-

$\llcorner Ab,$ $\mathcal{A}b$ ) that $\beta$ can be regarded as a morphism $\beta(f_{n+1}):F(\mathcal{L}_{\theta})\rightarrow Kerj_{*}=\Gamma_{n+1}Y$ .
Obviously $\beta$ is a cocycle and defines a class $c(\varphi)\in H^{n+2}(X, \Gamma_{?l+1}Y)$ . The next

lemma shows that $c(\varphi)$ is a well defined obstruction.

3.3. LEMMA. $-1$ ) $c(\varphi)$ does not depend on the morphisms $\varphi_{i}(i=n, n+1, n+2)$ .
2) $c(\varphi)$ is an obstruction to realizing $\varphi$ .

PROOF. 1) Let $\{\varphi_{i}^{\prime}\}$ be another morphism such that the diagram $(^{*})$ com-
mutes and let $f_{n+1}^{\prime}$ : $X^{n+1}\rightarrow Y^{n+1}$ be a $p$-map realizing $\varphi_{n+1}^{\prime}$ . It is a well-known
fact from Homological Algebra in abelian categories that $\{\varphi_{i}\}$ and $\{\varphi_{i}^{\prime}\}$ are
homotopic chain morphisms. Thus, there exist morphisms $\{\alpha_{i} : C_{i}(X)\rightarrow C_{i+1}(Y)\}$

$(i=n, n+1, n+2)$ such that the following equalities hold
a) $\varphi_{n}^{\prime}-\varphi_{n}=d_{n+1}^{\prime}\circ\alpha_{n}$ ; b) $\varphi_{n+1}^{\prime}-\varphi_{n+1}=\alpha_{n}\circ d_{n+1}+d_{n+2}^{\prime}\circ\alpha_{n+1}$ ; and
c) $\varphi_{n+2}^{\prime}-\varphi_{n+2}=d_{n+3}^{\prime}\circ\alpha_{n+2}+\alpha_{n+1}\circ d_{n+2}$ .
By c) and the definition of $\beta(f_{n+1})$ we have
(I) $\beta(f_{n+1}^{\prime})-\beta(f_{n+1})=(f_{n+1*}^{\prime}-f_{n+1^{*}}-\partial_{n+2}^{\prime}\circ\alpha_{n+1}\circ j_{*})\circ\partial_{n+2}$

where $j_{*}:$ $\Pi_{n+1}(Y^{n+1})\rightarrow C_{n+1}(Y)$ . Now, a) provides a $p$-homotopy $H:X^{n}\times I$

$\rightarrow Y^{n+1}$ between $f_{n}$ and $f_{n}^{\prime}=f_{n+1}^{\prime}|_{X^{n}}$ . As in ordinary homotopy theory, $H$ yields

a “difference” morphism

$\Delta=d(f_{n+1}^{\prime}, H, f_{n+1});C_{n+1}(X)-\Pi_{n+1}(Y^{n+1})$

(see [15]). Moreover, $H$ can be chosen in such a way that $\int*\circ\Delta=f_{n+1*}^{\prime}-f_{n+15}$

$-\alpha_{n}\circ d_{n+1}$ . Take $\beta=\Delta-\partial_{n+2}^{\prime}\circ\alpha_{n+1}$ . By b), $j_{*}(\beta)=0$ . And the projectiveness of
$C_{n+1}(X)$ allows us to regard $\beta$ as an element in (tow-.A6, $\cup tb$ )$(C_{n+1}(X);\Gamma_{n+1}(Y))$

since $Kerj_{*}=\Gamma_{n+1}(Y)$ .
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Finally, one can readily check from the definitions that $f_{n+1}^{\prime}\cong pf_{n+1}+$

$(\beta+\partial_{n+2}^{\prime}\circ\alpha_{n+1})$ and then, by Lemma 3.1 the right side in the equality (I) is
$\beta^{Q}j_{*}o\partial_{n+2}=\beta\circ d_{n+2}=\delta\beta$ . This proves $[\beta(f_{n+1})]=[\beta(f\text{{\it \’{n}}}_{+1})]\in H^{n+2}(X;\Gamma_{n+1}(Y))$ .

