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Abstract

We present a formula for a boundary control law which staédithe parabolic profile of an infinite
channel flow, which is linearly unstable for high Reynoldamers. Also known as the Poisseuille
flow, this problem is frequently cited as a paradigm for tithms to turbulence, whose stabilization for
arbitrary Reynolds numbers, without using discretizatioas so far been an open problem. Our result
achieves exponential stability in thHe?, H' and H? norms, for the linearized Navier-Stokes equations,
guaranteeing local stability for the nonlinear system. liEXpsolutions are obtained for the closed loop
system. This is the first time explicit formulae are produftegdsolutions of the Navier-Stokes equations.
The result is presented for the 2D case for clarity of expmsitAn extension to 3D is available and

will be presented in a future publication.
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. INTRODUCTION

We present an explicit boundary control law which stabdize benchmark 2D linearized
Navier-Stokes system. Despite the deceptive simplicitthefchannel flow geometry, there is a
number of complex issues underlying this problem [13], mgki extremely hard to solve.

Controllability and stabilizability results for the NaviStokes equations are available for
general geometries; for example, see [9], [10], [12] andrezices therein. However, these results
do not provide the means of computing a feedback controller.

Many efforts in the design of feedback controllers for thevidaStokes system employ in-
domain actuation, using optimal control methods [7] or miag@eluction techniques [4]. For
boundary feedback control, optimal control theory has Aksen developed [16], and specialized
to specific geometries, like cylinder wake [15]. There asoalew techniques arising for specific
flow control problems like separation control [3].

Optimal control has so far been the most successful techniiguaddressing channel flow
stabilization [11], in a periodic setting, by using a did@ed version of the equations and
employing high-dimensional algebraic Riccati equatioos domputation of gains. The com-
putational complexity of this approach is formidable if arwdine grid is necessary in the
discretizations, for example if the Reynolds number is Varge. Using a Lyapunov/passivity
approach, another control design [1], [5] was developedtabilization of the (periodic) channel
flow; the design was simple and explicit and did not rely orcidiszation or linearization, but
its theory was restricted to low Reynolds numbers thoughimmukations the approach was
successful at high Reynolds numbers, above the linearbitisgahreshold.

The approach we present in this paper is the first result tteatigies an explicit control law
(with symbolically computed gains) for stabilization at arbitrarily high Reynolds number

in non-discretized Navier-Stokes equations, and it is iapple to both infinite and periodic
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channels with arbitrary periodic box size, and also extad3D. Thanks to the explicitness
of the controller, we are able to obtain approximate anedytsolutions for the Navier-Stokes
equations. Exponential stability in the?, 7' and H2 norms is proved for the linearized Stokes
system around the Pouiseuille profile, therefore localiktyabs achieved for the nonlinear

Navier-Stokes system. We do not prove well-posedness, eweith the high-order Sobolev

estimates that we derive it is certainly possible, thougiytley and not trivial.

The method we use for solving the stabilization problem iseldaon the recently developed
backstepping technique for parabolic systems [20], whigh een successfully applied to flow
control problems, for example to the vortex shedding pmobj2] and to feedback stabilization
of an unstable convection loop [24].

We start the paper by stating, in Section Il, the mathemlativadel, which consists of
the linearized Navier-Stokes equations for the velocittflation around the (Pouisseuille)
equilibrium profile. In Section 1ll, we introduce the coritlaw that stabilizes the equilibrium
profile. Explicit solutions for the closed loop system arertlstated in Section IV along with the
main results of the paper. Sections V, VI, and VIl deal with fitoof of, respectivelyi,?, H' and
H? stability of the closed loop system. A Fourier transform rapgh allows separate analysis
for each wave number. For certain wave numbers, a normatigloontroller puts the system
into a form where a linear Volterra operator, combined wittutdary feedback, can transform
the original normal velocity PDE into a stable heat equatiBar the rest of wave numbers
the system is proved to be open loop exponentially stable,isuteft uncontrolled. These two
results are combined to prove stability of the closed loogtesy for all wave numbers and in
the physical space. Section VIl is devoted to study and @reeme properties of the control

laws. In Section IX, we finish the paper with a discussion @ tasults.
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Fig. 1. 2D channel flow and equilibrium profile. Actuation is the top wall.

I[I. MODEL

Consider a 2D incompressible channel flow evolving in a sefirite rectangle(z,y) €
(—o0,00) x [0,1] as in Figure 1. The dimensionless velocity field is governgdhe Navier-
Stokes equations

1

U, = E(UMJrUyy)—UUm—VUy—Px, Q)
1
‘/t = E(%m+vyy)_U%_v%_Py7 (2)
and the continuity equation
U, +V, =0, 3)

whereU denotes the streamwise velocity, the wall-normal velocity,P the pressure, ané&e
is the Reynolds number. The boundary conditions for theoisidield are the no-penetration,
no-slip boundary conditions for the uncontrolled case, \&z,0) = V(z,1) = U(x,0) =
U(z,1) = 0. Instead of using (3) we derive a Poisson equation thatrifies, combining (1),
(2) and (3)

Pry + Pyy = _2(%)2 - Qmva (4)

with boundary conditions’,(z,0) = (1/Re)V,,(x,0) and P,(z,1) = (1/Re)V,,(x, 1), which

are obtained evaluating (2) at= 0, 1.
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The equilibrium solution of (1)—(3) is the parabolic Poisifle profile

Ue = 4'3/(1_'3/), (5)
Ve = 0, (6)
o8

P= R-ta )

shown in Figure 1. This equilibrium is unstable for high Relgls numbers [19]. Defining the
fluctuation variables, = U — U andp = P — P¢, and linearizing around the equilibrium profile

(5)—(7), the plant equations become the Stokes equations

1
Uy = e (Ugz + uyy) +4y(y — Du, +4Q2y — 1)V — py, (8)
1
Vi = Re (Vm + Vyy) + 4?/(?/ - 1)Vx — Dy, 9)
Pex + Pyy = 8(2y - 1)‘/:(:7 (10)

with boundary conditions

u(z,0) = 0, (11)
u(e,1) = ), (12)
V(z,0) = 0, (13)
V(1) = Vi), (14)
p(a,0) = Loin0), (15)
pe1) = DLy (16)

The continuity equation is still verified
uy +V, = 0. a7

We have added in (12) and (14) the actuation varialilgs:) and V.(z), respectively for

streamwise and normal velocity boundary control. The dotsaare placed along the top wall,
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y = 1, and we assume they can be independently actuated feralR. No actuation is done
inside the channel or at the bottom wall.
Taking Laplacian in equation (9) and using (10), we get arorawnous equation for the

normal velocity, the well-known Orr-Sommerfeld equation,

1
AV, = ENV +4y(y — 1) AV, — 8V, (18)

with boundary conditions (13)—(14), as well &$(x,0) = 0, V,(z,1) = —(U.),, derived from
(11)—(12) and (17). This equation is numerically studiedhyalrodynamic theory to determine
stability of the channel flow [17].

