
MONACO - Multi-Objective Network
Optimisation Based on an ACO

P. Cardoso∗, M. Jesus† and A. Márquez‡

13th November 2003

Abstract

The Ant Colony Optimisation Algorithm (ACO) supports the de-
velopment of a system for a multi-objective network optimisation
problem. The ACO system bases itself on an agent’s population and,
in this case, uses a multi-level pheromone trail associated to a cost
vector, which will be optimised.

1. Introduction

Evolutionary and adaptive computing algorithms emerged in the last
decades, taking advantage of the computer age, namely: the processing speed
and the amount of memory available. Those global algorithms, usually based
on random meta-heuristic searches, almost always try to imitate some natu-
ral process like: the group insect behaviour usually called swarm algorithms
(Ant Colony Optimisation algorithm - ACO) [3, 8], the evolutionary Darwin’s
theory (Genetic Algorithm)[9, 5], physics behaviours (Simulated Annealing
algorithm) [5, 7]. In particular, the swarm algorithms are based in a col-
lective intelligence, defined as the ability of a group to solve problems more
efficiently than its individuals [6].

∗Universidade do Algarve (EST). Dep. Eng. Electrotécnica. Email: pcardoso@ualg.pt
†Universidade do Algarve (EST). Dep. Eng. Civil. Email: mjesus@ualg.pt
‡Universidad de Sevilla (FIE). Dep. de Matemática Aplicada I. Email: almar@us.es



2 X Encuentros de Geometŕıa Computacional

In this paper, we introduce an ACO based algorithm for a multi-objective
network optimisation problem with a time discrete approach. In our method,
the optimisation process uses a single colony with a multi-level pheromone
trail and an heuristic that allowed us to introduce a random-heuristic formula
to construct optimised paths.

Some of the traditional methods use an objective function that joins in a
single expression the costs. This expression is frequently quite artificial due
to the different nature of values included. Another approach suggest the use
of a multi-colony solution with the exchange of information between colonies
[4].

Therefore, this paper is divided in five sections. Next, we introduce some
preliminaries necessary to define the problem, namely: the network definition
and the ACO algorithm. In the third, we describe our optimisation method,
followed with the presentation of the MONACO algorithm, some results and
their discussion. In the last one, we draw some conclusions and further work.

2. Preliminaries

In this section, we will dedicate ourselves to introduce some notation, to
present a concise description of the problem as well as a small introduction
to the ACO.

§ 2.1. Networks.— Let us consider a network as

N = (V , E , C,O) (1)

where

• V is the set of nodes (points in the Euclidean plane).

• E is the set of edges, each defined by a pair of nodes, (u, v), and a
certain amount of ticks necessary to throughout each one.

• C : E → (IR+
0 )n is a vector function such that, for each (u, v) ∈ E ,

C(u, v) =
(
c(1)
u,v, c

(2)
u,v, . . . , c

(n)
u,v

)
(2)

is the cost vector. We define the path final cost vector as the sum
of the cost vectors associated to its edges. In other words, the path



X Encuentros de Geometŕıa Computacional 3

πs,t = (u0 = s, u1, u2, . . . , uk = t) as a total cost vector:

T πs,t =

(
k−1∑
i=0

c(1)
ui,ui+1

,
k−1∑
i=0

c(2)
ui,ui+1

, . . . ,
k−1∑
i=0

c(m)
ui,ui+1

)
. (3)

•
O = {Ot : t ∈ I} (4)

is a set of origin/destination matrices such that Ot = [o
(t)
i,j ], where o

(t)
i,j

is the flow from node i to node j at tick t ∈ I (I is our time window of
observation).

§ 2.2. Ant Colony Optimisation.— In the evolutionary and adaptive
algorithms one of the most recent is the Ant Colony Optimisation (ACO)
computational paradigm introduced by Marco Dorigo [2, 3]. As the name
suggest, this algorithm try to mimic the behaviour observed in an ant colony,
where all the individuals work to the benefit of the colony, basing there op-
tions on a set of basic reactions (find food and take it to nest, leave pheromone
trail, etc) despite having a superior ant.

In this manner, the basic idea of the ACO artificial system is to resemble
the cooperative behaviour of the colony using: a colony of agents called
artificial ants, an indirect communication between the ants, supported by
an artificial pheromone trail reflecting the experience of past agents while
solving the problem, and an heuristic to improve the search.

