
Automatic Enforcement of Security Properties

Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes

CAOSD Group, Universidad de Málaga, Andalućıa Tech, Málaga, Spain
{horcas,pinto,lff}@lcc.uma.es

Abstract. Ensuring the security requirements of an application is
not a straightforward task. Security properties (e.g., confidentiality, 
anonymity) need to be satisfied in different ways in different parts of
the same application. Software architects are usually required to man-
ually define security components and their dependencies with the base 
application, customize them to the application’s requirements, identify
the points where security is incorporated, and verify that the selected 
places are correct. The last two steps are especially complex and error-
prone. In our approach, we aim to provide a solution that helps soft-
ware architects to identify the correct places to incorporate the security 
functionality and to verify the correctness of the composed application 
architecture. This is achieved by identifying a set of general structural 
patterns for incorporating security into the application architecture, and
by providing a model-driven SPL solution to customize these patterns
to each application’s requirements.

Keywords: Encryption · Security pattern · Software architecture · SPL

1 Introduction

It is well known that the development of applications that ensure their security 
requirements is not a straightforward task [1–3]. This is because security prop-
erties (e.g., confidentiality, authentication, etc.) need to be satisfied in different 
ways in different parts of the same application. Even the same security property 
usually needs to be satisfied differently in multiple parts of the same application. 
For instance, in order to preserve confidentiality the application’s sensitive data 
has to be encrypted. But, where and how does the data need to be encrypted?

In our example, confidentiality is guaranteed by adding the encryption behav-
ior in different places of the application. For instance, during the interaction of 
two components that exchange sensitive data, it could be added at the place 
where the data is encrypted, and the place where the same data is to be 
decrypted. However, encryption could be applied differently to different kinds of 
interactions. For example, only remote interactions, involving components that 
are deployed in different hosts, may be required to encrypt sensitive informa-tion. 
Sensitive data could be encrypted for all the interactions managing sensi-tive 
information, independently from the location of components. Or, encryption is 
required for all interactions managing sensitive data but providing different



security levels — i.e., using different encryption algorithms, depending on the
local or remote location of the components. Moreover, guaranteeing the secure
storage of the information requires the data to be encrypted before storing it and
decrypted after retrieving it. More variability is introduced if we consider that
the sensitive data have to circulate securely — i.e., encrypted, through different
components of the application. This means that the component where the data
is encrypted and the component where the data is decrypted do not directly
interact with each other, as there are third components between them. Finally,
different kinds of sensitive data may require different levels of security, requiring
the use of different encryption algorithms (e.g., RSA, AES,. . . ). Thus, it is not
trivial for software architects to correctly answer the where-and-how question.

A first step toward mitigating this problem is applying the separation of
concerns principle to model the variability of security from the early stages of
the software’s development. Thus, security concerns are modeled separately from
the base applications and later customized to the application’s requirements and
composed at particular points of the application model [4,5]. It has been demon-
strated that this approach has many advantages [4–6], such as high reusability,
low coupled components and high cohesive software architectures. Moreover,
security can be more easily customized to the application’s requirements. Fol-
lowing this approach, our previous work [5] provided support to: (1) model the
variability of security independently from the application, (2) instantiate the
security model according to the requirements of a particular application, and
(3) compose the customized security model with the application model.

However, in order to compose the customized security model and the appli-
cation model, first, the join points — i.e., points in the application model where
the elements of the security model have to be injected/composed, have to be
identified. In our previous work, the join points were identified completely man-
ually. This resulted in a lack of support to guarantee the required security level,
since analyzing whether the security components had been introduced in all and
the correct places was not possible. Other similar approaches [4,6,7] have the
same limitation. Thus, the benefits of reusing the security models are lost. In this
paper, we improve upon our previous approach by providing support to ensure
that security is correctly incorporated in the applications. This is achieved by:
(1) automatically identifying the places in the software architecture where a par-
ticular security functionality has to be incorporated, and (2) checking whether
the security functionality was incorporated correctly to a software architecture.

In order to automate the identification of the join points we need to under-
stand that security models are not completely oblivious to the application mod-
els, and thus some dependencies between them need to be taken into account
during both the security modeling and during the incorporation of the security
functionality inside the application. Without this, the automatic identification
of the join points is impossible. Concretely, as part of the variability of the
security properties, we need to model the variability of the different structural
and behavioral patterns (e.g., the remote/local direct/indirect interactions, data
storage, etc. in the case of encryption) previously discussed. The main reason is
that the identification of the join points and the definition of the composition



rules largely depend on these patterns. Moreover, formally defining these pat-
terns and the composition rules based on them will provide our approach with
the support that is required to verify the correct deployment of security.