DefiningY = —V,, it is possible to partially solve (18) and obtain an evalntequation for

o0

1 .
Y; = R (Yxx+Yyy) +4y( — 1 Y. —|—/ / é" 77)/ 167Tke2mkz(:c—g)

[e.e]

X [mk(2y — 1) — 2sinh (27k(y — n)) 2mk(2n — 1) cosh (2wk(y — n))] dkd&dn

2mik(z—§) cosh (27Tky) o
/ / / 327ke “Sinh (2k) [cosh (27k(1 — 1))

+7k(2n — 1) sinh (27k(1 — n))] dkd&dn

=% (Y6 — (Vo) | amikeey cosh (2mky)
+/_oo /_OO ( Re + (Vc)t(g)) 2mk sinh (27k) dkdg

%Y (€,0) orik(e_e) COSh (27k(1 — y))
_ TS D ke i) d !
/_ § /_ ke Sk (2rF) kdg, (19)

with boundary conditiond’,(z,0) = 0 andY(z, 1) = (U.),. Equation (19) governs the channel
flow, since fromY and using (17), we recover both components of the velocitg:fie
Yy
Vie) = - [ Y (20)
0
uey) = [ Yiew @)

—00

Equation (19) displays the full complexity of the Navievkts dynamics, which the PDE

system (8)—(10) conceals through the presence of the peessjuation (10), and the Orr-
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Sommerfeld equation (18) conceals through the use of fooundler derivatives. Besides being
unstable (for high Reynolds numbers), tiesystem incorporates (on its right-hand side) the
components ofY’(z,y) from everywhere in the domain. This is the main source of aliffy

for both controlling and solving the Navier-Stokes equagioA perturbation somewhere in the
flow is instantaneously felt everywhere—a consequenceeninttompressible nature of the flow.
Our approach to overcoming this obstacle is to use one ofwtleecbntrol variables (normal
velocity V.(z), which is incorporated explicitly inside the equation) teyent perturbations from
propagating in the direction from the controlled boundayyards the uncontrolled boundary.
This is a sort of “spatial causality” on, which in the nonlinear control literature is referred to

as the ‘strict-feedback structure’ [14].

[1l. CONTROLLER

The explicit control law consists of two parts—the normaloegy controller V.(z) and the
streamwise velocity controlléf.(z). V.(x) makes the integral operator in the third to fifth lines of
(19) spatially causal iy,* which is a necessary structure for the application of a “bsegping”
boundary controller for stabilization of spatially caupaltial integro-differential equations [20].
U.(x) is a backstepping controller which stabilizes the spatialusal structure imposed by

V.(x). The expressions for the control laws are

Ult,x) = /0 /_Oo Qula — €, )u(t, & n)dédn, (22)

Ve(t,z) = h(t, x), (23)

whereh verifies the equation

1The first, second and sixth lines are already spatially dansa.
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where

1 )
g = /O / Qula = &Vt E ey

[ ol = 9 (uy(t..0) (1.6, 1) (25)
and the kernels),, Qv and (@, are defined as
@ = [ KO, (26)
Qv = / h x(k)167ki(2n — 1) cosh (27k(1 — 1)) 2™ *FE= dk, (27)
Qo = /_ ) X(k)%em(r—@dk. (28)

In expressions (26)—(28)x(k) is a truncating function in the wave number space whose
definition is

I, m<lkl<M
x(k) = , (29)
0, otherwise

wherem and M are respectively the low and high cut-off wave numbers, tesigh parameters

which can be conservatively chosenias< o' and M > 1,/%¢ The functionK (k,y,n)

appearing in (26) is a (complex valued) gain kernel defined as

K(k,y,n) = lim K (k,y,m), (30)
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where K, is recursively defined a%

cosh (27k(1 —y +n)) — cosh 27k(y — 1))

Ky = —27k
0 4 sinh (27k)

+ 4iRen(n — 1) sinh (27k(y — n))

R R
—{m’kn (219> — 6y(3 + 4n) + (12 + Tn)) — 6niﬁ—2(1 — cosh (27k(y —n))) (31)

K, = K, —47rk:z'Re/y+n /W7 /(S {Smh (TET0)  (9¢ 1y
y—n JO =4

+2(y — 6 — 1) cosh (7k(€ + 6)) }Kn_l <k i ; 07 ; 5) dédody

—m/{:/ / (v=8)(y—=0—-2)K, 1 (k,ﬂ,ﬂ) dody
y—n 2 2

ok /y " cosh (27k(1 — 0)) — cosh (27wk0)
0 sinh (27k)

The terms of this series can be computed symbolically as tmy involve integration of
polynomials and exponentials. In implementation, a feuntelare sufficient to obtain a highly
accurate approximation because the series is rapidly ocgent[20].

Remark 1: (23) is a dynamic controller whose magnitude is determineth® variableh (¢, x),
which evolves according to (24). We use an initial condith@f, ) = 0. The stabilization result
remains valid forh(0,x) # 0, however it involve additional routine effort to account fine
exponentially stable effect of the compensator internaladiyics (which are of heat equation
type).

Remark 2: Control kernels (27) and (28) can be explicitly expressed as

RV(ganv M) B RV(ganvm)
&+ 1 -n)p?

R0(£77]7 M) - R0<£7n7m>

Re& ’

Qv(&,n) = 8(2n—1)

(33)

2This infinite sequence is convergent, smooth, and unifotolynded overy, n) € [0, 1)%, and analytic in.
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10

where Ry (¢, n, k) and Ry(&, n, k) are defined

(1 —n)?— &*)sin(27k€)cosh(2k(1 — n
2m (&2 + (1 —=n)?)

_&(1 —mn) cos (2mkE) sinh (27k(1 — 1))
m(&+ (1 —=n)?)