Algorithm 1 ACO - Ant Colony Optimisation Algorithm

1: Initialise the pheromone trail.
2: while stopping criteria is not met do
3: for all ants do
4: Construct a new solution using the current pheromone trail.
5: Evaluate the solutions constructed.
6: end for
7: Update the pheromone trail.
8: end while

In [1] we used ACO algorithm to solve the k-Shortest Paths problem
(ACO-KSPP). In each cycle of the ACO-KSPP, all the (artificial) ants try
to find a shortest path between nodes s and t. To do it, each ant is placed
in node s and constructs the path by the ordered addition of feasible (i.e.,
not yet visited) nodes, considering two measures: closeness to t and the



4 X Encuentros de Geometŕıa Computacional

(artificial) pheromone trail in the edge between the current node and all the
feasible nodes. The k shortest paths found are kept to establish the solution.

The ACO algorithm allows solving hard combinatorial problems like:
Travelling Salesman Problem (TSP)[3], the Vehicle Routing Problem (VRP),
the Quadratic Assignment Problem (QAP) [3] and the Job-shop Scheduling
Problem (JSP) [3].

To improve the performance and the quality of the solutions, the algo-
rithm must have a collection of capabilities, namely: memory to recognize
instances in futures occurrences, global vision over the network allowing to
recognize critical points in the network to find solutions and the capability
to communicate.

In conclusion, some of the ACO main features are its versatility, its ro-
bustness [3] and the fact that it is a global method. These desirable properties
counterbalance the fact that, for some applications, algorithms that are more
specialized can outperform the ACO.

3. MONACO - Multi-Objective Network

Optimisation using ACO

In this section, we introduce the MONACO method by describing the
considered problem in more detail, followed by an explanation of the path
construction strategy and ending with the pheromone update process.

§ 3.1. Problem Definition.— We consider the problem of determining
paths that minimize the total costs of a vector defined in (3), for the flows
generated between each pair of nodes. This values are given by the ori-
gin/destination matrices, O (4). The number of possible paths from a start-
ing node s to a terminal node t, are usually very high [1] and should be
chosen, somehow, trying to minimize several costs associated to the network.

Therefore, our problem is to find the paths that minimize a multi-objecti-
ve cost vector, using the weights associated to each cost. Usually, when
a multi-objective problem is proposed, it is normal to introduce an unit
conversion and assemble an objective function that is the weighted sum of
the converted costs. In this approach, we use a random-heuristic formula to
construct the paths that only require the individual edge costs.

Furthermore, we will consider that there are a certain amount of ticks



X Encuentros de Geometŕıa Computacional 5

necessary to throughout the edges, i.e., after the beginning of the process,
there is a queue in each edge corresponding to the flow elements that have
not yet arrived to its end.

§ 3.2. Paths Constructions.— Let us define an ant as a certain amount
of flow with the same origin s, same destination t and leaving s at the same
tick. Then, the path for that flow is constructed by the ant taking in account
a multi-pheromone trail and an heuristic to improve the decision to choice a
suitable route. Those pheromone trails, in the same number as the number of
costs (m), represent the weight of an edge regarding the objective of guiding
the ant to t. So, for each node t, there are m pheromone trails that catalyse
the construction of the path toward the terminal node, i.e., the pheromone
trails deposited in the edges, symbolize the value of the edge to achieve t.

Therefore, knowing the necessary ticks to cross an edge, the problem
resumes to choose next edge whenever the ant arrives into a node that is not
t (the ant stops when it reaches t). Mathematically, the probability of going
from node u to node v is given by the formula

puv =


d
−α0
v,t

∏m

k=1

(
τ
(k,t)
u,v

)αk

∑
{w:(u,w)∈E}

[
d
−α0
w,t

∏m

k=1

(
τ
(k,t)
u,w

)αk
] if (u, v) ∈ E

0 if (u, v) 6∈ E
, (5)

where τ (k,t)
u,v is the of quantity k-pheromone to node t in edge (u, v) (analogous

for τ (k,t)
u,w ), dv,t is the Euclidean distance between nodes v and t (analogous

for dw,t) and αk ∈ IR+
0 (k = 0, 1, . . . ,m) are parameters that emphasis the

heuristic (k = 0) and the relative importance of the k-pheromone trail (k =
1, 2, . . . ,m), i.e., the relative weight of the k costs in the final value.