2) If $c(\varphi)=0$ , let $w\in(tow- Ab, \llcorner Ab)(C_{n+1}(X), \Gamma_{n+1}(Y))$ be such that $\beta(f_{n+1})=$

$\delta w=w\circ d_{n+2}=w\circ j_{*}\circ\partial_{n+2}$ . Take $\overline{f}_{n+1}=f_{n+1}+w$ . By Lemma 3.1, $\beta(\overline{f}_{n+1})=$

$(f_{n+1*}-w\circ j_{*})\partial_{n+2}-\partial_{n+2}^{\prime}\circ\varphi_{n+2}=0$ , and $\overline{f}_{n+1}$ extends to a p-map $f_{n+2}$ : $X\rightarrow Y$ with
$f_{n+2*}=\varphi:H_{n}(X)\rightarrow H_{n}(Y)$ .

3.4. REMARKS. $-a$) The obstruction $c(\varphi)$ was already considered by J. H. C.
Whithead in ordinary homotopy (see [25; \S 6]) and it can be defined within the
general settlng of cofibratlon categories (see [5; VII. 1.13]).

b) For any $n\geqq 3$ there are two non properly equivalent Moore spaces of
type $(S;n)$ . The examples are given in Appendix A.

As an immediate consequence of Theorem 3.2 we have

3.5. COROLLARY.–If $S$ is a tower $ w\iota$ th g.p.d. $S=1$ then there exists (up to
p-homotopy) a unique proper Moore space of type $(S, n)(n\geqq 2)$ .

More generally, we can state

3.6. COROLLARY.–If $S$ is a geometrically admzssible tower with $Ext^{2}(S;\Gamma_{n}(S))$

$=0$ , then there exists a unique proper Moore space of type $(S, n)(n\geqq 2)$ .

Here $\Gamma_{n}(S)$ denotes the tower obtained from $S$ by applying levelwise the
algebraic Whitehead $\Gamma_{n}$ -functor (see $\lceil_{-}26$ ; Ch. II] or [5; IX. 4]). It is known
that $\Gamma_{n}=-\otimes Z_{2}$ when $n\geqq 3$ . So, (3.6) yields

3.7. COROLLARY.–If $S$ is a geometrically admissible tower with $Ext^{2}(S;S\otimes Z_{2})$

$=0$ then there exists a unique proper Moore space of type $(S, n)$ for all $n\geqq 3$ .

PROOF $0F(3.6)$ . Let $Y$ be a proper Moore space of type $(S, n)$ constructed
as in the proof of Theorem 2.9. Let $ Y\supseteqq U_{1}\supseteqq\cdots\supseteqq U_{n}\cdots$ be a system of $\infty-$

neighbourhoods such that each $U_{j}$ is a subcomplex. Moreover, each $U_{j}$ is
$(n-1)$-connected by construction. Thus by [19; VIII. 2.4] for $n\geqq 3$ and [26;

III. 14] for $n=2$ we have $\Gamma_{n+1}U_{j}\cong\Gamma_{n}(H_{n}(U_{j}))$ and therefore $\Gamma_{n+1}Y\cong\Gamma_{n}(S)$ .
If $X$ is another proper Moore space of type $(S;n)$ we can realize id: $S\rightarrow S$

by a $p$-map $f:X\rightarrow Y$ by Theorem 3.2 since $H^{n+2}(X;\Gamma_{n+1}Y)=Ext^{2}(S;\Gamma_{n+1}Y)=0$ .
By Theorem 1.6 $f$ is actually a p-homotopy equivalence.
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3.8. REMARK.–The tower $s=\{Z_{2}\leftarrow Z_{4}p_{1}\leftarrow Z_{8}\leftarrow p_{2}\ldots\}$ where $p_{i}(1)=1$ , has geo-
metrical projective dimension 2 since $S$ is the n-th homology tower of the CW-
complex given in Remark 2.4. Nevertheless $\Gamma_{n}S$ is the constant tower $Z_{2}$ when
$n\geqq 3$ , and $\Gamma_{2}S$ is isomorphic to $S$ since $\Gamma_{2}Z_{2n}=Z_{4n}$ according to [26; II.(B)].