Ry = kcos (2mkE) — Smf%k@

Ry =

) + k€ cos (2mkE) cosh (2mk(1 — 1))

— k(1 — n)sin(27k€) sinh(27k(1 — 7)) (35)
(36)

IV. MAIN RESULTS

Due to the explicit form of the controller, the solution ofetltlosed loop system is also

obtained in the explicit form,

u(t,z,y) = u'(t,x,y) + e (t, z,y), (37)
V(t,z,y) = V*(t,x,y)+ev(t,z,y), (38)
where
u = QZ/ / 2 o rik(—€) {sin (ij)—i-/y L(k,y,n)sin (mjn) dn}
0
x/ {sm in) / K(k,o,n)sin (mjo) da} u(0,&,n)dndédk, (39)
Vr o= —9 4k2ﬁ2+ﬁ] +2mik(x £)|i y( yL kf, , d ) i in) d
Z/ / /0 /77 (k,0,m)do | sin (mjn) dn
B 1 1
_|_1+?(7Uy)]/0 lﬂjcos(wjn)+K(k,77,77)sin(7rjn)—/ K, (k,o,m)
n
X sin (mjo) da} V(0,€&,n)dndédk. (40)

The variables, (¢, z,y) and ey (¢, z,y) represent the error of approximation of the velocity

field and are bounded in the following way

lew®)I72 + llev Ol < e 5 (llea (072 + [ev (0)[[72) (41)
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11

where bothe, (0, z,y) and ey (0,z,y) can be written in terms of the initial conditions of the

velocity field as

Q0y) = 0,y [ IO o e i @)

ev(0,2,y) = V(0. 2,9) _/OO sin (2 M¢) — sin (2mm)

oo T

The bound on the errors is proportional to the initial kinethergy ofe, and e, which, as
made explicit in the expressions (42)—(43), is in turn pridpoal to the kinetic energy af and

V" at very small and very large length scales (the integralweatre substacting from the initial
conditions represents the intermediate length scale ojnend decays exponentially. Therefore,
this initial energy will typically be a very small fractionf ohe overall kinetic energy, making
the errorse, andey very small in comparison withv* and V* respectively.

The kernelL in (39) is defined as a convergent, smooth sequence of figction
L(k,y.n) = lim Ly (k,y,n), (44)
whose terms are recursively defined as
Ly = K, (45)

y y— é
L, = L, 1+ 42’Re/ +?7/ ?7/5 {27k(y 4+ & — 1) x cosh (wk(§ — 0)) + sinh (7k(£ — 0))
y—n JO -

k(26 — 1)} Ly (k; VT% 77_5) dédody
y+n y—=n _
—&mk/ / (Y +68)(y+ 8 — 2) L (k: 149 7—5) dodry . (46)
™) > 2

Control laws (22)—(32) guarantee the following results.
Theorem 1: The equilibriumu(z,y) = V(z,y) = 0 of system (8)—(16), (22)—(32) is expo-
nentially stable in the.?, H! and H? sense. Moreover, the solutions foft, z,y) andV (¢, z, y)

are given explicitly by (37)—(46).
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Theorem 2: Control lawsU,, V. and kernelgQ,,, Qv, Qo, as defined by (22)—(32), have the
following properties:

i) U.andV, are spatially invariant in.

i) [7°_Vi(t,€£)dE = 0 (zero net flux).

i) |Q < C/lx ¢, for @ = Qu. Qv, Qu.
iv) U, andV, are smooth functions of.
V) Q., Qv, Qo are real valued.
Vi) Q., Qv, Qo are smooth in their arguments.
vii) U, andV, are L? functions ofz.
viii) All spatial derivatives ofU, andV, are L? function of z.

Remark 3: Theorem 1, stated for the linearized equations (8)—(9)al&\for the nonlinear
equations (1)—(2) in #ocal sense, i.e., provided that the initial data are sufficiealihge (in the
appropiate norm) to the equilibrium (5)—(7).

Remark 4: By Sobolev’'s Embedding Theorem [22}? stability suffices to establish conti-
nuity of the velocity field when the domain is bounded. Theuargnt is not applicable to the
infinite channel, but it holds if the channel is periodic, dtiag for which our results extend
trivially.

Remark 5: Theorem 2 ensures that the control laws are well behavegeRyoi, spatial
invariance, means that the feedback operators commutetraitslations in the: direction [6],
which is crucial for implementation. Property ii ensuresttive do not violate the physical
restriction of zero net flux, which is derived from mass cowaton. Property iii allows to
truncate the integrals with respect&do the vicinity of z, which allows sensing to be restricted
just to a neighborhood (in the direction) of the actuator. Properties iv to vi ensure thneg t
control laws are well defined. Properties vii and viii provaténess of energy of the controllers

and their spatial derivatives.
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The next sections are devoted to proving these theorems.

V. L? STABILITY AND EXPLICIT SOLUTIONS

As common for infinite channels, we use a Fourier transform. iithe transform pair (direct

and inverse transform) has the following definition:
fley) = [ flae s, @7)
faw) = [ S, (48)

Note that we use the same symbpolfor both the originalf(z,y) and the imagef(k,y). In
hydrodynamicsk is referred to as the “wave number.”
One property of the Fourier transform is that th& norm is the same in Fourier space as in

physical space, i.e.,

111 [ 1 / Zf?(k, akdy = 1 / Zf?(a:, y)dady, (49)

allowing us to derivel.? exponential stability in physical space from the same pitype Fourier
space. This result is called Parseval's formula in thediige [8].

We also define thé.? norm of f(k,y) with respect toy:
5091 = [ 150k 00 (50)
The L? norm as a function of: is related to thel.? norm as
171 = [ 1B 51)

Equations (8)—(10) written in the Fourier domain are

— 472 kU 4 uy,

u = i + 8kmiy(y — Du+ 42y — 1)V — 2mikp, (52)
—4Am2 2V +
Vi = W srkiy(y - )V — p, (53)
Re
—Am%k*p + Py = 167ki(2y — 1)V, (54)
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14

with boundary conditions

u(k,0) = 0, (55)
u(k,1) = U.k), (56)
V(k,0) = 0, (57)
V(D) = Vilh) 58)
p(k,0) = Y0 (59)
1) = Yol DZATEVD ) ) (60)

and the continuity equation (17) is now
2rkiu(k,y) + Vy(k,y) = 0. (61)

Thanks to linearity and spatial invariance, there is no dogppetween different wave numbers.
This allows us to consider the equations for each wave nurmoependently. Then, the main
idea behind the design of the controller is to consider tviieidint cases depending on the wave
numberk. For wave numbers: < |k| < M, which we will refer to asontrolled wave numbers,
we will design a backstepping controller that achievesiktaltion, whereas for wave numbers
in the rangelk| > M or in the rangdk| < m, which we will call uncontrolled wave numbers,
the system is left without control but is exponentially $abrhis is a well-known fact from
hydrodynamic stability theory [19].

