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Abstract

We present a formula for a boundary control law which stabilizes the parabolic profile of an infinite

channel flow, which is linearly unstable for high Reynolds numbers. Also known as the Poisseuille

flow, this problem is frequently cited as a paradigm for transition to turbulence, whose stabilization for

arbitrary Reynolds numbers, without using discretization, has so far been an open problem. Our result

achieves exponential stability in theL2, H
1 andH

2 norms, for the linearized Navier-Stokes equations,

guaranteeing local stability for the nonlinear system. Explicit solutions are obtained for the closed loop

system. This is the first time explicit formulae are producedfor solutions of the Navier-Stokes equations.

The result is presented for the 2D case for clarity of exposition. An extension to 3D is available and

will be presented in a future publication.
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I. INTRODUCTION

We present an explicit boundary control law which stabilizes a benchmark 2D linearized

Navier-Stokes system. Despite the deceptive simplicity ofthe channel flow geometry, there is a

number of complex issues underlying this problem [13], making it extremely hard to solve.

Controllability and stabilizability results for the Navier-Stokes equations are available for

general geometries; for example, see [9], [10], [12] and references therein. However, these results

do not provide the means of computing a feedback controller.

Many efforts in the design of feedback controllers for the Navier-Stokes system employ in-

domain actuation, using optimal control methods [7] or model reduction techniques [4]. For

boundary feedback control, optimal control theory has alsobeen developed [16], and specialized

to specific geometries, like cylinder wake [15]. There are also new techniques arising for specific

flow control problems like separation control [3].

Optimal control has so far been the most successful technique for addressing channel flow

stabilization [11], in a periodic setting, by using a discretized version of the equations and

employing high-dimensional algebraic Riccati equations for computation of gains. The com-

putational complexity of this approach is formidable if a very fine grid is necessary in the

discretizations, for example if the Reynolds number is verylarge. Using a Lyapunov/passivity

approach, another control design [1], [5] was developed forstabilization of the (periodic) channel

flow; the design was simple and explicit and did not rely on discretization or linearization, but

its theory was restricted to low Reynolds numbers though in simulations the approach was

successful at high Reynolds numbers, above the linear instability threshold.

The approach we present in this paper is the first result that provides an explicit control law

(with symbolically computed gains) for stabilization at anarbitrarily high Reynolds number

in non-discretized Navier-Stokes equations, and it is applicable to both infinite and periodic
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channels with arbitrary periodic box size, and also extendsto 3D. Thanks to the explicitness

of the controller, we are able to obtain approximate analytical solutions for the Navier-Stokes

equations. Exponential stability in theL2, H1 andH2 norms is proved for the linearized Stokes

system around the Pouiseuille profile, therefore local stability is achieved for the nonlinear

Navier-Stokes system. We do not prove well-posedness, however, with the high-order Sobolev

estimates that we derive it is certainly possible, though lengthy and not trivial.

The method we use for solving the stabilization problem is based on the recently developed

backstepping technique for parabolic systems [20], which has been successfully applied to flow

control problems, for example to the vortex shedding problem [2] and to feedback stabilization

of an unstable convection loop [24].

We start the paper by stating, in Section II, the mathematical model, which consists of

the linearized Navier-Stokes equations for the velocity fluctuation around the (Pouisseuille)

equilibrium profile. In Section III, we introduce the control law that stabilizes the equilibrium

profile. Explicit solutions for the closed loop system are then stated in Section IV along with the

main results of the paper. Sections V, VI, and VII deal with the proof of, respectively,L2, H1 and

H2 stability of the closed loop system. A Fourier transform approach allows separate analysis

for each wave number. For certain wave numbers, a normal velocity controller puts the system

into a form where a linear Volterra operator, combined with boundary feedback, can transform

the original normal velocity PDE into a stable heat equation. For the rest of wave numbers

the system is proved to be open loop exponentially stable, and is left uncontrolled. These two

results are combined to prove stability of the closed loop system for all wave numbers and in

the physical space. Section VIII is devoted to study and prove some properties of the control

laws. In Section IX, we finish the paper with a discussion of the results.
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Fig. 1. 2D channel flow and equilibrium profile. Actuation is on the top wall.

II. M ODEL

Consider a 2D incompressible channel flow evolving in a semi-infinite rectangle(x, y) ∈

(−∞,∞) × [0, 1] as in Figure 1. The dimensionless velocity field is governed by the Navier-

Stokes equations

Ut =
1

Re
(Uxx + Uyy) − UUx − V Uy − Px , (1)

Vt =
1

Re
(Vxx + Vyy) − UVx − V Vy − Py , (2)

and the continuity equation

Ux + Vy = 0, (3)

whereU denotes the streamwise velocity,V the wall-normal velocity,P the pressure, andRe

is the Reynolds number. The boundary conditions for the velocity field are the no-penetration,

no-slip boundary conditions for the uncontrolled case, i.e., V (x, 0) = V (x, 1) = U(x, 0) =

U(x, 1) = 0. Instead of using (3) we derive a Poisson equation thatP verifies, combining (1),

(2) and (3)

Pxx + Pyy = −2(Vy)
2 − 2VxUy, (4)

with boundary conditionsPy(x, 0) = (1/Re)Vyy(x, 0) and Py(x, 1) = (1/Re)Vyy(x, 1), which

are obtained evaluating (2) aty = 0, 1.
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The equilibrium solution of (1)–(3) is the parabolic Poisseuille profile

Ue = 4y(1 − y), (5)

V e = 0, (6)

P e = P0 −
8

Re
x, (7)

shown in Figure 1. This equilibrium is unstable for high Reynolds numbers [19]. Defining the

fluctuation variablesu = U −Ue andp = P −P e, and linearizing around the equilibrium profile

(5)–(7), the plant equations become the Stokes equations

ut =
1

Re
(uxx + uyy) + 4y(y − 1)ux + 4(2y − 1)V − px, (8)

Vt =
1

Re
(Vxx + Vyy) + 4y(y − 1)Vx − py, (9)

pxx + pyy = 8(2y − 1)Vx, (10)

with boundary conditions

u(x, 0) = 0, (11)

u(x, 1) = Uc(x), (12)

V (x, 0) = 0, (13)

V (x, 1) = Vc(x), (14)

py(x, 0) =
Vyy(x, 0)

Re
, (15)

py(x, 1) =
Vyy(x, 1) + (Vc)xx(x)

Re
− (Vc)t(x). (16)

The continuity equation is still verified

ux + Vy = 0. (17)

We have added in (12) and (14) the actuation variablesUc(x) and Vc(x), respectively for

streamwise and normal velocity boundary control. The actuators are placed along the top wall,
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y = 1, and we assume they can be independently actuated for allx ∈ R. No actuation is done

inside the channel or at the bottom wall.

Taking Laplacian in equation (9) and using (10), we get an autonomous equation for the

normal velocity, the well-known Orr-Sommerfeld equation,

△Vt =
1

Re
△2V + 4y(y − 1)△Vx − 8Vx, (18)

with boundary conditions (13)–(14), as well asVy(x, 0) = 0, Vy(x, 1) = −(Uc)x, derived from

(11)–(12) and (17). This equation is numerically studied inhydrodynamic theory to determine

stability of the channel flow [17].

