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Abstmct The main goal of this paper is to  show 
the functional architecture of a framework for Dig- 
ital Topology. This architecture has four levels, 
called Device, Logical, Conceptual and Continuous 
Levels. In each one of them we can use several mod- 
els according to the particular problem. The models 
in the Device Level represent the physical problem 
whereas the models in the Continuous Level are 
topological spaces which allow us to use the well- 
known results of continuous topology (actually, the 
stronger results of polyhedral topology). The other 
two levels are used to  And a digital solution. The 
Logical Level is closer to the Device Level and it 
is used for processing, for writing algorithms and 
showing their correctness. The Conceptual Level is 
the nearest to the Continuous Level and it is used to 
translate results and notions from the Continuous 
Level to the Logical Level. 

I. INTRODUCTION 

The‘main purpose of Digital Topology is the study 
of topological properties of discrete objects which are 
gotten digitizing continuous objects. Digital Topology 
plays a very important role in computer vision, im- 
age processing and computer graphics. But a complete 
theoretical foundation of a consistent theory for digital 
spaces is still missing. Kong and Rosenfeld give in [5] 
a very good survey about this subject. 

However, several theories have been devised for the 
analysis of the topological attributes of a digital im- 
age. Let us recall, for example, Rosenfeld’s combinato- 
rial theory [9,lO,ll] (generalized by Kong and Roscoe 
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in [4]) and Khalimsky’s theory based in a particular 
topological space [3]. The common drawback of these 
theories is that, in order to  include well-known results 
of the Euclidean Topology, they need to rewrite new 
proofs instead of exploiting those coming from contin- 
uous topology. The reason is that these theories are 
far from the Euclidean plane (or space). Some other 
authors (Kovalevsky [7], Ankeney, Ritter [l]) can use 
results coming from Euclidean Topology but they have 
problems in the image processing because the models 
are far from the discrete objects which represent screen 
digital images. 

In this paper we introduce a new point of view. We 
present a framework, which tries to  define a general 
theory for the development of Digital Topology. To 
do this, our framework proposes a multilevel architec- 
ture whose main feature is the ability for translating 
concepts, statements, proofs and algorithms from con- 
tinuous topology without rewriting a parallel theory. 
The first level represents a computer and the follow- 
ing levels consist of models more and more abstract. 
Finally, the last level represents the Euclidean Topol- 
ogy. This takes us, from the discrete world (a computer 
screen), and brings us closer to the continuous one (the 
Euclidean plane or space). 

In our framework there is not an universal model 
which can be used for solving all the problem in Digi- 
tal Topology. Instead, given a problem we must choose 
a suitable model in every level. According to our pro- 
posal, what is common for all the problems is the work- 
ing methodology and the multilevel functional architec- 
ture. 

To show that our theory works we present the solu- 
tion to the well-known Digital Jordan Curve Problem 
(as many other authors have done in order to  prove the 
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Figure 1: Screen model 

Figure 2: A digital image 

consistency of their theories). So, in the second section 
we choose the models for each level in the architecture, 
and then, in the third section, we give the proof of the 
result that is reduced to giving the appropriate notions 
and translations. Finally, the forth section is devoted to 
explain the functional architecture in a general context. 

11. THE MATHEMATICAL MODELS 

We consider that the screen model is an infinite ma- 
trix S of pixels with the shape showed in Fig l where 
each pixel can have two states represented by a dotted 
or black small square. In this context, a digital image 
in the screen model S is defined by a set of black points 
(see a digital curve in Fig 2).  

The Digital Jordan Curve Problem consists of prov- 
ing that a simple closed digit.al curve, as t,liat of Fig 2, 
divides the screen in two connected components. Evi- 
dently it is necessary to  define the meaning of “simple 
closed digital curve” and “connected components.” For 
this, we will start by defining the mathematical models 
used in each level of our framework. 

Since our problems has a t,opological nature, it is 
natural to consider a transformation from the screen 
model S to the graph E8 represented in the Fig 3. For 
the sake of simplicity we will suppose that the vertex 

Figure 3: The graph E8 

Figure 4: The graph E: 

set of E8 is Z2, which is the set of all pairs of integer 
numbers. The vertices of the graph represent the pixels 
and two vertices are adjacent if and only if their cor- 
responding pixels are contiguous in the obvious sense. 
In order to solve our problem, this mathematical model 
represents the Logical Level. In it the curve becomes 
the subgraph induced by the vertices corresponding to 
black pixels. 