Estimates ofn and M are found in the paper based on Lyapunov analysis and alldw use
feedback for only the wave numbers < |k| < M. This is crucial because feedback over the
entire infinite range ok’s would not be convergent. The truncationscat m, M are truncations
in Fourier space which do not result in a discontinuityzin

We now analyze equations (52)—(54) in detail, for both cdled and uncontrolled wave

numbers.
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A. Controlled wave numbers

Form < |k| < M we first solve (54) in order to eliminate the pressure. Theatign can be
easily solved since it is just an ODE ip for eachk. Introducing its solution into (52), we are

left with

1
up = — (—Amk*u + uyy,) + 8rkiy(y — Du+ 42y — 1)V

Re

v _ _cosh (2mk(1 —y)) V,y (K, 0)
167k k 2n—1 h (2 — d
6k [V (k)20 = 1sinh (2rk(y — ) dy + <2 Tl

! [ vk n = 1 cosh (k1 = )

cosh (2mky) (Vi (k, 1) — 472KV, (k)
~"sinh (27k) ( Re - (Vc)t(k‘)) - (62)

—167k

We don’t need to separately write and control thequation because, by the continuity equation

(61) and using the fact that(k,0) = 0, we can writeV in terms ofu

Vi) = [ Vit =—2mki [ ulk. iy (63)

Introducing (63) in (62), and simplifying the resulting dibe integral by changing the order of
integration, we reduce (62) to an autonomous equation tbeergs the whole velocity field.
This equation is

1 2mk cosh (2mk(1 — k
up = — (—47°k*u + uyy) + 8wkiy(y — L)u + mh cosh (2k(1 — y)) uy (K, 0)

Re sinh (27k) Re
+8i /Oy {mk(2y — 1) — 2sinh 27k(y — 1)) — 2wk(2n — 1) cosh 27k(y — 1))} u(k,n)dn
- 1
+162’%/0 {cosh (27k(1 — n)) mk(2n — 1) sinh (27k(1 —n))} u(k,n)dn
cosh (27ky) (2mkiu,(k,1) 4+ 472KV, (k)
“sinh (27k) ( Re + (Vc)t(k)) ; (64)
with boundary conditions
u(k,0) = 0, (65)
u(k,1) = U.k). (66)
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Note that the relation betweér in (19) andu in (64) is thatY (k,y) = 2rkiu(k,y).
Now, we design the controller in two steps. First, we igeso that (64) has a strict-feedback

form in the sense previously defined:

2mki (uy (k, 0) — u, (k, 1)) — 472k>V,
Re

—167ki /1(277 — 1)V (k,n) cosh (2mk(1 — n)) dn. (67)
0

(Vo) =

This can be integrated and explicitly stated as a dynamitralber in the Laplace domain:

‘/c:

27ki {uy(s, k,0) — uy(s, k, 1)

252
S+47rk Re

Re

X -8 /1(27, — 1)V (s, k, ) cosh (2rk(1 — ) dn]| (68)
0

Control law (67) can be expressed in the time domain and palyspace as (23)—(25) and (27),
(28), by use of the convolution theorem of the Fourier tramst

IntroducingV, in (64) yields

1
u = o (—47°k*u + uyy) + 8mkiy(y — 1)u

+8i /Oy {mk(2y — 1) — 2sinh (27k(y — n)) — 27k(2n — 1) cosh (27k(y — 1))} u(k,n)dn

cosh (2mky) — cosh (27k(1 — y)) uy (k, 0).

sinh (27k) Re (69)

—27k

Equation (69) can be stabilized using the backsteppingniqak for parabolic partial integro-
differential equations [20]. Using backstepping, we mafor each wave numbern < |k| < M,

into the family of heat equations

o = % (AT + ) | (70)
a(k,0) = 0, (71)
alk,1) = 0, (72)
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where

y
o = U—/ K(k,y,ﬁ)u(t7k777)d777 (73)
0
Yy
u = a+/ L(k,y,n)a(t, k,n)dn, (74)
0

are respectively the direct and inverse transformatiore Karnel K is found to verify the
following equation

1 1
ﬁKyy = ﬁKnn + 8mikn(n — 1)K — 8i {nk(2y — 1) — sinh (27k(y — 1))

—27k(2n — 1) cosh (27k(y — n))} + 8i /y {rk(2§ — 1) — 2sinh (27k(§ — 7))
—2mk(2n — 1) cosh (27k(€ —n))} K (k, y, §)dS, (75)

a hyperbolic partial integro-differential equation (PIPi& the region7 = {(y,n) : 0 < n <
y < 1} with boundary conditions:

2Re cosh (27k) — 1

K(y,y) = —Tm'kyz(Qy —3) — 27k sinb (27k) (76)
K(y,0) = %{ cosh (2ky) — cosh (2k(1 — 1))
+ /y K(k,y, &) [cosh (27k(1 — €)) — cosh (27k€)] dg}. (77)
0

The equation can be transformed into an integral equatiocdiculating the kernel symbolically.
To do this, we transform the PIDE into an integral equatioth swive it explicitly via a successive
approximation series. The series definitionfofs (30)—(32). We skip the details, since we follow
[20] exactly, with the only difference that the kernel is quex valued, which does not change
the proof. In addition, using the estimates of the proof dmefact that the terms in the series
definition (31)—(32) ofK are analytic ink, it can be shown that the kernel itself is also analytic
as a complex function of, for any bounded: [18], so in particular, it will be analytic in the

annulusm < |k| < M.
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From the transformation (73) and the boundary conditior) (6B control law is

U, — / Kk, 1, n)ult, k. m)dn. (78)
0

Using the convolution theorem of the Fourier transform wéenvthe control law (78) back
in physical space. The resulting expressions is (22).