So, supposing that the ant is in a node u and wants to go to t, a random-
heuristic selection of the next node is taken from the adjacent nodes, con-
sidering their ability in the construction of a good path. The heuristic used
give preference to nodes that are closer to t by placing, in the formula, the
inverse of the Euclidean distance from those nodes to t. This can be seen a
guidance ability.

In Figure 1 is presented a section of a network, where two costs are taken
into account considering the values given in Table 1. Suppose also that the
ant is on node a and t is its terminal node.

Then using (5) with α0 = α1 = α2 = 1 the probabilities are pab = 0.03,
pac = 0.43, pad = 0.29 and pae = 0.26. If we take α0 = α2 = 1 and α1 = 2
then pab = 0.02, pac = 0.36, pad = 0.40 and pae = 0.22. We can also see
that the variation of the probabilities is closely linked to the values of the
parameters.



6 X Encuentros de Geometŕıa Computacional

Figure 1: Random path determination example

node (x) distance from x to t τ
(1,t)
Ax τ

(2,t)
Ax

B 4 1.0 1.0
C 1 1.5 2
D 1.5 2.5 1.5
E 2 1.5 3

Table 1: Random path determination example.

§ 3.3. k-Pheromones.— Relatively to the pheromones trails, when the
process starts, they are all set equal. The construction of a pheromone trail
is achieved considering a set of cycles. In each cycle, a pre-determined number
of ticks are used and an ant arriving to a terminal node contributes to the
variation of the pheromone trails. After each cycle the k-pheromones for
node t are updated using the formula:

τ (k,t)
uv = ρkτ

(k,t)
uv + ∆τ (k,t)

uv , k ∈ {1, 2, . . . ,m}, t ∈ V (6)

where τ (k,t)
uv is the quantity of k-pheromone to node t in edge (u, v), 0 <

ρk ≤ 1 (k = 0, 1, . . . ,m) is the persistence of the trail (1 − ρk the is trail
evaporation) and ∆τ (k,t)

uv is the quantity of k-pheromone leaved by the ants
that went through (u, v) with destination t, in this cycle. That quantity is
usually the inverse of the k cost of the path determined by the ant. That is,
if W is the set of all ants that went to t through (u, v) and π

(a)
s,t represents

the path of a ∈ W , then

∆τ (k,t)
uv =

∑
a∈W

Q

T π
(a)
s,t

k

(7)

where T π
(a)
s,t

k is the k component of the cost vector defined in (3) and Q is a
constant related to the amount of pheromone laid by ants.



X Encuentros de Geometŕıa Computacional 7

4. Computational Experiences

Within this section a computational model named MONACO will be des-
cribed using previous theoretical concepts, as reported in Section 3. Algo-
rithm 2 globally sketches the MONACO computational model and Algorithm
3 presents a more detailed fase, focused on the ants update.

Algorithm 2 MONACO Algorithm

1: for all t ∈ V do
2: for all k ∈ {1, 2, . . . ,m} do

3: Initialise the k-pheromone trails
(
τ (k,t)

)
4: end for
5: end for
6: Load the Network
7: repeat
8: for T ∈ I do
9: Update packets all ready in the network (Algorithm 3).

10: Add new packets to the networks (based on the origin/destination
matrix for tick T ).

11: end for
12: for all t ∈ V do
13: for all k ∈ {1, 2, . . . ,m} do
14: Update the k-pheromone trails to t using (6).
15: end for
16: end for
17: Remove all remaining ants from network
18: until Stopping criteria

Our computational model was implemented using C++ programming
language and a set of tests were used to verify its robustness, liability and
accuracy. Those tests were executed on a Pentium 4 - 2.0Ghz PC with 256
Mb of RAM.