In this paper we focus on confidentiality, although our ultimate goal is to
identify a set of general structural and behavioral patterns to incorporate many
other security properties into an application’s architecture, and to customize
these patterns to each application’s requirements. We use a Software Product
Line (SPL) [8] to specify the variability of the composition patterns, and model-
to-model (M2M) transformations to identify the join points from the patterns
and to guarantee that the final architecture satisfies the security requirements.

The paper is structured as follows. Section 2 motivates our work with a case
study. Section 3 presents our SPL to model and instantiate the variability of the
security patterns. Section 4 explains the automatic identification of join points
from the patterns. Section 5 qualitatively evaluates our approach. Section 6 dis-
cusses related work and Sect. 7 sets out our conclusions and future work.

2 Motivating Case Study

Our case study is an electronic payment (e-payment) application for making
payments for different services (taxi, restaurants, donations,. . . ) and chasing up
receipts. This kind of application requires strong security requirements such as
preserving confidentiality of the user’s information, integrity of the data, and
access control, among others. In this paper, we focus only on confidentiality.

Figure 1 shows a simplified UML software architecture with the basic func-
tionality of the application. The PaymentApp component allows users to make
payments for a specific service, and request the proof of payments by using
the EPayment interface. The customer’s information (e.g., payment card details)
is stored on the user’s device (CustomerProfileManager component). Addi-
tionally, this information can be synchronized between different user devices
(SynchronizationData component). The server manages the payments through
the EPaymentServer component that uses the ServiceDomainResolution and
BankTransaction components to identify the service’s provider information and
to complete the transactions with the banks, respectively. The server also tracks
a history of the users’ transactions (TransactionsHistory component).

Apart from this basic functionality shown in Fig. 1, it is of paramount impor-
tance to guarantee the following security requirements, among others:

– Req. 1: Confidentiality. Sensitive information (i.e., payment card data)
exchanged between the client and the server hosts must be encrypted (e.g.,
using the RSA algorithm). This means that it is required to encrypt the
payment information (information of type PaymentMethod or the parame-
ter payInfo in Fig. 1) when: (1) a payment is made — i.e., the PaymentApp
client component calls the pay method of the EPayment interface; and when
(2) the client synchronizes the list of payment methods — i.e., the com-
ponent CustomerProfileManager calls the synchronize method of the
SynchInfo interface. Then, the information has to be decrypted when the



Fig. 1. Software architecture of the e-payment application.

server receives it, in both EPaymentServer and SynchronizationData. Fol-
lowing our approach the software architect only needs to indicate that the pay-
ment card data is the sensitive data and then our automatic join point identi-
fication approach indicates those join points where encryption and decryption
need to be incorporated in order to ensure the confidentiality of the sensitive
data.

– Req. 2: Confidentiality. All information exchanged between the EPayment-
Server and BankTransaction components inside the server must also be
encrypted, regardless of the type of information or the interface used. In this
case, the software architect indicates that interactions between two specific
components need to be encrypted and all the affected join points are auto-
matically identified by our approach.

– Req. 3: Confidentiality. The payment card details are stored in the user’s device
using a different encryption algorithm from the one for communications (e.g.,
AES). Thus, another encryption algorithm is required to encrypt the payment
methods information when they are stored/retrieved in the user’s device. In
this case, both encrypting and decrypting functionalities are required by the
same component (CustomerProfileManager). Here, our approach inspect the
application looking for a structural pattern that represents a data storage and
the join points would be automatically detected.

3 Capturing the Security Variability

To accomplish the automatic identification of the joint points, we identify a set
of structural patterns that specifies the relationships with the application. The
variability of the patters is modelled in an SPL, together with the variability of
the security functionality. Then, the software architect instantiates the patterns
and the security functionality according to the application’s requirements.