The equation for the inverse kernélin (74) is similar to the one of{ and enjoys similar

properties
1 1 , : .
@Lyy = @Lnn — 8miky(y — 1)L — 8i {wk(2y — 1) — 2sinh (27k(y — 1))

—2mk(2n — 1) cosh (2mk(y — 1))} — 81 /y {rk(2y — 1) — sinh (27k(y — &))

n

+2mk(2¢ — 1) cosh (2rk(y — €))} L(k, £, 7)dE, (79)

again a hyperbolic partial integro-differential equatiorthe regionZ with boundary conditions

_ 2Re . , cosh (27k) — 1
Ly,y) = —kay (2y — 3) — 27k sinh (27k) (80)
L(y,0) %{ cosh (2wky) — cosh (27k(1 — y)) } (81)

The equation can be transformed into an integral equati@ahcatculated via the successive
approximation series (45)—(46).
By using (63) and (73)—(74)/ can also be expressed in termscof

Z‘/y - foy K(ka Y, U)Vy(t, k‘, n)dﬁ
2k

V = —27ki /Oy [1 + /y L(l{:,n,a)da} a(t, k,n)dn. (83)

(82)

Since we can solve the heat equation (70)—(72) explichly,ibverse transformations (74) and
(83) yield the explicit solutions*(t, k,y) andV*(t, k,y), respectively.
Moreover, since (73)—(74) map (69) into (70), stability pedies of the velocity field follows

from those of thex system.
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Proposition 1: For anyk in the rangen < |k| < M, the equilibriumu(t, k,y) = V(t, k,y) =
0 of the system (52)—(60) with feedback control laws (67),) (iB8exponentially stable in the

L? sense, i.e.,
IVt I + [ult, B2, < Doemme (||V(0, k)2, + [Ju(0, B)|[2,) (84)
where D, is defined as:

Dy = (14+47*M?) max {(14||L||oo)*(1 + || K||s)?}. (85)

m<|k|<M

Proof: First, from thea equation (70) it is possible to get dif estimate

(0, k)|f3 (86)

__1
||C¥(t, k)||2ﬁ2 <e et P2

then employing the direct and inverse transformations<{(#3)) and (83) we get (84)—(85)m
Now, if we apply the feedback laws (67), (78) fal wave numbersn < |k| < M, then the
control laws in physical space are given by expressions—(28), where the inverse transform

integrals are truncated at= m, M in (26)—(28). If we define

Vit z,y) = / VRV (b, y)e e, (87)
Wt zy) = / (R )ult, k, y)e e, (88)

which are variables that contain all velocity field informoat for wave numbersn < |k| < M,
the following result holds.
Proposition 2: Consider equations (8)—(16) with control laws (22)—(23)ei the variables

u*(t,z,y) andV*(t,z,y) defined in (87)—(88) decay exponentially:

* * ;1 * *
IV*@)I72 + |l (OlI7: < Doezre’ ([[V*(0)][72 + [[u(0)][72) - (89)
Proof: The Fourier transform of the star variables is, by definitibve same as the Fourier

transform of the original variables fon < |k| < M, and zero otherwise. Therefore, applying
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Parseval’s formula and Proposition 1,
o0

V@O + w017 I/_ (V& R + [l (2, R)17) dk

[e.9]

_ /_°° X&) (VR + [[ult, k)| [2,) dk

[e.9]

< Dyt / N (k) (V0. k)2, + [[u0, K)][2,) dk

= Doe™ " (|[V*(O)[[72 + [[u”(0)I[72) , (%0)

proving (89). [ |

B. Uncontrolled wave number analysis

For the uncontrolled system (52)—(53), we define, for eacthe Lyapunov functional

1
Ak, ) = 5 (V& R)Ge + llult, B)I1Z.) (91)
The time derivative of\ is
, 8m2k? 1 ) ) ! uV +aV
A= =TT (I + IVMIE) +4 [ =)y (@2

where the bar denotes the complex conjugate, and the peessun has disappeared using
integration by parts and the continuity equation (61). Teeosd term in the first line of (92)
can also be bounded using the Poincare inequality, thankset®irichlet boundary condition
aty = 0:

A
=y (B)I122 = (Vo (B)IZ2 < =55 (93)

Consider now separately the two cases< m and|k| > M. In the first case, we can bound

the second line of (92) as

. 8m2k? 1
A< — A — A+ 4A 4
~  Re 2Re 2, (4)
so, if |k| > 1./, then
A< La (95)
~— 2Re
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Now, consider the case of small wave numbers. We bound thenddie of (92) using the

continuity equation (61)

. 82 k> 1
< _ _
A< === A — A+ 8rlk|A, (96)
so, if |k| < 5525, then
. 1
A< ——A. 97
S ~1Re (97)

We have just proved the following result:
Proposition 3: If m = 5= and M = 1,/%< then for both|k| < m and |k| > M the

equilibrium u(t, k,y) = V(t,k,y) = 0 of the uncontrolled system (52)—(60) is exponentially

stable in theL? sense:
IVt IR, + [Jut, B2, < emet ([V0, K12, + ||u(0, k)]I2,) . (98)
Since the decay rate in (98) is independentpthat allows us to claim the following result

for all uncontrolled wave numbers.

Proposition 4: The variables, (¢, z,y) andey (¢, z,y) defined as

eult,,y) = / T 1= () ult, k)P dk, (99)
ey (1,2, y) = / T 1= X(R) Vb ), (100)

decay exponentially as

lev®)I72 + llea®Il7s < e’ ([lev (0)][72 + leu(0)]13) - (101)

Proof: As in Proposition 2. [ |
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C. Analysis for the entire wave number range

Using (37)—(38),

VIR = / 1V (t, K] 2 d

1 [e'e)

— / / (VA(E k) + ev(t, k) didy
0 —00
1 ')

= // (V*)? + € + 2V*ey) dkdy
0 —00

= VRO + v ()], (102)

where we have used the fact tHat(t, k, y)ey (¢, k,y) = x(k)(1 — x(k))V (¢, k,y) and x(k)(1 —
x(k)) is zero for allk by its definition (29).

This shows that thé.> norm of V' is the sum of thel.? norms of V*(¢, k,y) and ey (¢, k, ).
The same holds fot. Therefore, Theorem 1 follows from Propositions 2 and 4.ilNpthat D,

as defined in (85) is greater than unity, we obtain the follmMméstimate of the decay:
IVOI[72 +[lu@®)]lfa < Doetre’ (J[V(0)|[72 + [|u(0)]]72) - (103)

The explicit solutions are (37)—(38), obtained by solvipleitly (70), using (74) and
(83), and applying the inverse Fourier transform, wherbaserror bounds are obtained from

Proposition 4.