Then, one can check as in Appendix A that $Ext^{2}(S;\Gamma_{n}S)=0$ . So, there is a
unique proper Moore space of type $(S;n)(n\geqq 3)$ by Corollary 3.7. The same
result holds for $n=2$ .

Another sufficient algebraic condition on $S$ for the uniqueness of proper
Moore spaces of type $(S;n)n\geqq 3)$ is the following.

3.9. $p_{ROPOSITION}.$–Let $S$ be a geometrically admissible tower such that
$Tor^{1}(S;Z_{2})=0$ . Then there is a unique Moore space of type $(S;n)(n\geqq 3),$ uni-
que up to p-homotopy.

Before starting the proof of Proposition 3.9 we shall fix notation and prove

a lemma whose proof $1S$ similar to the proof of [14; Lemma 2].

Let $(tow- Z_{2}, Z_{2})$ denote the abelian category defined in the same way as
( $tow- \mathcal{A}b$ , A6) by using $Z_{2}$-vector spaces instead of abelian groups. Given a free
tower $F(\mathcal{L})$ , let $Z_{2}(L_{i})$ denote $F(L_{i})\otimes Z_{2}$ . Then

3.10. LEMMA.–Any tower $\{V_{0}\leftarrow V_{1}\leftarrow V_{2}\cdots\}$ with $V_{i}\subseteqq Z_{2}(L_{i})$ and with bond-

ing morphisms the corresponding restrictions is projective in $(tow- Z_{2}, Z_{2})$ .

PROOF. We may find a basis $T_{i}$ of $V_{i}/V_{i+1}$ such that any element of $T_{i}$

is represented by a linear combination of elements in $L_{i}-L_{i+1}$ . Let $B_{i}$ be the

union $\cup\{T_{j} ; j\geqq I\}$ . It is easy to check that $B_{i}$ is a basis for $V_{i}$ . Since
$ B_{0}\supseteqq B_{1}\cdots$ and $\cap B_{i}=\emptyset$ it is straightforwardly shown that $\{V_{0}\leftarrow V_{1}\leftarrow V_{2}\cdots\}$ is
projective.

PROOF OF PROPOSITION 3.9. Let
$d_{2}$ $d_{2}$ $d_{0}$

$0-C_{2}-C_{1}-C_{0}-S-0$

be a free resolution of $S$ . Since $S\otimes Z_{2}$ is a tower of groups of order 2 we
have an isomorphism

(tow- A6, $Ab$ )$(C_{i} ; S\otimes Z_{2})\cong(tow- Z_{2}, Z_{2})(C_{i}\otimes Z_{2} ; S\otimes Z_{2})$

Therefore,

$Ext^{2}(S;S\otimes Z_{2})\cong Ext^{1}({\rm Im} d_{1} ; S\otimes Z_{2})\cong Coker((d_{2}\otimes 1)^{*})$
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where $*$ stands for the dual morphism.

Now from the exact sequence

$0-C_{2}-C_{1}-{\rm Im} d_{1}-0$

we get the exact sequence

$0-C_{2}\otimes Z_{2}$
$d_{2}\otimes 1\rightarrow C_{1}\otimes Z_{2}{\rm Im} d_{1}\otimes Z_{2}\underline{d_{1}\otimes 1}\rightarrow 0$

since the tower $Ker(d_{2}\otimes 1)$ is isomorphic to the tower $\{Tor({\rm Im} d_{1}^{i} ; Z_{2})\}$ which
is trivial because each component ${\rm Im}[d_{1}^{i} : C_{1}^{k(i)}\rightarrow C_{0}^{i}]$ of the tower ${\rm Im} d_{1}$ is a
free abelian group. Thus,

Coker $((d_{2}\otimes 1)^{*})\cong Ext_{Z_{2}}^{1}({\rm Im} d_{1}\otimes Z_{2} ; S\otimes Z_{2})$

where the right side is the $Ext1$ functor in the category $(tow- Z_{2}, Z_{2})$ .
On the other hand we have the commutative diagram