In Figure 2 we present two examples of networks used in our tests: net-
work 1 with 18 nodes and 27 edges and network 2 with 25 nodes and 40
edges. For each problem, we considered a cost vector with two components:
number of ticks and Euclidean distance. We also have considered 100 ticks
per cycle, 20 cycles as a stopping criteria for Algorithm 2, persistence pa-
rameteres ρd = ρt = 0.5 and αd, αt, αh ∈ {1, 2} (were αd, αt and αh are the
parameters present in formula (5), associated, in this case, to the distance
cost, the ticks cost and the heuristic, respectively). We used 122400 and



8 X Encuentros de Geometŕıa Computacional

Algorithm 3 Ants update

1: for all ants in network do
2: if ant arrived at the end of an edge then
3: if ant arrived to t then
4: for all k ∈ {1, 2, . . . ,m} do
5: Update ∆τ (k,t) using (7)
6: end for
7: Remove ant from network
8: else {not yet in t}
9: Use (5) to random-heuristically determine next edge and put ant

there.
10: end if
11: end if
12: end for

Figure 2: Example of tested networks

240000 ants/cycle for network 1 and network 2, respectively.

Figure 3: Number of ants present in the network at the end of the cycles -
αd = 2 and αt = αh = 1.

Figure 3 presents the variation of the number of ants in the network per
cycle. Straight forward we can conclude that in few cycles a good trail of
pheromone is created, thus implying an important decrease in the number
of ants that have not reached t, i.e., less ants are ‘lost’ as the number of
cycles increases. That number suggest a stabilization above the number of
ants created in the last cycles that have not enough ticks to reach t.

In Figure 4 we can see the variation on the thickness of the edges in both
networks. That thickness represents the pheromone levels in the edges and



X Encuentros de Geometŕıa Computacional 9

Figure 4: Pheromone trails for node t - the thickness of the edges corresponds
to the quantity of pheromone present (relative to distance cost) in cycle 5
(αd = 2 and αt = αh = 1).

gives us an idea of the possible choices made by the ants.
Relatively to the influence of the parameters, if we compare the first

network in Figure 4 and Figure 5, we can see that, due to the fact that in
the second case αt > αd, in the edges were the number of ticks necessary to
cross were lower (higher velocity), the line is thicker. Depending on the alpha
parameters, the pheromone trails reflect the weight of the costs associated to
those factors.

Figure 5: Pheromone trails for node t - the thickness of the edges corresponds
to the quantity of pheromone present (relative to ticks cost) in cycle 5 (αt = 2
and αd = αh = 1).

5. Conclusions and Further Work

The practical use of MONACO requires many improvements that can be
summarised in the following item:

• There should be some restriction to the network capacities, namely:
node and edge capacities.



10 X Encuentros de Geometŕıa Computacional

• The ability to assign dynamism to the network, namely: variations in
the edge and node capacities.

• Modelling some real problem requires RAM and computational capa-
bilities needed to solve and represent it. A possible solution may be
in the construction of heuristics that are more efficient, some possible
clusterisation or a distributed/parallel algorithm.

References

[1] Pedro Cardoso, Mário Jesus, and Álberto Márquez. Optimization sys-
tem in networks using aco. In Actas de las III Jornadas de Matemática
Discreta y Algoŕıtmica, pages 89–94. Universidade de Sevilla, September
2002.

[2] Marco Dorigo. http://iridia.ulb.ac.be/ mdorigo/aco/aco.html, March
2003.

[3] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The ant system:
Optimization by a colony of cooperating agents. IEEE Transaction on
Systems, Man and Cybernetics, 26(1):29–41, 1996.

[4] Martin Middendorf, Frank Reischle, and Hartmut Schmeck. Multi colony
ant algorithms. Journal of Heuristics, (8):305–320, 2002.

[5] Ian Parmee. Evolutionary and Adaptative Computing in Engineering De-
sign. Springer-Verlag, 2001.

[6] Mitchel Resnic. Turtles, Termites, ans Traffic Jams: Exploration in Mas-
sively Parallel Microworlds. MIT Press, 1999.

[7] Sadiq Sait and Habib Youseff. Iterative Computer Algorithms with Ap-
plications in Engineering. IEEE - Computer Society, 1997.

[8] Peter Tarasewich and Patrick McMullen. Swarm intelligence - power in
the numbers. Communications of the ACM, 5(8):149–159, 2002.

[9] Michael Vose. The Simple Genetic Algoritm: Foundations and Theory.
MIT Press, 1999.