Because E8 is not planar, it is well-known that within 
it we cannot represent the t,opology of the Euclidean 
plane (see Rosenfeld [9]). To solve that problem we 
flatten out this graph in a nat.ural way and we get 
the planar graph E; represented in the Fig 4. In  this 
graph there are two different kinds of vertices. Some of 
them represent the pixels and the others, called middle 
points, represent a degree of nearness between the cor- 
responding pixels; i n  fact i t  is the diagonal nearness. 
Observe that this graph is a triangulation of the Eu- 
clidean plane. This makes up the Conceptual Level to 

66 



Figure 5:  A digital curve C in E8 

Figure 6: A digital curve C' in ES 

solve our problem. 
On the other hand, we define a digital image (or 

digital subspace) of one of these graphs as an induced 
subgraph; that is, a subgraph which contains an edge 
if and only if it contains the two vertices of the edge. 
We represent the set of digital images in E8 and E: by 
U(&) and U(&), respectively. 

Now we have a natural transformation A : O( Es) - 
U(E;) defined as follows: Given a digital image C in 
Ea, n(C) = c' is the subgraph induced by the vertices 
in C and the middle vertices defined by two diagonal 
vertices in C (see the Fig 5 and 6). In a natural way we 
have a transformation A* : o(E,') - o(E8). Given a 
digital image C' in E,' n*(C*) = C is the subgraph in- 
duced by the vertices in C' that are not middle vertices. 
Also we have a transformation j : (?(E,) - ,C(R2) in- 
duced by the embedding of E, in the Euclidean plane 
R2, where C(R2) is the set of polygonat subspaces. 

In this way. we have the architecture represented by 

the following diagram 

where O(S) is the set of digital images in the screen 
model S and i is the 1-1 transformation between O(E8) 
and O(S). 
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III. THE DIGITAL JORDAN CURVE THEOREM 

In the logical and conceptual levels, a simple digital 
curve is the subgraph induced by a sequence of vertices 
{PO,. . . ,pn} SO that Pi is adjacent to pj if and only if 
li - jl 5 1. The curve is called closed if, in addition, 
po = pn. Then a digital object in the screen model S is 
called a simple closed digital curve if its image by i-' 
is this type of curve in Ea. These definitions agree with. 
those usually adopted in the literature (see [5]). 

In this way, a simple closed digital curve C in the 
screen model S is, by definition, transformed through i 
in such a curve in Ea, denoted also by C. It is obvious 
that the image by 17 of a simple closed digital curve C 
in E8 is a simple closed digital curve C' in E;. And, 
also, the image by the embedding j of C is a polygonal 
Jordan Curve C' in R2 (see Fig 5, 6). In this way, we 
have translated our initial Jordan Curve Problem for 
the Screen Model to analogous problems in Ea, E,' and 
R2. Now then, it is well-known that the solution to this 
problem in R2 is the Polygonal Jordan Curve Theorem. 
So that, our goal is to  translate this theorem, by mean 
of the transformations j and R', to  E8 in order to find 
a solution to our problem in this model. 

In the literature, there exists several equivalent 
statements for the Polygonal Jordan Curve Theorem. 
Here, we consider one of them that is appropriated to 
find an algorithm solving this problem and to prove its 
correctness. The base of this statement is the notion 
of transversal intersection between a half-line, which is 
parallel to the axis OX, and a polygonal curve. 

Let D be a polygonal curve in R2 whose set of 
vertices {PO,. . . ,pn} is counter-clockwise ordered. Let 
r, = {(z,y); y = y, and z 2 z q }  be a half-line, where 
q = ( z, y,). There exists a transversal intersection be- 
tween D and rq if one of the following situations occurs: 

(a) r,  intersects the edge defined by the vertices pi 
and p1+i in only a point P B {pi,Pi+1}- 

(b )  there exists i E (0,. . . , n} such that for some k 2 0 



2- Pi-1 > Yq and Yi+k+l < Yq or Pi-1 < Yq and 
Yi+k+1 > Yq 

3. x, 2 xq for every i 5 j L i + k. 
With this definition we can state the next well-known 

result. 
Polygonal Jordan Curve Theorem. Let D be 

a simple closed polygonal curve in R2, then R2 \ D 
has two connected components (one of them bounded 
and the other one unbounded). Moreover, a point q E 
R2 \ D belongs to the bounded component if and only 
if #(r, 4 D )  E 1 (mod 2), where #(rq ,+, D) represents 
the number of transversal intersections between D and 
rq. 