$0-C_{2}\otimes Z_{2}$ $C_{1}\otimes Z_{2}{\rm Im} d_{1}\otimes Z_{2}$
$d_{2}\otimes 1\underline{d_{1}\otimes 1}-0$

$\Vert$ $\Vert$

$0-c_{2}\otimes z_{2^{-}}^{d_{2}\otimes 1}$ $C_{1}\otimes Z_{2}\rightarrow^{d_{1}\otimes 1}{\rm Im}(d_{1}\otimes 1)-0$

where the upper row is exact as it was proven above. And the lower row is
also exact since $Tor^{1}(S;Z_{2})=Ker(d_{1}\otimes 1)/{\rm Im}(d_{2}\otimes 1)=0$ by hypothesis. Thus
${\rm Im} d_{1}\otimes Z_{2}\cong{\rm Im}(d_{1}\otimes 1)$ and hence $Ext_{Z_{2}}^{1}({\rm Im} d_{1}\otimes Z_{2} ; S\otimes Z_{2})\cong Ext_{Z_{2}}^{1}({\rm Im}(d_{1}\otimes 1);S\otimes Z_{2})$ .
Now the former term vanishes because ${\rm Im}(d_{1}\otimes 1)$ is projective by Lemma 3.10.
This yields $Ext^{2}(S;S\otimes Z_{2})=0$ and the uniqueness follows from Corollary 3.7.

FINAL REMARK. The category of trees of abelian groups (see [12]) seems
to be the right algebraic framework for a generalization of the results of this
paper to spaces with many Freudenthal ends.

Appendix A.

Two non properly equivalent proper More spaces of type $(S;n),$ $n\geqq 3$ .

Let $S$ be the tower

$\{\bigoplus_{1}^{\infty}Z_{2}\oplus Z_{2}\rightarrow^{k_{1}\oplus 1}\bigoplus_{2}^{\infty}Z_{2}Z_{2}\}$

$k_{2}\oplus 1$

$\ldots$

in (tow-di, $\mathcal{A}b$ ), with $k_{j}$ standing for the natural inclusion morphism. A free
resolution for $S$ is
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$\partial_{2}$ $\partial_{2}$

$0-F(\mathcal{L}_{3})-F(\mathcal{L}_{2})-F(\mathcal{L}_{1})-S-0$

where $\mathcal{L}_{3}$ is $ L_{1}^{3}\supseteqq L_{2}^{3}\supseteqq\cdots$ with $L_{j}^{3}=\{\alpha_{i} ; i\geqq]\}$ . $\mathcal{L}_{2}$ is $ L_{1}^{2}\supseteqq L_{2}^{2}\supseteqq\cdots$ with $L_{j}^{2}=$

$\{\rho_{i}, \mu_{i}, \sigma_{i} ; i\geqq j\}$ and $\mathcal{L}_{1}$ is $ L_{1}^{1}\supseteqq L_{2}^{1}\supseteqq\cdots$ with $L_{j}^{I}=\{\epsilon_{i}, \gamma_{i} ; i\geqq j\}$ . And the mor-
phisms are given by $\partial_{2}(\alpha_{i})=\mu_{i+1}-2\sigma_{i}-\mu_{i}$ ; $\partial_{1}(\rho_{i})=2\epsilon_{i},$ $\theta_{1}(\mu_{i})=2\gamma_{i}$ and $\partial_{1}(\sigma_{i})=$

$\gamma_{i+1}-\gamma_{i}$ .
Clearly, $S=S_{1}\oplus S_{2}$ , where $S_{1}$ is the tower

$\{\bigoplus_{1}^{\infty}Z_{2}\bigoplus_{2}^{\infty}Z_{2}\}\underline{k_{1}}\underline{k_{2}}\ldots$

and $S_{2}$ is the constant tower $\{Z_{2}=Z_{2}=\cdots\}$ .