Defining Y = −Vy, it is possible to partially solve (18) and obtain an evolution equation for

Y ,

Yt =
1

Re
(Yxx + Yyy) + 4y(y − 1)Yx +

∫ y

0

∫ ∞

−∞

Y (ξ, η)

∫ ∞

−∞

16πke2πik(x−ξ)

× [πk(2y − 1) − 2 sinh (2πk(y − η)) 2πk(2η − 1) cosh (2πk(y − η))] dkdξdη

+

∫ 1

0

∫ ∞

−∞

Y (ξ, η)

∫ ∞

−∞

32πke2πik(x−ξ) cosh (2πky)

sinh (2πk)
[cosh (2πk(1 − η))

+πk(2η − 1) sinh (2πk(1 − η))] dkdξdη

+

∫ ∞

−∞

∫ ∞

−∞

(

Yy(ξ, 1) − (Vc)xx(ξ)

Re
+ (Vc)t(ξ)

)

2πke2πik(x−ξ) cosh (2πky)

sinh (2πk)
dkdξ

−

∫ ∞

−∞

∫ ∞

−∞

Yy(ξ, 0)

Re
2πke2πik(x−ξ) cosh (2πk(1 − y))

sinh (2πk)
dkdξ, (19)

with boundary conditionsYy(x, 0) = 0 andY (x, 1) = (Uc)x. Equation (19) governs the channel

flow, since fromY and using (17), we recover both components of the velocity field:

V (x, y) = −

∫ y

0

Y (x, η)dη, (20)

u(x, y) =

∫ x

−∞

Y (ξ, y)dξ. (21)

Equation (19) displays the full complexity of the Navier-Stokes dynamics, which the PDE

system (8)–(10) conceals through the presence of the pressure equation (10), and the Orr-
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Sommerfeld equation (18) conceals through the use of fourthorder derivatives. Besides being

unstable (for high Reynolds numbers), theY system incorporates (on its right-hand side) the

components ofY (x, y) from everywhere in the domain. This is the main source of difficulty

for both controlling and solving the Navier-Stokes equations. A perturbation somewhere in the

flow is instantaneously felt everywhere—a consequence of the incompressible nature of the flow.

Our approach to overcoming this obstacle is to use one of the two control variables (normal

velocityVc(x), which is incorporated explicitly inside the equation) to prevent perturbations from

propagating in the direction from the controlled boundary towards the uncontrolled boundary.

This is a sort of “spatial causality” ony, which in the nonlinear control literature is referred to

as the ‘strict-feedback structure’ [14].

III. CONTROLLER

The explicit control law consists of two parts—the normal velocity controllerVc(x) and the

streamwise velocity controllerUc(x). Vc(x) makes the integral operator in the third to fifth lines of

(19) spatially causal iny,1 which is a necessary structure for the application of a “backstepping”

boundary controller for stabilization of spatially causalpartial integro-differential equations [20].

Uc(x) is a backstepping controller which stabilizes the spatially causal structure imposed by

Vc(x). The expressions for the control laws are

Uc(t, x) =

∫ 1

0

∫ ∞

−∞

Qu(x − ξ, η)u(t, ξ, η)dξdη, (22)

Vc(t, x) = h(t, x), (23)

whereh verifies the equation

ht = hxx + g(t, x), (24)

1The first, second and sixth lines are already spatially causal in y.
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where

g =

∫ 1

0

∫ ∞

−∞

QV (x − ξ, η)V (t, ξ, η)dξdη

+

∫ ∞

−∞

Q0(x − ξ) (uy(t, ξ, 0) − uy(t, ξ, 1))dξ, (25)

and the kernelsQu, QV andQ0 are defined as

Qu =

∫ ∞

−∞

χ(k)K(k, 1, η)e2πik(x−ξ)dk, (26)

QV =

∫ ∞

−∞

χ(k)16πki(2η − 1) cosh (2πk(1 − η)) e2πik(x−ξ)dk, (27)

Q0 =

∫ ∞

−∞

χ(k)
2πki

Re
e2πik(x−ξ)dk. (28)

In expressions (26)–(28),χ(k) is a truncating function in the wave number space whose

definition is

χ(k) =







1, m < |k| < M

0, otherwise
(29)

wherem andM are respectively the low and high cut-off wave numbers, two design parameters

which can be conservatively chosen asm ≤ 1
32πRe

and M ≥ 1
π

√

Re
2

. The functionK(k, y, η)

appearing in (26) is a (complex valued) gain kernel defined as

K(k, y, η) = lim
n→∞

Kn(k, y, η), (30)
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whereKn is recursively defined as2

K0 = −2πk
cosh (2πk(1 − y + η)) − cosh (2πk(y − η))

sinh (2πk)
+ 4iReη(η − 1) sinh (2πk(y − η))

−
Re

3
πikη

(

21y2 − 6y(3 + 4η) + η(12 + 7η)
)

− 6ηi
Re

πk
(1 − cosh (2πk(y − η))) (31)

Kn = Kn−1 − 4πkiRe

∫ y+η

y−η

∫ y−η

0

∫ δ

−δ

{

sinh (πk(ξ + δ))

πk
− (2ξ − 1)

+2(γ − δ − 1) cosh (πk(ξ + δ))

}

Kn−1

(

k,
γ + δ

2
,
γ + ξ

2

)

dξdδdγ

+
Re

2
πik

∫ y+η

y−η

∫ y−η

0

(γ − δ)(γ − δ − 2)Kn−1

(

k,
γ + δ

2
,
γ − δ

2

)

dδdγ

+2πk

∫ y−η

0

cosh (2πk(1 − δ)) − cosh (2πkδ)

sinh (2πk)
Kn−1 (k, y − η, δ) dδ. (32)

The terms of this series can be computed symbolically as theyonly involve integration of

polynomials and exponentials. In implementation, a few terms are sufficient to obtain a highly

accurate approximation because the series is rapidly convergent [20].

Remark 1: (23) is a dynamic controller whose magnitude is determined by the variableh(t, x),

which evolves according to (24). We use an initial conditionh(0, x) ≡ 0. The stabilization result

remains valid forh(0, x) 6= 0, however it involve additional routine effort to account for the

exponentially stable effect of the compensator internal dynamics (which are of heat equation

type).

Remark 2: Control kernels (27) and (28) can be explicitly expressed as

QV (ξ, η) = 8(2η − 1)
RV (ξ, η, M) − RV (ξ, η, m)

ξ2 + (1 − η)2
(33)

Q0(ξ, η) =
R0(ξ, η, M) − R0(ξ, η, m)

Re ξ
, (34)

2This infinite sequence is convergent, smooth, and uniformlybounded over(y, η) ∈ [0, 1]2, and analytic ink.
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whereRV (ξ, η, k) andR0(ξ, η, k) are defined

RV =
((1 − η)2− ξ2)sin(2πkξ)cosh(2πk(1 − η))

2π(ξ2 + (1 − η)2)
+ kξ cos (2πkξ) cosh (2πk(1 − η))

−
ξ(1 − η) cos (2πkξ) sinh (2πk(1 − η))

π(ξ2 + (1 − η)2)
− k(1 − η) sin(2πkξ) sinh(2πk(1 − η)) (35)

R0 = k cos (2πkξ) −
sin (2πkξ)

2πξ
. (36)

IV. M AIN RESULTS

Due to the explicit form of the controller, the solution of the closed loop system is also

obtained in the explicit form,

u(t, x, y) = u∗(t, x, y) + ǫu(t, x, y), (37)

V (t, x, y) = V ∗(t, x, y) + ǫV (t, x, y), (38)

where

u∗ = 2
∞

∑

j=1

∫ ∞

−∞

∫ ∞

−∞

χ(k)e−t
4k2π2

+π2j2

Re
+2πik(x−ξ)

[

sin (πjy) +

∫ y

0

L(k, y, η) sin (πjη) dη

]

×

∫ 1

0

[

sin (πjη) −

∫ 1

η

K(k, σ, η) sin (πjσ) dσ

]

u(0, ξ, η)dηdξdk , (39)

V ∗ = −2
∞

∑

j=1

∫ ∞

−∞

∫ ∞

−∞

χ(k)e−t
4k2π2

+π2j2

Re
+2πik(x−ξ)