It is important to  point out that the result we want 
to translate to E8 is applied to polygonal curves c' 
coming from a digital curve C in E8 and half-lines rpt, 

where p' belongs to Z2. In this way, it is easy to observe 
that the transversal intersections between one of such 
a half-line rpl and one of such a curve C' never occurs 
in case (a) of the definition above. That is, this kind of 
intersection always has a vertex of the curve. So that, 
we can translate the notion of transversal intersection 
to E8 and E,' in such a way that 

#@p' m C') = #(.P' 1 C') = #(.p m C) 
On the other hand, in the Conceptual Level, rep- 

resented by E;, we can consider the natural notion of 
connection induced by the graph structure. This notion 
coincides with the notion of connection induced by the 
topology of the Euclidean plane through the embed- 
ding j .  So we can consider the connected components 
of E: \ c'. Since E; is a triangulation of R2 it is not 
difficult to  prove that the number bf connected compo- 
nents of E,' \ C' and R2 \ C' agree; even more, each 
component I<* of E; \ c' is the finite triangulation of 
a component IC' of R2 \ C' in the following sense: 

1. Given Ii' there is one and only one component Ir" 
of R2 \ C' such that I<* c IC'. 

2. I{* is induced by the vertices of E,' in I;'. 

These properties show us that the components of E,' \ 
c' represent the components of R' \ C'. 

Now we can translate t.he Jordan Curve Theorem to 
E,' in the following way. 

Jordan Curve Theoreiu in E;. Let C' be a 
simple closed digital curve in E;, then E; \ C" has 
two connected components (one of them bounded and 
the other one unbounded). Moreover, a point y' E 
E: \ C' belongs to the bounded component if and only 
if #(rp. mC) E 1 (mod 2) .  

Figure 7: Components of E,' \ C' 
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Figure 8: Top-components of E8 \ c 

Finally, we need to consider an appropriate notion of 
component in &. Let c be a simple closed digital curve 
in Ea. we call a top-component of E8 \ c to the image 
by ir' of a connected component of E; \ c'. Observe 
that, in general, a top-component of E8 \ c does not 
coincide with a connected component of ES \ C (see 
Fig 7, 8). 

In this way we have proved 
Jordan Curve Theorem in Ea. Let C be a simple 

closed digital curve in Ea. then E0 \ C has two con- 
nected top-components (one of them bounded and the 
other one unbounded). Moreover, a point p E E8 \ C 
belongs to the bouiided top-component if and only if 
#( rl, C) E 1 (mod 2). 

Observe that tile previous proof not o u l ~  proves the 
given problem but also allows to translate the well- 
known algorithm of Preparata [8] (coming from Com- 
putational Geometry) to solve the digital curve inclu- 
sion probleni. 



IV. THE FUNCTIONAL ARCHITECTURE 

The previous sections contain a particular instance 
of the methodology proposed in our framework. In this 
section, we will present the general functional architec- 
ture of this framework. Our framework has four lev- 
els, called Device, Logical, Conceptual and Continuous 
Levels. 

In the Device Level we represent the objects in a 
computer screen (typically a digital image). This level 
has a very small degree of abstraction and we only rep- 
resent the physical aspects of the objects. 

A second level of abstraction is obtained in the Log- 
ical Level. We consider in it the aspects of proximity of 
the objects so, we can study some properties of topo- 
logical nature. The main function of this level is to 
be the support for writing the algorithms and to prove 
their correctness. 

In general, the level above is far from the mathemat- 
ical model in which we have a solution for our problem. 
So we need the Conceptual Level as an interface be- 
tween the level above and the Continuous Level. To 
realize this interface it is necessary to translate: (1) Ob- 
jects and properties from the Logical Level to the Con- 
ceptual Level and vice versa; (2) Objects and properties 
from the Conceptual Level to  the Continuous Level; (3) 
Properties of objects in the Continuous Level to prop- 
erties of objects in the Conceptual Level. 

Finally, the Continuous Level is used to find a con- 
tinuous solution. Observe that, actually, the objects 
and concepts obtained froni tlie Logical Level are in- 
side tlie Polyhedral Topology rather than the Contin- 
uous Topology and so we can use the more powerful 
tools of this field. Tlie objects of our physical problem 
have been translated by consecutive abstractions from 
tlie Device Level. Now we must find a continuous so- 
lution in this level by using the well-known results of 
Polyhedral Topology and we traiislate ita to the Logical 
Level across the Conceptual Level. 