A. 1. LEMMA. $-Ext^{2}(S;S)\neq 0,$ $Ext^{2}(S_{1} ; S_{1})=Ext^{2}(S_{2} ; S_{2})=0$ .

PROOF. By the naturality of $Ext$ ’ and $\oplus$ we have $Ext^{2}(S;S)=\oplus$

$\{Ext^{2}(S_{i} ; S_{j});i, j\leqq 2\}$ .
On the other hand, it is easy to check that $g$ . $p$ . $d$ . $S_{1}=1$ , and so $Ext^{2}(S_{1} ; S_{j})$

$=0$ . With the above notations, $S_{2}$ admits the free resolution
$\partial_{2}$ $\partial_{1}$

$0\rightarrow F(\{\alpha_{i}\})-F(\{\mu_{i}, \sigma_{i}\})-F(\{\gamma_{i}\})-S_{2}-0$

and by the standard Hom-Ext exact sequence we get

$Ext^{2}(S_{2} ; S_{2})=Ext^{1}({\rm Im}\partial_{1} ; S_{2})=0$ .

Indeed, for any $\varphi\in(tow- Ab, d6)(F(\{\alpha_{i}\}), S_{2})$ we may define $\overline{\varphi}\in$ ($tow- Ab,$ Ab)

( $F(\{\mu_{i}, \sigma_{i}\}, S)$ by $\overline{\varphi}(\sigma_{i})=0,\overline{\varphi}(\mu_{1})=0$ and $\overline{\varphi}(\mu_{J})=\Sigma\{\varphi(\alpha_{i});i\leqq j-1\}$ . Then $\overline{\varphi}\circ\partial_{2}$

$=\varphi$ .
Finally $Ext^{2}(S_{2}, S_{1})=Ext^{1}({\rm Im}\partial_{1} ; S_{1})\neq 0$ since $\xi:F(\{\alpha_{i}\})\rightarrow S_{1}$ given by $\xi(\alpha_{i})=$

$\epsilon_{i}\infty 1$ defines a non-trivial element. 0therwise, $\xi=\tau\circ\partial_{2}$ for some $\epsilon;F(\{\mu_{i}, \sigma_{i}\})$

$\rightarrow S_{1}$ and $\tau$ yields the equalities $\epsilon_{i}\otimes 1=\tau(\mu_{i+1})-\tau(\mu_{i})(i\geqq 1)$ . As $\tau$ is a pro-
morphism one can inductively prove that $\tau(\mu_{i})\in\bigoplus_{k\geq 1}Z_{2}$ and the sequence $\{\epsilon_{i}\otimes 1\}$

would represent the trivial element $\ln\lim^{1}S_{I}$ and it is a well-known fact that
it does not.

Lemma A.1 and Corollary 3.7 yield that $R$( $S_{1}$ ; n) and $R$( $S_{2}$ ; n) are uniquely
determined up to p-homotopy $(n\geqq 3)$ . Actually these types are represented by
$\tilde{W}$ and $ W\times[0, \infty$ ), where $W^{\approx}$ is obtained by attaching one copy of $W$ at each
natural coordinate of $[0, \infty$ ) and $W=S^{n}\bigcup_{2}e^{n+1}$ is the n-sphere with an $(n+1)-$

cell attached by a map of degree 2. Thus, $X=R(S_{1} ; n)_{p}R$ ($S_{2}$ ; n) is a repre-
sentative of $R(S;n)$ by Corollary 2.10.

A.2. LEMMA. The natural map $[X; X]_{p}^{J}\rightarrow(tow- AA, \Lambda b)(S;S)$ is onto.
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PROOF. By Proposition 2.14 $[R(S_{1} ; n);X]_{p}^{J}\rightarrow[\circ$ is onto.

On the other hand, (tow-db, $Ab$ ) $(S_{2} ; S_{1})=\lim S_{1}=0\leftarrow$ and $[R(S_{2} ; n);X]_{p}^{J}\rightarrow$

$[R(S_{2} ; n);R(S_{2} ; n)]_{p}^{J}\cong[W;W]^{J}\rightarrow_{\zeta}A6(Z_{2} ; Z_{2})\cong(tow- Ab, \mathcal{A}b)(S_{2} ; S_{2})$ .

where the first bijection is given by the Edwards-Hastings embedding Theorem
([10; 6.27]). Finally the natural bijection $[X; X]_{p}^{J}\cong[R(S_{1} ; n);X]_{p}^{J}\times$

$[R(S_{2} ; n);X]_{p}^{J}$ completes the proof.