[
∫ y

0

(
∫ y

η

L(k, σ, η)dσ

)

sin (πjη) dη

+
1 − cos (πjy)

πj

]
∫ 1

0

[

πj cos (πjη) + K(k, η, η) sin (πjη) −

∫ 1

η

Kη(k, σ, η)

× sin (πjσ) dσ

]

V (0, ξ, η)dηdξdk. (40)

The variablesǫu(t, x, y) and ǫV (t, x, y) represent the error of approximation of the velocity

field and are bounded in the following way

||ǫu(t)||
2
L2 + ||ǫV (t)||2L2 ≤ e−

Re
4

t
(

||ǫu(0)||2L2 + ||ǫV (0)||2L2

)

, (41)
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where bothǫu(0, x, y) and ǫV (0, x, y) can be written in terms of the initial conditions of the

velocity field as

ǫu(0, x, y) = u(0, x, y)−

∫ ∞

−∞

sin (2πMξ) − sin (2πmξ)

πξ
u(0, x− ξ, y)dξ, (42)

ǫV (0, x, y) = V (0, x, y) −

∫ ∞

−∞

sin (2πMξ) − sin (2πmξ)

πξ
V (0, x − ξ, y)dξ, (43)

The bound on the errors is proportional to the initial kinetic energy ofǫu and ǫV , which, as

made explicit in the expressions (42)–(43), is in turn proportional to the kinetic energy ofu and

V at very small and very large length scales (the integral thatwe are substacting from the initial

conditions represents the intermediate length scale content), and decays exponentially. Therefore,

this initial energy will typically be a very small fraction of the overall kinetic energy, making

the errorsǫu and ǫV very small in comparison withu∗ andV ∗ respectively.

The kernelL in (39) is defined as a convergent, smooth sequence of fuctions

L(k, y, η) = lim
n→∞

Ln(k, y, η), (44)

whose terms are recursively defined as

L0 = K0, (45)

Ln = Ln−1 + 4iRe

∫ y+η

y−η

∫ y−η

0

∫ δ

−δ

{2πk(γ + ξ − 1) × cosh (πk(ξ − δ)) + sinh (πk(ξ − δ))

−πk(2δ − 1)}Ln−1

(

k,
γ + ξ

2
,
γ − δ

2

)

dξdδdγ

−
Re

2
πik

∫ y+η

y−η

∫ y−η

0

(γ + δ)(γ + δ − 2)Ln−1

(

k,
γ + δ

2
,
γ − δ

2

)

dδdγ . (46)

Control laws (22)–(32) guarantee the following results.

Theorem 1: The equilibriumu(x, y) ≡ V (x, y) ≡ 0 of system (8)–(16), (22)–(32) is expo-

nentially stable in theL2, H1 andH2 sense. Moreover, the solutions foru(t, x, y) andV (t, x, y)

are given explicitly by (37)–(46).
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Theorem 2: Control lawsUc, Vc and kernelsQu, QV , Q0, as defined by (22)–(32), have the

following properties:

i) Uc andVc are spatially invariant inx.

ii)
∫ ∞

−∞
Vc(t, ξ)dξ = 0 (zero net flux).

iii) |Q| ≤ C/|x − ξ|, for Q = Qu, QV , Q0.

iv) Uc andVc are smooth functions ofx.

v) Qu, QV , Q0 are real valued.

vi) Qu, QV , Q0 are smooth in their arguments.

vii) Uc andVc areL2 functions ofx.

viii) All spatial derivatives ofUc andVc areL2 function of x.

Remark 3: Theorem 1, stated for the linearized equations (8)–(9), is valid for the nonlinear

equations (1)–(2) in alocal sense, i.e., provided that the initial data are sufficientlyclose (in the

appropiate norm) to the equilibrium (5)–(7).

Remark 4: By Sobolev’s Embedding Theorem [22],H2 stability suffices to establish conti-

nuity of the velocity field when the domain is bounded. The argument is not applicable to the

infinite channel, but it holds if the channel is periodic, a setting for which our results extend

trivially.

Remark 5: Theorem 2 ensures that the control laws are well behaved. Property i, spatial

invariance, means that the feedback operators commute withtranslations in thex direction [6],

which is crucial for implementation. Property ii ensures that we do not violate the physical

restriction of zero net flux, which is derived from mass conservation. Property iii allows to

truncate the integrals with respect toξ to the vicinity ofx, which allows sensing to be restricted

just to a neighborhood (in thex direction) of the actuator. Properties iv to vi ensure that the

control laws are well defined. Properties vii and viii prove finiteness of energy of the controllers

and their spatial derivatives.
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The next sections are devoted to proving these theorems.

V. L2 STABILITY AND EXPLICIT SOLUTIONS

As common for infinite channels, we use a Fourier transform inx. The transform pair (direct

and inverse transform) has the following definition:

f(k, y) =

∫ ∞

−∞

f(x, y)e−2πikxdx, (47)

f(x, y) =

∫ ∞

−∞

f(k, y)e2πikxdk. (48)

Note that we use the same symbolf for both the originalf(x, y) and the imagef(k, y). In

hydrodynamics,k is referred to as the “wave number.”

One property of the Fourier transform is that theL2 norm is the same in Fourier space as in

physical space, i.e.,

||f ||2L2=

∫ 1

0

∫ ∞

−∞

f 2(k, y)dkdy =

∫ 1

0

∫ ∞

−∞

f 2(x, y)dxdy, (49)

allowing us to deriveL2 exponential stability in physical space from the same property in Fourier

space. This result is called Parseval’s formula in the literature [8].

We also define theL2 norm of f(k, y) with respect toy:

||f(k)||2
L̂2 =

∫ 1

0

|f(k, y)|2dy. (50)

The L̂2 norm as a function ofk is related to theL2 norm as

||f ||2L2 =

∫ ∞

−∞

||f(k)||2
L̂2dk (51)

Equations (8)–(10) written in the Fourier domain are

ut =
−4π2k2u + uyy

Re
+ 8kπiy(y − 1)u + 4(2y − 1)V − 2πikp, (52)

Vt =
−4π2k2V + Vyy

Re
+ 8πkiy(y − 1)V − py, (53)

−4π2k2p + pyy = 16πki(2y − 1)V, (54)
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with boundary conditions

u(k, 0) = 0, (55)

u(k, 1) = Uc(k), (56)

V (k, 0) = 0, (57)

V (k, 1) = Vc(k), (58)

py(k, 0) =
Vyy(k, 0)

Re
, (59)

py(k, 1) =
Vyy(k, 1) − 4π2k2Vc(k)

Re
− (Vc)t(k), (60)

and the continuity equation (17) is now

2πkiu(k, y) + Vy(k, y) = 0. (61)

Thanks to linearity and spatial invariance, there is no coupling between different wave numbers.

This allows us to consider the equations for each wave numberindependently. Then, the main

idea behind the design of the controller is to consider two different cases depending on the wave

numberk. For wave numbersm < |k| < M , which we will refer to ascontrolled wave numbers,

we will design a backstepping controller that achieves stabilization, whereas for wave numbers

in the range|k| ≥ M or in the range|k| ≤ m, which we will call uncontrolled wave numbers,

the system is left without control but is exponentially stable. This is a well-known fact from

hydrodynamic stability theory [19].

Estimates ofm andM are found in the paper based on Lyapunov analysis and allow usto use

feedback for only the wave numbersm < |k| < M . This is crucial because feedback over the

entire infinite range ofk’s would not be convergent. The truncations atk = m, M are truncations

in Fourier space which do not result in a discontinuity inx.