VI. H! STABILITY

We define thel* norm of f(z,y) as

I e = A + [ fallZe + A2 (104)

We also define théf! norm of f(k,y) with respect to y as

10 = (L + 4m*K)F (R + [1fy (R) 17 (105)
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The H' norm as a function of: is related to the/Z! norm as

171 = [ 1Al (106)

A. H' stability for controlled wave numbers

For eachk, one has that

IfRIG < (54167 M2)||f, (F)II3 (107)

[eh
where we have used (105) and Poincare’s inequality. Thisggrohe equivalence, for ary,
of the ' norm of f(k,y) and theL? norm of justf,(k,y). Therefore, we only have to show
exponential decay fon, andV,,.

Due to the backstepping transformations (73), (74) and (83),

y
ay = uy—K(k‘,y,y)u—/ Ky(k,y,mu(t, k,n)dn, (108)
0
y
uy = ay+L(kuyuy)a+/ Ly<k7y7n)a(t7k7n)dn7 (109)
0
1 y
a = %Q/y—/o K(k,y,n)‘@(tk,n)dn), (110)
y
V, = —27?/{:@’(0(-1—/ L(k,y,n)a(t,k,n)dn), (1112)
0

and then it is possible to write the following estimates, efthare derived from simple estimates

on a anda, from (70)

lluy(t, )2, < Do~ |uy (0, k)| 2 (112)

2

1V, (t.B)[[2, < Doe™ 2| |V,,(0, k)||2 (113)

2

where

Dy = 5 max {<1+4||L||oo+4||Lyuoo>2<1+4\\Kuw+4uf<y\\m>2}. (114)

m<|k|<M
Using these estimates the following proposition can beedteggarding the velocity field at each

k in the controlled range.
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Proposition 5: For anyk in the rangen < |k| < M, the equilibriumu(t, k,y) = V(t, k,y) =
0 of the system (52)—(60) with feedback control laws (67),) (iB8exponentially stable in the

H'! sense

IVt )G + ut, WG, < Deesme ([[V(0, k)15 + [[u(0, k)][5.) (115

where Ds is defined as:

Dy = (5+167°M?*)max{Dy, D;}. (116)

Thanks to the same argument as in Proposition 2afbwave numbersn < |k| < M, the

following result holds.
Proposition 6: Consider equations (8)—(16) with control laws (22)—(23)ei the variables
u*(t,z,y) and V*(t, z,y) defined in (87)—(88) decay exponentially in th€ norm:

(117)

* * =2 * *
IOl + VOl < Daesme’ ([[u™(0)][7 + [[VF(0)|[7) -

B. H! stability for uncontrolled wave numbers

Following the same argument as in (91)—(97), a slightlyedéht bound can be derived that

keeps some of thé/! norm in (96)

. A Ay
< -
As S8Re 2Re’ (118)
where
1
Asr(t) = 5 (Il (8 R) 12, + 1V (2 R)I2.) (119)
DRAFT
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The time derivative ofAy can be bounded as

dAH _ /1 uyﬂyt + ﬂyuyt + Vy‘/yt —+ ‘/y‘_/ytd
dt ; 2 J
— _/1 “yyat+ayy“t+‘7yyvt+‘@yvtd
0 2 Y
1 Y@+ tyu+V,, V +V,, V
= g Ul [Vl 3) it [ et it bt ¥ S,
1 — — 1 1/ _ 1 = _
— V. V, Vv Vv
+27T/{2i/ UyyP . Uyypdy_/ yypy‘g yypydy_4/ (2y_ 1)uyy —2Fuyy dy
0 0 0
. o _ _
— Gy — Vi,V 4V, V
+&wn/’y@-nuwu Yyt e YV g (120)
0

where we have used integration by parts and the Dirichlebhary conditions of the uncontrolled
wave number range. Doing further integration by parts andguthe divergence free condition,

we can simplify a little the previous expression:

A 1 8272 1 aV —uV
T = g Ul = V) = 2 A = 16w [y — 1)y
— 1
_W , (121)
0

Only the last term remains to be estimated. Using (59)—(60) W. being zero for uncontrolled

wave number, the last term in (121) can be expresssed as

ViyP + Viyp
2

1 _ —1
_ pePwp B

5 (122)

0 0

This quantity can be estimated using the following lemma.
Lemma 1. If the pressure verifies the Poisson equation (54) with boundary condit(&®—

(60), then
1
< 16[[V (£, k)| 12.. (123)

Pt pyp
2 0

Proof: Multiplying equation (54) byp and integrating from zero to one, one gets:

1 1
~w Rt DI+ [ pmdy = [ 16mkicy - 1pvay (124)
0 0
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which integrated by parts, becomes

1

1
—ppy| = —ATK|p(t, k)7, — lIpy (8 B[, — / 16mki(2y — 1)pVdy.  (125)
0 0

Now using Young’s inequality one finally arrives at

1
—ppy| < 16]|V(tK)][3. (126)
0

For the other conjugate pair one proceeds analogously,abpleting the proof. [ |
Using the lemma, the time derivative &f; can be estimated as follows:

dAH < _8]{3271'2

il 212
T 7 Ay + 167°k“A + 16 ReA. (227)

We take the following Lyapunov functional
Ar = A + (1 4+ 64Re* + 472k* + 64Ren®k?)A, (128)
which is equivalent to the ' norm, whose definition in terms of and Ay is

ult, k)1 + [V ERIE = 21+ 472K A + 204 (129)

2
%
Computing the derivative of (128)

dAT AH 1 + 477'2]{52
<= — < —
dt = 2Re sRe LS ~hir, (130)

whered; is a (possible very conservative) positive constant, widepends on the Reynolds

number (butnot on k)

1
dy = —— 131
1 8D3R67 ( )
and where
D3 = max{1 + 64Re?, 1+ 16Re}. (132)

Deriving an estimate of th&/! norm from this estimate fak,, one reaches the following result.
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Proposition 7: If m = and M = 1,/ then for both|k| < m and |k| > M the

1
32w Re
equilibrium u(t, k,y) = V(t,k,y) = 0 of the uncontrolled system (52)—(60) is exponentially

stable in theH' sense:

V(R + lat, WG < Dse™® (VOB + w0, R)3,) . (183)
Since the decay rate in (133) is independent ofhat allows us to claim the following result
for all uncontrolled wave numbers.
Proposition 8: The variables, (¢, z,y) andey (¢, x,y) defined as in (99)—(100) decay expo-

nentially in the I norm as
leu®IFn + llev@IE < Dase™ ([lea(0)[[7n + [lev (0)][7n) - (134)