Now we choose a non-trivial element $\alpha\in H^{n+2}(X;\Gamma_{n+1}X)\cong Ext^{2}(S;S)\neq 0$ .
By Remark 2.7 we may assume $X=\tilde{B}^{n+2}\bigcup_{h_{0}}X^{n+1}$ . Now, the commutative dia-
gram

$C_{n+2}(X)=\Pi_{n+2}(X, X^{n+1}\Pi_{n+2}(\tilde{B}^{n+1}\vec{h}\cong_{*}S^{n+1})$

$\downarrow d_{n+2}$ $\cong\downarrow d_{n+2}$

$\Pi_{n+1}(X^{n+1})\Pi_{n+1}(S^{n+1})\underline{h_{0*}}$

allows us to identify the boundary operator $d_{n+2}$ with the morphism $h_{0*}(h$ is
the characteristic map $h:\tilde{B}^{n+2}\rightarrow X$).

The isomorphism $d_{n+2}\circ h_{*}^{-1}$ also gives the identification

(I) (tow-Ab, $\cup tb$ )$(C_{n+2}(X);\Pi_{n+1}(X^{n+1}))$

$\cong(tow- Ab, \mathcal{A}b)(\Pi_{n+1}(\tilde{S}^{n+1});\Pi_{n+1}(X^{n+1}))\cong[S^{n+1} ; X^{n+1}]_{p}^{J}$

where the second isomorphism is given by Lemma 2.6. Thus, if $\alpha=[a],$ $a$ can
be regarded as a p-map $g;S^{n+1}\rightarrow X^{n}\subseteqq X^{n+I}$ . Let $\overline{h}_{0}$ be a representative of
$[h_{0}]+[g]\in[S^{n+1} ; X]_{p}^{J}$ and let $Y$ be the proper cone of $\overline{h}_{0}$ . Since ${\rm Im} g\subseteqq X^{n}$ ,

the complexes towers of cellular chains of $X$ and $Y$ are the same. But

A.3. LEMMA.–The obstruction $c(id)\in H^{n+2}(X;\Gamma_{n+1}Y)$ given in Theorem 3.2

for id: $H_{n}(X)=S\rightarrow S=H_{n}(Y)$ is non-trivial.

PROOF. Smce $c(id)$ does not depend on the morphisms $\varphi_{i}$ : $C_{i}(X)\rightarrow C_{i}(Y)$

inducing id: $S\rightarrow S$ (see Lemma $3.3(1)$), one can consider $\varphi_{i}=id$ for each $i=n$ ,

$n+1,$ $n+2$ . So, $c(id)$ is represented by $\beta(id)=d_{n+2}-d_{n+2}^{\prime}$ , where $d_{n+2}$ is given
in the above diagram for $X$ . Simllarly $d_{n+2}^{\prime}$ for $Y$. Bearing in mlnd the
identification (I) $\beta(id)$ is regarded as $h_{*}-h_{*}-g_{*}=-g_{*}$ . Then $\beta(id)$ is actually

$-a$ and $c(id)=-\alpha\neq 0$ .

Finally we get,
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A.4. $p_{ROPOSITION}.-X$ and $Y$ are not p-homotopically equivalent.

PROOF. If $h:X\rightarrow Y$ is a p-homotopy equivalence, let $h^{\prime}$ be a $p$-homotopic

inverse of $h$ . The morphism $h_{*}^{\prime}$ : $H_{n}(Y)=S\rightarrow H_{n}(X)=S$ can be realized by a h-
map $f:X\rightarrow X$ according to Lemma A.2. Then $h\circ f:X\rightarrow Y$ is a $p$-map with
$(h\circ f)_{*}=id:H_{n}(X)=s\rightarrow s=H_{n}(1^{\nearrow})$ , and this cannot happen by Lemma A.3.
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