When we have a coiicrete problem and a particular 
screen model we mist, choose specific models in each 
level and functions which can support the funct.ioliality 
tliab we have described. Specifically, suppose that these 
chosen niodels are U, L, C arid S for the Device, Log- 
ical, Conceptual and Continuous Level, respectively. 
Let C?(D), (?(I,), O(C)  and O(S)  be the sets of tlie ob- 
jectsr(i.e., substructures in sonie mat~hematical sense) 
of tliese models. So we liave t4he following functional 
architecture 

We represent our physical'objects in the mode! D 
and we translate it to  the model L by the function i .  
If we have in L enough knowledge to  solve the problem 
we do not need to use the rest of the models; when we 
have the solution, we interpret it in D by the function i .  
Otherwise, we translate the objects to the model C. If 
we can find a solution in it we translate it to the model 
L by the function T * .  But if even in C we cannot find a 
solution, we translate the objects to the model S where 
we can apply all of the quite powerful tools and remlts 
of Polyhedral Topology and, if we find a solution, we 
translate it to  L by the functions j and T* .  

From a theoretical point of view, the particular 
structures that we need in the levels depend on the 
problem we want to solve. But, in general, there is a 
basic structure for a wide range of problems. For exam- 
ple, the basic structure for the planar Digital Topology 
is the one shown in the paragraphs above. 

In addition, this framework can be used to solve 
problems which have not been proposed up till now 
in Digital Topology. An important example is the digi- 
tal Shoenflies theorem which states that a simple closed 
digital Jordan curve surrounds a digital disk. The solu- 
tion to this problem is well-known in Planar Euclidean 
Topology. Thus, our multilevel methodology can be 
applied (choosing suitable models) to  obtain the corre- 
sponding digital version. 

Moreover, this framework also works in higher di- 
mensions. As an example, the proof given for the digital 
Jordan curve theorem can easily be adapted to solve the 
corresponding 3-dimensional problem (compare this so- 
lution with [GI, where Kopperman et al. rewrite a new 
proof of this result). 

V. FINAL REMARKS 

In this paper, we have developed a general frame- 
work that allows to use very powerful tools and re- 
sults (those of Polyhedral Topology) in Digital Topol- 
ogy. Tlie models used in the architecture depend on 
the Screen Model. For example, if our Screen Model 
is represented by the Fig 9(a), the graph used as Logi- 
cal Model is the one in the Fig 9(b) (called hexagonal 
graph). In this case, each pair of cells has the same con- 
nectivity degree and the graph is planar, so we choose 
tlie same graph to represent the Conceptual Level. Ob- 
serve that, in this case, this model verifies the Jordan 
Curve Theorem. The proof is the same as in the case 
of the graph of the &adjacencies. 

There are models which do not verify the Jordan 
Curve Theorem. An example of this is the graph E4, 

represented by tlie Fig 10(b), which is the logical model 
of tlie screen model represented by the Fig 10(a). This 
graph is planar, so we must consider the same graph 
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Figure 9: (a) Screen model; (b) The graph E6 

( 4  (b) 

Figure 10: (a) Screen model; (b) The graph E4 

in the Conceptual Level. Thus the top-connection is 
equivalent to the 4connection. Now, the vertices of 
a minimal cycle on this graph define a closed simple 
digital curve but its complement is connected. 

Very frequently, some authors have shown a proof 
of the Digital Jordan Curve Theorem in order to prove 
the consistency of their theories. For this reason we 
also have chosen it for our framework. In the literature 
there are several proofs of this theorem using differ- 
ent techniques. The first author who gave a proof was 
Rosenfeld who presented two versions in a series of pa- 
pers ([9,10,12]). One is taking an 8-curve (i.e., a curve 
in the graph E8) and proving that its complement has 
two 4-connected components (i.e., connected by arcs in 
the graph E4 of the 4adjacencies). The other is taking 
a 4curve (i.e., a curve in the graph E4) and proving 
that its complement has two $-connected components 
(i.e., connected by arcs in E*). 

It is easy to observe that the theorem presented ill  

this paper includes both versions. This is a direct conse- 
quence of the following property. Given a closed digital 
curve c in E8, then: 

2. If C is an 4curve, the top-components of E8 \ C 
coincide with the 8-connected components. - 
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