We now analyze equations (52)–(54) in detail, for both controlled and uncontrolled wave

numbers.
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A. Controlled wave numbers

For m < |k| < M we first solve (54) in order to eliminate the pressure. The equation can be

easily solved since it is just an ODE iny, for eachk. Introducing its solution into (52), we are

left with

ut =
1

Re

(

−4π2k2u + uyy

)

+ 8πkiy(y − 1)u + 4(2y − 1)V

+16πk

∫ y

0

V (k, η)(2η − 1) sinh (2πk(y − η)) dη + i
cosh (2πk(1 − y))

sinh (2πk)

Vyy(k, 0)

Re

−16πk
cosh (2πky)

sinh (2πk)

∫ 1

0

V (k, η)(2η − 1) cosh (2πk(1 − η)) dη

−i
cosh (2πky)

sinh (2πk)

(

Vyy(k, 1) − 4π2k2Vc(k)

Re
− (Vc)t(k)

)

. (62)

We don’t need to separately write and control theV equation because, by the continuity equation

(61) and using the fact thatV (k, 0) = 0, we can writeV in terms ofu

V (k, y) =

∫ y

0

Vy(k, η)dη = −2πki

∫ y

0

u(k, η)dη. (63)

Introducing (63) in (62), and simplifying the resulting double integral by changing the order of

integration, we reduce (62) to an autonomous equation that governs the whole velocity field.

This equation is

ut =
1

Re

(

−4π2k2u + uyy

)

+ 8πkiy(y − 1)u +
2πk cosh (2πk(1 − y))

sinh (2πk)

uy(k, 0)

Re

+8i

∫ y

0

{πk(2y − 1) − 2 sinh (2πk(y − η)) − 2πk(2η − 1) cosh (2πk(y − η))} u(k, η)dη

+16i
cosh (2πky)

sinh (2πk)

∫ 1

0

{cosh (2πk(1 − η))πk(2η − 1) sinh (2πk(1 − η))} u(k, η)dη

+i
cosh (2πky)

sinh (2πk)

(

2πkiuy(k, 1) + 4π2k2Vc(k)

Re
+ (Vc)t(k)

)

, (64)

with boundary conditions

u(k, 0) = 0, (65)

u(k, 1) = Uc(k). (66)
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Note that the relation betweenY in (19) andu in (64) is thatY (k, y) = 2πkiu(k, y).

Now, we design the controller in two steps. First, we setVc so that (64) has a strict-feedback

form in the sense previously defined:

(Vc)t =
2πki (uy(k, 0) − uy(k, 1)) − 4π2k2Vc

Re

−16πki

∫ 1

0

(2η − 1)V (k, η) cosh (2πk(1 − η)) dη. (67)

This can be integrated and explicitly stated as a dynamic controller in the Laplace domain:

Vc =
2πki

s + 4π2k2

Re

[

uy(s, k, 0) − uy(s, k, 1)

Re

× −8

∫ 1

0

(2η − 1)V (s, k, η) cosh (2πk(1 − η)) dη

]

. (68)

Control law (67) can be expressed in the time domain and physical space as (23)–(25) and (27),

(28), by use of the convolution theorem of the Fourier transform.

IntroducingVc in (64) yields

ut =
1

Re

(

−4π2k2u + uyy

)

+ 8πkiy(y − 1)u

+8i

∫ y

0

{πk(2y − 1) − 2 sinh (2πk(y − η)) − 2πk(2η − 1) cosh (2πk(y − η))} u(k, η)dη

−2πk
cosh (2πky) − cosh (2πk(1 − y))

sinh (2πk)

uy(k, 0)

Re
. (69)

Equation (69) can be stabilized using the backstepping technique for parabolic partial integro-

differential equations [20]. Using backstepping, we mapu, for each wave numberm < |k| < M ,

into the family of heat equations

αt =
1

Re

(

−4π2k2α + αyy

)

, (70)

α(k, 0) = 0 , (71)

α(k, 1) = 0 , (72)
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where

α = u −

∫ y

0

K(k, y, η)u(t, k, η)dη , (73)

u = α +

∫ y

0

L(k, y, η)α(t, k, η)dη , (74)

are respectively the direct and inverse transformation. The kernel K is found to verify the

following equation

1

Re
Kyy =

1

Re
Kηη + 8πikη(η − 1)K − 8i {πk(2y − 1) − sinh (2πk(y − η))

−2πk(2η − 1) cosh (2πk(y − η))} + 8i

∫ y

η

{πk(2ξ − 1) − 2 sinh (2πk(ξ − η))

−2πk(2η − 1) cosh (2πk(ξ − η))}K(k, y, ξ)dξ, (75)

a hyperbolic partial integro-differential equation (PIDE) in the regionT = {(y, η) : 0 ≤ η ≤

y ≤ 1} with boundary conditions:

K(y, y) = −
2Re

3
πiky2(2y − 3) − 2πk

cosh (2πk) − 1

sinh (2πk)
, (76)

K(y, 0) =
2πk

sinh (2πk)

{

cosh (2πky) − cosh (2πk(1 − y))

+

∫ y

0

K(k, y, ξ) [cosh (2πk(1 − ξ)) − cosh (2πkξ)] dξ

}

. (77)

The equation can be transformed into an integral equation for calculating the kernel symbolically.

To do this, we transform the PIDE into an integral equation and solve it explicitly via a successive

approximation series. The series definition ofK is (30)–(32). We skip the details, since we follow

[20] exactly, with the only difference that the kernel is complex valued, which does not change

the proof. In addition, using the estimates of the proof and the fact that the terms in the series

definition (31)–(32) ofK are analytic ink, it can be shown that the kernel itself is also analytic

as a complex function ofk, for any boundedk [18], so in particular, it will be analytic in the

annulusm < |k| < M .
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From the transformation (73) and the boundary condition (65) the control law is

Uc =

∫ 1

0

K(k, 1, η)u(t, k, η)dη. (78)

Using the convolution theorem of the Fourier transform we write the control law (78) back

in physical space. The resulting expressions is (22).

The equation for the inverse kernelL in (74) is similar to the one ofK and enjoys similar

properties

1

Re
Lyy =

1

Re
Lηη − 8πiky(y − 1)L − 8i {πk(2y − 1) − 2 sinh (2πk(y − η))

−2πk(2η − 1) cosh (2πk(y − η))} − 8i

∫ y

η

{πk(2y − 1) − sinh (2πk(y − ξ))

+2πk(2ξ − 1) cosh (2πk(y − ξ))}L(k, ξ, η)dξ, (79)

again a hyperbolic partial integro-differential equationin the regionT with boundary conditions

L(y, y) = −
2Re

3
πiky2(2y − 3) − 2πk

cosh (2πk) − 1

sinh (2πk)
, (80)

L(y, 0) =
2πk

sinh (2πk)

{

cosh (2πky) − cosh (2πk(1 − y))

}

. (81)

The equation can be transformed into an integral equation and calculated via the successive

approximation series (45)–(46).

By using (63) and (73)–(74),V can also be expressed in terms ofα

α = i
Vy −

∫ y

0
K(k, y, η)Vy(t, k, η)dη

2πk
(82)

V = −2πki

∫ y

0

[

1 +

∫ y

η

L(k, η, σ)dσ

]

α(t, k, η)dη . (83)

Since we can solve the heat equation (70)–(72) explicitly, the inverse transformations (74) and

(83) yield the explicit solutionsu∗(t, k, y) andV ∗(t, k, y), respectively.