C. Analysis for all wave numbers

From Propositions 6 and 8, and using the same argument asiios®-C, the /' stability

part of Theorem 1 is proved. One gets that
a7 +IVOIE < Dae™* ([[u(0)|[7 + [V(O)[Fn) , (135)
WhereD4 = maX{Dg, Dg}
VII. H? STABILITY
The H? norm of f(z,y) is defined as
F Iz = (111 + [ faal T2 + || foullZ2 + [ fuul 22 (136)
We also define théZ? norm of f(k,y) with respect to y as
F ) = NF R 4+ 167K f(R)13, + 42K £, (k)13 + | fy(R)I[F.. (137)

The H?2 norm as a function of: is related to theZ2 norm as

A NG (138)
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A. H? stability for controlled wave numbers

Thanks to the backstepping transformations (73), (74) 88y (83), one calculates the second

order derivative of both, andV from o and its derivatives,

Qyy = Kk, y,y)u, — 2Ky (k,y,y) + K, (k,y,y))u
/ y(kyy,nu(t, k,n)dn, (139)

Uyy = oy + L(k,y,y)oy + (2Ly(k,y,y) + Ly(k,y,y))a
+/Oy L, (k,y,n)a(t, k,n)dn, (140)
o = %(V Kk, y,9)V, / Ky (kg )Vt K n)dn) (141)
Vyy = —27ki (ay+L(k,y,y)a—l—/0y Ly(k,y,n)a(t,k,n)dn). (142)

It is possible then to write the following estimates, whicle derived from simple estimates on

a, oy, and oy, from (70):

lu(t, k)|, < Dse 5w |u(0, k)[|%., (143)
IVt k)%, < Dee 55|V (0,k)|[%.. (144)

The positive constant®; and Dg are similarly defined to (114), only depending on the direct
and inverse kernels.

Using these estimates the following proposition can beedta¢garding the velocity field at
eachk in the controlled range.

Proposition 9: For anyk in the rangen < |k| < M, the equilibriumu(t, k,y) = V (¢, k,y) =
0 of the system (52)—(60) with feedback control laws (67),) (iB8exponentially stable in the

H? sense

IVt )G + lut, WG, < Dresme’ ([[V(0, k)17, + [[u(0, k)][%.) (145)
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where D; is defined as:

D; = max{Ds, Dg}. (146)
Thanks to the same argument as in Proposition 2, the follpwésult holds forall wave
numbersm < |k| < M.
Proposition 10: Consider equations (8)—(16) with control laws (23)—(22)ef the variables

u*(t,z,y) and V*(t, z,y) defined in (87)—(88) decay exponentially in th€ norm:

[l @) 32 + 1V )} < Dsestet ([[u(0)[[e + [[V(0)][32) - (147)

B. H? stability for uncontrolled wave numbers

For the uncontrolled wave number range, thanks to the Déidioundary conditions, th&>

norm ||u(t, k)|| 5= is equivalent to the norm

1
|u(t, k)%, +/ |y, (t, k, y) — 4m2K2u(t, k,y)| dy, (148)
0

i.e., to theH! norm plus thel? norm of the Laplacian, which we denote for shgtsu(k)|13,.

The proof of the norm equivalence is obtained integratingpasts,
2 ! 21.2 2
IO = [ ARl k) + )y
1
= / [167r4k;4|u|2(y, k) + |y (y, k) — 47%k? (uily, + ﬂuyy)] dy
0

= 16T KA k)] 2+ [ty ()12, + 8728y () 2 (149)

17

The next norm equivalence property is less obvious and we gtan the following lemma:
Lemma 2. Consideru andV verifying equations (52)—(53). Then, for the uncontroligave

number range, the normiul|%, 4 |[V[|%, is equivalent to the norm

lullF + VI + el (32 + [Vl 13- (150)
This means the Laplacian operator in norm (148) can be reglag a time derivative, when

considering thef/? norm of w andV together.
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Proof: Let us call

Av o=t WIZ. + Vit B, (151)
Agult, k)13, + |16V (8 F)||2,
A, — || A )||LR2|| KV, (152)
e

Substituting in (151) equations (52)—(53),

Ay = Ay + As, (153)

where A3 contains the following terms

Y 2nkiNup + AN VD ! Agutt + ARVV
Ay = _/ TIMORUD kprdy—27rki/ ay(1 - ) VY
0 Re 0 Re
! AV ! _
+/ 4(1 — 2y) ik dy — / (27rk:z'pﬂt + pyV}) dy
0 Re 0
1 1
+27ki / 4y(1 —y) (ue + vV;) dy + / 4(1 —2y) (V) dy. (154)
0 0
Now one can estimate this quantity:
1
[As] < 48(IuB)[IF + [V (R)I[F0) + 5 (A1 + As), (155)

in which we have used integration by parts, Young's inedqyadind Lemma 1. Therefore:

o + (VI < Ds(uuuip FIVIE, + Al), (156)
and

lulfo + (VI + A < D8(||u||§,2 ¥ ||V||§qz), (157)
where Dg = 97 max{Re?, 1/ Re*}. |

From Lemma 2 one get&? stability for the uncontrolled wave numbers. This is obggin
by considering the normju,[|3, + |[Vi||3, as a Lyapunov functional whose derivative can be

bounded as
d w3, +11VlIZ
dt 2

1 2 2
< —— (llwallZ + Vi) (158)
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which follows by taking the time derivative of (52)—(53) aapplying the same argument as for

L? stability. Thus,

et B2 + 1IVilt, B2, < emmt (Jfue(0, k)32 + [[Vi(0, B)]13) - (159)

Noting thatd; < 1/2Re and D; > 1, adding (159) to (133) and employing (156), (156) we
obtain the following result.