Moreover, since (73)–(74) map (69) into (70), stability properties of the velocity field follows

from those of theα system.
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Proposition 1: For anyk in the rangem < |k| < M , the equilibriumu(t, k, y) ≡ V (t, k, y) ≡

0 of the system (52)–(60) with feedback control laws (67), (78) is exponentially stable in the

L2 sense, i.e.,

||V (t, k)||2
L̂2 + ||u(t, k)||2

L̂2 ≤ D0e
−1

2Re
t
(

||V (0, k)||2
L̂2 + ||u(0, k)||2

L̂2

)

, (84)

whereD0 is defined as:

D0 = (1 + 4π2M2) max
m<|k|<M

{(1 + ||L||∞)2(1 + ||K||∞)2}. (85)

Proof: First, from theα equation (70) it is possible to get anL2 estimate

||α(t, k)||2
L̂2 ≤ e−

1

2Re
t||α(0, k)||2

L̂2, (86)

then employing the direct and inverse transformations (73)–(74) and (83) we get (84)–(85).

Now, if we apply the feedback laws (67), (78) forall wave numbersm < |k| < M , then the

control laws in physical space are given by expressions (22)–(28), where the inverse transform

integrals are truncated atk = m, M in (26)–(28). If we define

V ∗(t, x, y) =

∫ ∞

−∞

χ(k)V (t, k, y)e2πikxdk, (87)

u∗(t, x, y) =

∫ ∞

−∞

χ(k)u(t, k, y)e2πikxdk, (88)

which are variables that contain all velocity field information for wave numbersm < |k| < M ,

the following result holds.

Proposition 2: Consider equations (8)–(16) with control laws (22)–(23). Then the variables

u∗(t, x, y) andV ∗(t, x, y) defined in (87)–(88) decay exponentially:

||V ∗(t)||2L2 + ||u∗(t)||2L2 ≤ D0e
−1

2Re
t
(

||V ∗(0)||2L2 + ||u∗(0)||2L2

)

. (89)

Proof: The Fourier transform of the star variables is, by definition, the same as the Fourier

transform of the original variables form < |k| < M , and zero otherwise. Therefore, applying
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Parseval’s formula and Proposition 1,

||V ∗(t)||2L2 + ||u∗(t)||2L2 =

∫ ∞

−∞

(

||V ∗(t, k)||2
L̂2 + ||u∗(t, k)||2

L̂2

)

dk

=

∫ ∞

−∞

χ(k)
(

||V (t, k)||2
L̂2 + ||u(t, k)||2

L̂2

)

dk

≤ D0e
−1

2Re
t

∫ ∞

−∞

χ(k)
(

||V (0, k)||2
L̂2 + ||u(0, k)||2

L̂2

)

dk

= D0e
− 1

2Re
t
(

||V ∗(0)||2L2 + ||u∗(0)||2L2

)

, (90)

proving (89).

B. Uncontrolled wave number analysis

For the uncontrolled system (52)–(53), we define, for eachk, the Lyapunov functional

Λ(k, t) =
1

2

(

||V (t, k)||2
L̂2 + ||u(t, k)||2

L̂2

)

(91)

The time derivative ofΛ is

Λ̇ = −
8π2k2

Re
Λ −

1

Re

(

||uy(k)||2
L̂2 + ||Vy(k)||2

L̂2

)

+ 4

∫ 1

0

(2y − 1)
uV̄ + ūV

2
dy, (92)

where the bar denotes the complex conjugate, and the pressure term has disappeared using

integration by parts and the continuity equation (61). The second term in the first line of (92)

can also be bounded using the Poincare inequality, thanks tothe Dirichlet boundary condition

at y = 0:

−||uy(k)||2
L̂2 − ||Vy(k)||2

L̂2 ≤ −
Λ

2
. (93)

Consider now separately the two cases|k| ≤ m and |k| ≥ M . In the first case, we can bound

the second line of (92) as

Λ̇ ≤ −
8π2k2

Re
Λ −

1

2Re
Λ + 4Λ, (94)

so, if |k| ≥ 1
π

√

Re
2

, then

Λ̇ ≤ −
1

2Re
Λ. (95)
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Now, consider the case of small wave numbers. We bound the second line of (92) using the

continuity equation (61)

Λ̇ ≤ −
8π2k2

Re
Λ −

1

2Re
Λ + 8π|k|Λ, (96)

so, if |k| ≤ 1
32πRe

, then

Λ̇ ≤ −
1

4Re
Λ. (97)

We have just proved the following result:

Proposition 3: If m = 1
32πRe

and M = 1
π

√

Re
2

, then for both|k| ≤ m and |k| ≥ M the

equilibrium u(t, k, y) ≡ V (t, k, y) ≡ 0 of the uncontrolled system (52)–(60) is exponentially

stable in theL2 sense:

||V (t, k)||2
L̂2 + ||u(t, k)||2

L̂2 ≤ e
−1

4Re
t
(

||V (0, k)||2
L̂2 + ||u(0, k)||2

L̂2

)

. (98)

Since the decay rate in (98) is independent ofk, that allows us to claim the following result

for all uncontrolled wave numbers.

Proposition 4: The variablesǫu(t, x, y) and ǫV (t, x, y) defined as

ǫu(t, x, y) =

∫ ∞

−∞

(1 − χ(k)) u(t, k, y)e2πikxdk, (99)

ǫV (t, x, y) =

∫ ∞

−∞

(1 − χ(k)) V (t, k, y)e2πikxdk, (100)

decay exponentially as

||ǫV (t)||2L2 + ||ǫu(t)||
2
L2 ≤ e

−1

4Re
t
(

||ǫV (0)||2L2 + ||ǫu(0)||2L2

)

. (101)

Proof: As in Proposition 2.
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C. Analysis for the entire wave number range

Using (37)–(38),

||V (t)||2L2 =

∫ ∞

−∞

||V (t, k)||2
L̂2dk

=

∫ 1

0

∫ ∞

−∞

(V ∗(t, k, y) + ǫV (t, k, y))2 dkdy

=

∫ 1

0

∫ ∞

−∞

(

(V ∗)2 + ǫ2
V + 2V ∗ǫV

)

dkdy

= ||V ∗(t)||2L2 + ||ǫV (t)||2L2, (102)

where we have used the fact thatV ∗(t, k, y)ǫV (t, k, y) = χ(k)(1−χ(k))V (t, k, y) andχ(k)(1−

χ(k)) is zero for allk by its definition (29).

This shows that theL2 norm of V is the sum of theL2 norms ofV ∗(t, k, y) and ǫV (t, k, y).

The same holds foru. Therefore, Theorem 1 follows from Propositions 2 and 4. Noting thatD0

as defined in (85) is greater than unity, we obtain the following estimate of the decay:

||V (t)||2L2 + ||u(t)||2L2 ≤ D0e
−1

4Re
t
(

||V (0)||2L2 + ||u(0)||2L2

)

. (103)

The explicit solutions are (37)–(38), obtained by solving explicitly (70), using (74) and

(83), and applying the inverse Fourier transform, whereas the error bounds are obtained from

Proposition 4.

VI. H1 STABILITY

We define theH1 norm of f(x, y) as

||f ||2H1 = ||f ||2L2 + ||fx||
2
L2 + ||fy||

2
L2. (104)

We also define theH1 norm of f(k, y) with respect to y as

||f(k)||2
Ĥ1 = (1 + 4π2k2)||f(k)||2

L̂2 + ||fy(k)||2
L̂2. (105)
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The Ĥ1 norm as a function ofk is related to theH1 norm as

||f ||2H1 =

∫ ∞

−∞

||f(k)||2
Ĥ1dk. (106)

A. H1 stability for controlled wave numbers

For eachk, one has that

||f(k)||2
Ĥ1 ≤ (5 + 16π2M2)||fy(k)||2

Ĥ1, (107)

where we have used (105) and Poincare’s inequality. This proves the equivalence, for anyk,

of the Ĥ1 norm of f(k, y) and theL̂2 norm of justfy(k, y). Therefore, we only have to show

exponential decay foruy andVy.

Due to the backstepping transformations (73), (74) and (82)(83),

αy = uy − K(k, y, y)u−

∫ y

0

Ky(k, y, η)u(t, k, η)dη , (108)

uy = αy + L(k, y, y)α +

∫ y

0

Ly(k, y, η)α(t, k, η)dη , (109)

α =
−1

2πki

(

Vy −

∫ y

0

K(k, y, η)Vy(t, k, η)dη

)

, (110)

Vy = −2πki

(

α +

∫ y

0

L(k, y, η)α(t, k, η)dη

)

, (111)

and then it is possible to write the following estimates, which are derived from simple estimates

on α andαy from (70)

||uy(t, k)||2
L̂2 ≤ D1e

− 2

5Re
t||uy(0, k)||2

L̂2, (112)

||Vy(t, k)||2
L̂2 ≤ D0e

− 1

2Re
t||Vy(0, k)||2

L̂2, (113)

where

D1 = 5 max
m<|k|<M

{

(1 + 4||L||∞ + 4||Ly||∞)2(1 + 4||K||∞ + 4||Ky||∞)2

}

. (114)

Using these estimates the following proposition can be stated regarding the velocity field at each

k in the controlled range.
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Proposition 5: For anyk in the rangem < |k| < M , the equilibriumu(t, k, y) ≡ V (t, k, y) ≡

0 of the system (52)–(60) with feedback control laws (67), (78) is exponentially stable in the

H1 sense

||V (t, k)||2
Ĥ1 + ||u(t, k)||2

Ĥ1 ≤ D2e
−2

5Re
t
(

||V (0, k)||2
Ĥ1 + ||u(0, k)||2

Ĥ1

)

, (115)

whereD2 is defined as:

D2 = (5 + 16π2M2) max{D0, D1}. (116)

Thanks to the same argument as in Proposition 2, forall wave numbersm < |k| < M , the

following result holds.

Proposition 6: Consider equations (8)–(16) with control laws (22)–(23). Then the variables

u∗(t, x, y) andV ∗(t, x, y) defined in (87)–(88) decay exponentially in theH1 norm:

||u∗(t)||2H1 + ||V ∗(t)||2H1 ≤ D2e
−2

5Re
t
(

||u∗(0)||2H1 + ||V ∗(0)||2H1

)

. (117)

B. H1 stability for uncontrolled wave numbers

Following the same argument as in (91)–(97), a slightly different bound can be derived that

keeps some of thêH1 norm in (96)

Λ̇ ≤ −
Λ

8Re
−

ΛH

2Re
, (118)

where

ΛH(k, t) =
1

2

(

||uy(t, k)||2
L̂2 + ||Vy(t, k)||2

L̂2

)

. (119)
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The time derivative ofΛH can be bounded as

dΛH

dt
=

∫ 1

0

uyūyt + ūyuyt + V̄yVyt + VyV̄yt

2
dy

= −

∫ 1

0

uyyūt + ūyyut + V̄yyVt + VyyV̄t

2
dy

= −
1

Re

(

||uyy||
2
L̂2 + ||Vyy||

2
L̂2

)

+ 4k2π2

∫ 1

0

uyyū + ūyyu + V̄yyV + VyyV̄

2Re
dy

+2πki

∫ 1

0

uyyp̄ − ūyyp

2
dy −

∫ 1

0

V̄yypy + Vyyp̄y

2
dy − 4

∫ 1

0

(2y − 1)
uyyV̄ + ūyyV

2
dy

+8πki

∫ 1

0

y(y − 1)
uyyū − ūyyu − V̄yyV + VyyV̄

2
dy, (120)

where we have used integration by parts and the Dirichlet boundary conditions of the uncontrolled

wave number range. Doing further integration by parts and using the divergence free condition,

we can simplify a little the previous expression:

dΛH

dt
= −

1

Re

(

||uyy||
2
L̂2 + ||Vyy||

2
L̂2

)

−
8k2π2

Re
Λh − 16π2k2

∫ 1

0

(2y − 1)
ūV − uV̄

2
dy

−
V̄yyp + Vyyp̄

2

∣

∣

∣

∣

1

0

. (121)

Only the last term remains to be estimated. Using (59)–(60) with Vc being zero for uncontrolled

wave number, the last term in (121) can be expresssed as

V̄yyp + Vyyp̄

2

∣

∣

∣

∣

1

0

= Re
p̄yp + pyp̄

2

∣

∣

∣

∣

1

0

. (122)

This quantity can be estimated using the following lemma.

Lemma 1: If the pressurep verifies the Poisson equation (54) with boundary conditions(59)–

(60), then

−
p̄yp + pyp̄

2

∣

∣

∣

∣

1

0

≤ 16||V (t, k)||2
L̂2. (123)

Proof: Multiplying equation (54) byp̄ and integrating from zero to one, one gets:

−4π2k2||p(t, k)||2
L̂2 +

∫ 1

0

p̄pyydy =

∫ 1

0

16πki(2y − 1)p̄V dy, (124)
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which integrated by parts, becomes

−p̄py

∣

∣

∣

∣

1

0

= −4π2k2||p(t, k)||2
L̂2 − ||py(t, k)||2

L̂2 −

∫ 1

0

16πki(2y − 1)p̄V dy. (125)

Now using Young’s inequality one finally arrives at

−p̄py

∣

∣

∣

∣

1

0

≤ 16||V (t, k)||2
L̂2. (126)

For the other conjugate pair one proceeds analogously, thuscompleting the proof.

Using the lemma, the time derivative ofΛH can be estimated as follows:

dΛH

dt
≤ −

8k2π2

Re
ΛH + 16π2k2Λ + 16ReΛ. (127)

We take the following Lyapunov functional

ΛT = ΛH + (1 + 64Re2 + 4π2k2 + 64Reπ2k2)Λ, (128)

which is equivalent to theH1 norm, whose definition in terms ofΛ andΛH is

||u(t, k)||2
Ĥ1 + ||V (t, k)||2

Ĥ1 = 2(1 + 4π2k2)Λ + 2ΛH . (129)

Computing the derivative of (128)

dΛT

dt
≤ −

ΛH

2Re
−

1 + 4π2k2

8Re
Λ ≤ −d1ΛT , (130)

whered1 is a (possible very conservative) positive constant, whichdepends on the Reynolds

number (butnot on k)

d1 =
1

8D3Re
, (131)

and where

D3 = max{1 + 64Re2, 1 + 16Re}. (132)

Deriving an estimate of theH1 norm from this estimate forΛT , one reaches the following result.
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Proposition 7: If m = 1
32πRe

and M = 1
π

√

Re
2

, then for both|k| ≤ m and |k| ≥ M the

equilibrium u(t, k, y) ≡ V (t, k, y) ≡ 0 of the uncontrolled system (52)–(60) is exponentially

stable in theH1 sense:

||V (t, k)||2
Ĥ1 + ||u(t, k)||2

Ĥ1 ≤ D3e
−d1t

(

||V (0, k)||2
Ĥ1 + ||u(0, k)||2

Ĥ1

)

. (133)

Since the decay rate in (133) is independent ofk, that allows us to claim the following result

for all uncontrolled wave numbers.

Proposition 8: The variablesǫu(t, x, y) and ǫV (t, x, y) defined as in (99)–(100) decay expo-

nentially in theH1 norm as

||ǫu(t)||
2
H1 + ||ǫV (t)||2H1 ≤ D3e

−d1t
(

||ǫu(0)||2H1 + ||ǫV (0)||2H1

)

. (134)

C. Analysis for all wave numbers

From Propositions 6 and 8, and using the same argument as in Section V-C, theH1 stability

part of Theorem 1 is proved. One gets that

||u(t)||2H1 + ||V (t)||2H1 ≤ D4e
−d1t

(

||u(0)||2H1 + ||V (0)||2H1

)

, (135)

whereD4 = max{D2, D3}.