Proposition 11: If m = and M = L1,/ then for both|k| < m and|k| > M the

_1
32w Re
equilibrium u(t, k,y) = V(t,k,y) = 0 of the uncontrolled system (52)—(60) is exponentially

stable in theH? sense:

V() B + [t k)] 3 < DEDse™ (|[V(0, K)| % +[[u(0,K)[3) . (160)
Since the decay rate in (160) is independent ofhat allows us to claim the following result
for all uncontrolled wave numbers.
Proposition 12: The variables:, (¢, z,y) andey (¢, x, y) defined as in (99)—(100) decay expo-

nentially in the 7% norm as
lea(®)l17 + llev®IlF < DDse™" (|lea(0)|[7: + llev(0)][2) - (161)

C. Analysis for all wave numbers

From Propositions 10 and 12, and again by the same argument $ection V-C, theH?

stability part of Theorem 1 is proved. One gets that
@) [F + IVOIE: < Doe™ ™ ([[u(0)|[32 + [[V(0)][72) , (162)

WhereDg = maX{D7, D§D3}

VIIl. PROOF OFTHEOREM 2

Consider expressions (22)—(32).
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Points i and iv are deduced trivially from the fact that (28§ 425) are defined as convolutions,
and properties of the heat equation (24).
Point ii is verified if

/00 Ve(t,x)dz = 0. (163)

—00

From the definition of the Fourier transform uf,

Vet k=0) = / N Ve(t, x)dx. (164)

Therefore, as = 0 lies on the uncontrolled wave number range: < k < m, thenV_(t, k =
0) = 0 and the property is verified.
Point iii gives bounds on the decay rate of the kernels (2®)-(All the kernel definitions

are of the form

o0

Qe —E,y) = / (k) F (k) =0, (165)

—00

for somef analytic ink and smooth iny. Then, integrating by parts, we find that

max | f(k,y)]

T|x — &| m<|kl<Mm

Q(x —&,y)| < M max 'j—i(k,y)'+ 2

m|lx — &| m<|kl<M

C
= e (166)

showing that the kernels decay at least likéxr — £|. This bound is made explicit in Remark 2
for Qv and Q.

From the definition of the inverse Fourier transform (48)sistraightforward to show that if
the real part off (£, y) is even and the imaginary part ¢tk, y) is odd, then the resulting(z, v)
will always be real. Then, Point v can be proved showing thatftinctions under the integrals
in (26)—(28), which are inverse Fourier transforms, have giroperty. This is immediate for
(27) and (28). For (26), the property must be shown for theddek', defined by the sequence
(31)—(32). SincekK is the limit of the sequence, it will have the property if &l, share the

property. This can be proved by induction. FHap, the property is evident from its definition
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(31) and can be immediately verified. Far,, if the property is assumed fdk,,_;, then from
expression (32) and taking into account that the productvehédunctions is again even, the
product of odd functions is also even, and the product of @m éunction times an odd function
is odd, then it can be seen that, also shares the property. Therefore, the lidditwill have a
real inverse transform, and kern@l, will be real.

Point vi is deduced from the definition of the kernels (268)}(2s truncated Fourier inverse
integrals, which makes the kernels smooth:ing. Smoothness i is deduced from smoothness
of the functions under the integrals.

For Point vii, consider expression (22) and (26). Then,

VAR = [ Uittapds

- / ULt k)
_cj: 1 2
_ / (k) / K(k, Ln)u(t, y, k)dy| dk
—00 0
_ 2
< 2 —m) max (1Kl u)] (167)

and the result follows from Theorem 1.
On the other hand, fol, one has to use its dynamic equation (24)—(25), and a Lyapunov
functional consisting in half it4.2 norm. One then has, using Young’s inequality

d |Ve(k))? - —m2k? t K, 0) + Ju, |2 (t, k, 1)
dt 2 - Re Re

64 cosh (2 M) ||V (£, k)| 2 (168)

2

|Vc(k)‘2 4 |uy|2(

and supposing the control law is initialized at zero (see &&n), and using théZ? norm to

bound the second line of (168) one gets

t 7\'27’7L2 (% 7—7 k 2A
Vo(t, k)2 < / e Gy [10% + 64 cosh (2r M) ||V (7, k)||2, |dr.  (169)
0
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Integrating ink

5 b2ty [ ()] e 2
NVe@®)]l7: < i e Re 107 + 64 cosh (2 M) ||V (7)||72 |dm,  (170)

and then the result follows from Theorem 1.

For Point viii, consider thgth spatial derivative ot/. and calculate itd., spatial norm

2 0o d] 2
' = / <—.Uc(t, x)) dx
2 oo \ X7

_ / 2k |2 (UL (t, k) 2dk

— 00

47

dui

Ue

< 2nM)?||U|[72, (171)
so the result folU,. follows from Point vii. We proceed similarly fov,, thus proving Point viii.

IX. DISCUSSION

The result was presented in 2D for ease of notation. SincelzDreels are spatially invariant
in both streamwise and spanwise direction, it is possibkxtend the design to 3D, by applying
the Fourier transform in both invariant directions and deoling the same steps, with some
refinements which include actuation of the spanwise velatithe wall. The result also trivially
extends to periodic channel flow of arbitrary periodic boxesi2D or 3D; it only requires
substitution of the Fourier transform by Fourier serieghvall other expressions still holding.

Our control laws are presented with full state feedback. élex, for parabolic PDEs, in [21]
we developed an observer design methodology, which is dubktbackstepping control method-
ology in [20], which we extended to Navier-Stokes equatibeee to solve the state feedback
stabilization problem for the channel flow. Extending the@tver concepts in [21] to the Navier-
Stokes PDEs has allowed us to also develop an observer fohdmnel flow, which is presented
in the conference paper [23]. While the observer is of irstieire its own right (one can use it to

estimate turbulent flows without controlling/relaminanmig them), the state feedback controller in
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the present paper and the observer in [23] can be combinedmoutput feedback compensator,
which uses measurements Bfz,0) andw,(x,0) only, and the actuation of (z, 1), u(x,1).

Our controller requires actuation of both velocity computseat the wall. An assumption
made throughout the flow control literature is that the baumd/alues of velocity are actuated
through micro-jet actuators that perform “zero-mean” blayvand suction. Effective actuation
of wall velocity at angles as low &8 relative to the wall has been demonstrated experimentally
using differentially actuated pairs of jets.

Unlike in our earlier publications [1], [5] where we incluldONS simulation results that
demonstrated relaminarization with our controllers, wendb present simulation results in this
paper. In another publication, to be submitted to a fluid raads journal, we will present
an extension to 3D, without th&*', H? stability estimates and without the explicit closed-loop
Navier-Stokes solutions (these two issues extend in arratreghtforward manner to 3D because
we deal with linearized Navier-Stokes equations), but withulations results included. The 3D
controller will include actuation in the spanwise directiorhe numerical tests will focus on
turbulence-critical issues like the behavior of the caligroat &, = 0 for moderate-to-large:.

and other issues which come up only in 3D.
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