VII. H2 STABILITY

The H2 norm of f(x, y) is defined as

||f ||2H2 = ||f ||2H1 + ||fxx||
2
L2 + ||fxy||

2
L2 + ||fyy||

2
L2 . (136)

We also define theH2 norm of f(k, y) with respect to y as

||f(k)||2
Ĥ2 = ||f(k)||2

Ĥ1 + 16π4k4||f(k)||2
L̂2 + 4π2k2||fy(k)||2

L̂2 + ||fyy(k)||2
L̂2. (137)

The Ĥ2 norm as a function ofk is related to theH2 norm as

||f ||2H2 =

∫ ∞

−∞

||f(k)||2
Ĥ2dk. (138)
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A. H2 stability for controlled wave numbers

Thanks to the backstepping transformations (73), (74) and (82), (83), one calculates the second

order derivative of bothu andV from α and its derivatives,

αyy = uyy − K(k, y, y)uy − (2Ky(k, y, y) + Kη(k, y, y))u

−

∫ y

0

Kyy(k, y, η)u(t, k, η)dη , (139)

uyy = αyy + L(k, y, y)αy + (2Ly(k, y, y) + Lη(k, y, y))α

+

∫ y

0

Lyy(k, y, η)α(t, k, η)dη , (140)

αy =
−1

2πki

(

Vyy − K(k, y, y)Vy −

∫ y

0

Ky(k, y, η)Vy(t, k, η)dη

)

, (141)

Vyy = −2πki

(

αy + L(k, y, y)α +

∫ y

0

Ly(k, y, η)α(t, k, η)dη

)

. (142)

It is possible then to write the following estimates, which are derived from simple estimates on

α, αy andαyy from (70):

||u(t, k)||2
Ĥ2 ≤ D5e

− 2

5Re
t||u(0, k)||2

Ĥ2, (143)

||V (t, k)||2
Ĥ2 ≤ D6e

− 2

5Re
t||V (0, k)||2

Ĥ2. (144)

The positive constantsD5 andD6 are similarly defined to (114), only depending on the direct

and inverse kernels.

Using these estimates the following proposition can be stated regarding the velocity field at

eachk in the controlled range.

Proposition 9: For anyk in the rangem < |k| < M , the equilibriumu(t, k, y) ≡ V (t, k, y) ≡

0 of the system (52)–(60) with feedback control laws (67), (78) is exponentially stable in the

H2 sense

||V (t, k)||2
Ĥ2 + ||u(t, k)||2

Ĥ2 ≤ D7e
−2

5Re
t
(

||V (0, k)||2
Ĥ2 + ||u(0, k)||2

Ĥ2

)

, (145)
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whereD7 is defined as:

D7 = max{D5, D6}. (146)

Thanks to the same argument as in Proposition 2, the following result holds forall wave

numbersm < |k| < M .

Proposition 10: Consider equations (8)–(16) with control laws (23)–(22). Then the variables

u∗(t, x, y) andV ∗(t, x, y) defined in (87)–(88) decay exponentially in theH2 norm:

||u∗(t)||2H2 + ||V ∗(t)||2H2 ≤ D8e
−2

5Re
t
(

||u∗(0)||2H2 + ||V ∗(0)||2H2

)

. (147)

B. H2 stability for uncontrolled wave numbers

For the uncontrolled wave number range, thanks to the Dirichlet boundary conditions, thêH2

norm ||u(t, k)||Ĥ2 is equivalent to the norm

||u(t, k)||2
Ĥ1 +

∫ 1

0

∣

∣uyy(t, k, y) − 4π2k2u(t, k, y)
∣

∣

2
dy, (148)

i.e., to theĤ1 norm plus thêL2 norm of the Laplacian, which we denote for short||△ku(k)||2
L̂2

.

The proof of the norm equivalence is obtained integrating byparts,

||△ku(k)||2
L̂2 =

∫ 1

0

∣

∣−4π2k2u(y, k) + uyy(y, k)
∣

∣

2
dy

=

∫ 1

0

[

16π4k4|u|2(y, k) + |uyy|
2(y, k) − 4π2k2 (uūyy + ūuyy)

]

dy

= 16π4k4||u(k)||2
L̂2 + ||uyy(k)||2

L̂2 + 8π2k2||uy(k)||2
L̂2. (149)

The next norm equivalence property is less obvious and we state it in the following lemma:

Lemma 2: Consideru andV verifying equations (52)–(53). Then, for the uncontrolledwave

number range, the norm||u||2
Ĥ2

+ ||V ||2
Ĥ2

is equivalent to the norm

||u||2
Ĥ1 + ||V ||2

Ĥ1 + ||ut||
2
L̂2 + ||Vt||

2
L̂2. (150)

This means the Laplacian operator in norm (148) can be replaced by a time derivative, when

considering theH2 norm of u andV together.
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Proof: Let us call

Λ1 = ||ut(t, k)||2
L̂2 + ||Vt(t, k)||2

L̂2, (151)

Λ2 =
||△ku(t, k)||2

L̂2
+ ||△kV (t, k)||2

L̂2

Re2
. (152)

Substituting in (151) equations (52)–(53),

Λ1 = Λ2 + Λ3, (153)

whereΛ3 contains the following terms

Λ3 = −

∫ 1

0

−2πki△kup̄ + △kV p̄y

Re
dy − 2πki

∫ 1

0

4y(1 − y)
△kuū + △kV V̄

Re
dy

+

∫ 1

0

4(1 − 2y)
△kuV̄

Re
dy −

∫ 1

0

(

2πkipūt + pyV̄t

)

dy

+2πki

∫ 1

0

4y(1 − y)
(

uūt + vV̄t

)

dy +

∫ 1

0

4(1 − 2y) (V ūt) dy. (154)

Now one can estimate this quantity:

|Λ3| ≤ 48(||u(k)||2
Ĥ1 + ||V (k)||2

Ĥ1) +
1

2
(Λ1 + Λ2) , (155)

in which we have used integration by parts, Young’s inequality, and Lemma 1. Therefore:

||u||2
Ĥ2 + ||V ||2

Ĥ2 ≤ D8

(

||u||2
Ĥ1 + ||V ||2

Ĥ1 + Λ1

)

, (156)

and

||u||2
Ĥ1 + ||V ||2

Ĥ1 + Λ1 ≤ D8

(

||u||2
Ĥ2 + ||V ||2

Ĥ2

)

, (157)

whereD8 = 97 max{Re2, 1/Re2}.

From Lemma 2 one getŝH2 stability for the uncontrolled wave numbers. This is obtained

by considering the norm||ut||
2
L̂2

+ ||Vt||
2
L̂2

as a Lyapunov functional whose derivative can be

bounded as

d

dt

||ut||
2
L̂2

+ ||Vt||
2
L̂2

2
≤ −

1

4Re

(

||ut||
2
L̂2 + ||Vt||

2
L̂2

)

, (158)
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which follows by taking the time derivative of (52)–(53) andapplying the same argument as for

L2 stability. Thus,

||ut(t, k)||2
L̂2 + ||Vt(t, k)||2

L̂2 ≤ e−
1

2Re
t
(

||ut(0, k)||2
L̂2 + ||Vt(0, k)||2

L̂2

)

. (159)

Noting thatd1 ≤ 1/2Re and D3 ≥ 1, adding (159) to (133) and employing (156), (156) we

obtain the following result.

Proposition 11: If m = 1
32πRe

and M = 1
π

√

Re
2

, then for both|k| ≤ m and |k| ≥ M the

equilibrium u(t, k, y) ≡ V (t, k, y) ≡ 0 of the uncontrolled system (52)–(60) is exponentially

stable in theH2 sense:

||V (t, k)||2
Ĥ2 + ||u(t, k)||2

Ĥ2 ≤ D2
8D3e

−d1t
(

||V (0, k)||2
Ĥ2 + ||u(0, k)||2

Ĥ2

)

. (160)

Since the decay rate in (160) is independent ofk, that allows us to claim the following result

for all uncontrolled wave numbers.

Proposition 12: The variablesǫu(t, x, y) andǫV (t, x, y) defined as in (99)–(100) decay expo-

nentially in theH2 norm as

||ǫu(t)||
2
H2 + ||ǫV (t)||2H2 ≤ D2

8D3e
−d1t

(

||ǫu(0)||2H2 + ||ǫV (0)||2H2

)

. (161)

C. Analysis for all wave numbers

From Propositions 10 and 12, and again by the same argument asin Section V-C, theH2

stability part of Theorem 1 is proved. One gets that

||u(t)||2H2 + ||V (t)||2H2 ≤ D9e
−d1t

(

||u(0)||2H2 + ||V (0)||2H2

)

, (162)

whereD9 = max{D7, D
2
8D3}.

VIII. PROOF OFTHEOREM 2

Consider expressions (22)–(32).
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Points i and iv are deduced trivially from the fact that (22) and (25) are defined as convolutions,

and properties of the heat equation (24).

Point ii is verified if
∫ ∞

−∞

Vc(t, x)dx = 0. (163)

From the definition of the Fourier transform ofVc,

Vc(t, k = 0) =

∫ ∞

−∞

Vc(t, x)dx. (164)

Therefore, ask = 0 lies on the uncontrolled wave number range−m < k < m, thenVc(t, k =

0) = 0 and the property is verified.

Point iii gives bounds on the decay rate of the kernels (26)–(28). All the kernel definitions

are of the form

Q(x − ξ, y) =

∫ ∞

−∞

χ(k)f(k, y)e2πik(x−ξ)dk, (165)

for somef analytic ink and smooth iny. Then, integrating by parts, we find that

|Q(x − ξ, y)| ≤
(M − m)

π|x − ξ|
max

m<|k|<M

∣

∣

∣

∣

df

dk
(k, y)

∣

∣

∣

∣

+
2

π|x − ξ|
max

m<|k|<M
|f(k, y)|

=
C

|x − ξ|
, (166)

showing that the kernels decay at least like1/|x− ξ|. This bound is made explicit in Remark 2

for QV andQ0.

From the definition of the inverse Fourier transform (48), itis straightforward to show that if

the real part off(k, y) is even and the imaginary part off(k, y) is odd, then the resultingf(x, y)

will always be real. Then, Point v can be proved showing that the functions under the integrals

in (26)–(28), which are inverse Fourier transforms, have this property. This is immediate for

(27) and (28). For (26), the property must be shown for the kernel K, defined by the sequence

(31)–(32). SinceK is the limit of the sequence, it will have the property if allKn share the

property. This can be proved by induction. ForK0, the property is evident from its definition
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(31) and can be immediately verified. ForKn, if the property is assumed forKn−1, then from

expression (32) and taking into account that the product of even functions is again even, the

product of odd functions is also even, and the product of an even function times an odd function

is odd, then it can be seen thatKn also shares the property. Therefore, the limitK will have a

real inverse transform, and kernelQu will be real.

Point vi is deduced from the definition of the kernels (26)–(28) as truncated Fourier inverse

integrals, which makes the kernels smooth inx−ξ. Smoothness inη is deduced from smoothness

of the functions under the integrals.

For Point vii, consider expression (22) and (26). Then,

||Uc||
2
L2 =

∫ ∞

−∞

Uc(t, x)2dx

=

∫ ∞

−∞

|Uc|(t, k)2dk

=

∫ ∞

−∞

χ(k)

∣

∣

∣

∣

∫ 1

0

K(k, 1, η)u(t, y, k)dη

∣

∣

∣

∣

2

dk

≤ 2(M − m) max
m≤|k|≤M

{||K||∞}||u(t)||2L2, (167)

and the result follows from Theorem 1.

On the other hand, forVc one has to use its dynamic equation (24)–(25), and a Lyapunov

functional consisting in half itsL2 norm. One then has, using Young’s inequality

d

dt

|Vc(k)|2

2
≤

−π2k2

Re
|Vc(k)|2 +

|uy|
2(t, k, 0) + |uy|

2(t, k, 1)

Re

+64 cosh (2πM) ||V (t, k)||2
L̂2, (168)

and supposing the control law is initialized at zero (see Remark 1), and using theH2 norm to

bound the second line of (168) one gets

|Vc(t, k)|2 ≤

∫ t

0

e−
π2m2

Re
(t−τ)

[

10
||u(τ, k)||2

Ĥ2

Re
+ 64 cosh (2πM) ||V (τ, k)||2

L̂2

]

dτ. (169)
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Integrating ink

||Vc(t)||
2
L2 ≤

∫ t

0

e−
π2m2

Re
(t−τ)

[

10
||u(τ)||2H2

Re
+ 64 cosh (2πM) ||V (τ)||2L2

]

dτ, (170)

and then the result follows from Theorem 1.

For Point viii, consider thejth spatial derivative ofUc and calculate itsL2 spatial norm

∣

∣

∣

∣

∣

∣

∣

∣

dj

dxj
Uc

∣

∣

∣

∣

∣

∣

∣

∣

2

L2

=

∫ ∞

−∞

(

dj

dxj
Uc(t, x)

)2

dx

=

∫ ∞

−∞

|2πk|2j|Uc|(t, k)2dk

≤ (2πM)2j ||Uc||
2
L2, (171)

so the result forUc follows from Point vii. We proceed similarly forVc, thus proving Point viii.

IX. D ISCUSSION

The result was presented in 2D for ease of notation. Since 3D channels are spatially invariant

in both streamwise and spanwise direction, it is possible toextend the design to 3D, by applying

the Fourier transform in both invariant directions and following the same steps, with some

refinements which include actuation of the spanwise velocity at the wall. The result also trivially

extends to periodic channel flow of arbitrary periodic box size, 2D or 3D; it only requires

substitution of the Fourier transform by Fourier series, with all other expressions still holding.

Our control laws are presented with full state feedback. However, for parabolic PDEs, in [21]

we developed an observer design methodology, which is dual to the backstepping control method-

ology in [20], which we extended to Navier-Stokes equationshere to solve the state feedback

stabilization problem for the channel flow. Extending the observer concepts in [21] to the Navier-

Stokes PDEs has allowed us to also develop an observer for thechannel flow, which is presented

in the conference paper [23]. While the observer is of interest in its own right (one can use it to

estimate turbulent flows without controlling/relaminarizing them), the state feedback controller in
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the present paper and the observer in [23] can be combined into an output feedback compensator,

which uses measurements ofP (x, 0) anduy(x, 0) only, and the actuation ofV (x, 1), u(x, 1).

Our controller requires actuation of both velocity components at the wall. An assumption

made throughout the flow control literature is that the boundary values of velocity are actuated

through micro-jet actuators that perform “zero-mean” blowing and suction. Effective actuation

of wall velocity at angles as low as5◦ relative to the wall has been demonstrated experimentally

using differentially actuated pairs of jets.

Unlike in our earlier publications [1], [5] where we included DNS simulation results that

demonstrated relaminarization with our controllers, we donot present simulation results in this

paper. In another publication, to be submitted to a fluid mechanics journal, we will present

an extension to 3D, without theH1, H2 stability estimates and without the explicit closed-loop

Navier-Stokes solutions (these two issues extend in a rather straightforward manner to 3D because

we deal with linearized Navier-Stokes equations), but withsimulations results included. The 3D

controller will include actuation in the spanwise direction. The numerical tests will focus on

turbulence-critical issues like the behavior of the controller at kx = 0 for moderate-to-largekz

and other issues which come up only in 3D.
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