A security pattern describes a particular, recurring security problem (e.g.,
applying encryption) that arises in specific contexts, and presents a well-proven
generic solution for it [9]. In the case of the confidentiality property, we need



Fig. 2. Encryption pattern for secure communications.

a set of patterns that allows to apply the encryption functionality to different
parts of the application such as remote/local direct/indirect interactions, and
data storage. Encryption is usually defined as a component that provides two
main functionalities: encrypt and decrypt (see Fig. 2), which normally inter-
cept (crosscut) the application functionality at specific points. For example,
the pattern to apply encryption in a secure communication is shown in Fig. 2
and states that the encrypt method intercepts a “sender component” (|C1)
in order to encrypt the message information (|param) before sending it (i.e.,
calling the method |m), while the decrypt method crosscuts a “receiving com-
ponent” (|C2) to decrypt the message information after receiving it. Figure 2
represents a parameterizable structural (a) and behavioral (b) view of this pat-
tern for encrypted communications. The top of Fig. 2(a) shows the dependencies
of the pattern with the architectural elements of the application architecture
(Application components). The bottom of Fig. 2(a) shows the encryption com-
ponent (EncryptionAlgorithm) with the provided functionality (Encryption
interface). The pattern captures the information that is required to incorporate
encryption into the interaction between two components. Throughout this paper,
we only use the structural view for the sake of simplicity, but patterns can be
complemented with additional views as shown in Fig. 2(b).

The partial or total instantiation of the parameters of this pattern, with infor-
mation obtained from the application’s requirements, allows correctly applying
encryption for straightforward communications — i.e., applying encryption to
two communicating components that use a common interface. However, this
pattern does not capture all the situations in which encryption may have to be
incorporated. For instance, it does not allow applying encryption in situations
that do not involve a communication, such as storing encrypted data in a device,
or applying encryption to interactions between two non-adjacent components.



Fig. 3. Variability model for the encryption patterns and encryption functionality.

Thus, as it is impossible for only one pattern to cover all kinds of interac-
tions with the application, we propose modeling the variability of the security
patterns following a Software Product Line (SPL) [8]. Concretely, we extend
the variability model modeling the security functionality in our previous work
to enhance it with the variability of the security patterns. An SPL1 allows us
to specify the commonalities and variabilities of a product and then generate
specific configurations of the product according to different requirements.

Figure 3 shows a variability model that specifies, using features in an abstract
level (top of Fig. 3), the variability of the encryption patterns (left of the figure)
and the variability of the encryption functionality (right of the figure). Then,
specific models (e.g., the software architecture of encryption, the structural/be-
havioral patterns for encryption) are linked to the features of the abstract tree.
Note that using existing tools for SPL (e.g., CVL [10], SPLOT [11]), the architec-
tural models in the bottom of Fig. 3 will be automatically instantiated accord-
ing to the features selected from the abstract tree. Concretely, the bottom of
Fig. 3 shows two parameterizable encryption patterns and the model of the
encryption functionality (Encryption Functionality Model), including all the

1 http://www.sei.cmu.edu/productlines/.

http://www.sei.cmu.edu/productlines/


variable architectural elements. Notice that security properties are usually mod-
eled by much more complex architectures, though in this example we only rep-
resent the encryption algorithms for the sake of simplicity. For the Encryption
Functionality Model, a selection of a particular feature in the tree selects the
encryption algorithm that will be used. The multiplicity feature (Encryption
[1..*] in Fig. 3) indicates that both the algorithms and the patterns can be
instantiated multiple times in order to use different algorithms and patterns.

3.1 Resolving the Variability of the Application

Once all the variability of the security functionality and the patterns has been
defined in the SPL (only once) by the domain experts, the software architect
can use our approach to generate different configurations of the patterns and
the security functionality according to each application’s requirements.

A complete configuration of the variability model from requirements Req. 1,
2, and 3 of our case study is shown in Fig. 4. There are three instances of the
encryption feature: one for each requirement. The first instance (Encryption
for Req. 1) is configured with the RSA algorithm, and uses the Communication-
Encryption pattern instantiated as shown in Fig. 5(a), with the goal of encrypt-
ing the sensitive information exchanged between the client and the server host.
The second instance (Encryption for Req. 2) is also configured with the RSA
algorithm, but uses two patterns (CommunicationEncryption and Response-
Encryption) to apply encryption in both directions of the communications
between the components EPaymentServer and BankTransaction of the same
host (E-PaymentServer). Since all information exchanged between these two
components is required to be encrypted, no information regarding the type of
the data, nor the interface, methods, etc. is provided by the software architect.
Finally, the third instance (Encryption for Req. 3) is configured with the AES
algorithm, and uses the StorageEncryption pattern in order to storage the
payment information in a secure way. In this case, the software architect has
not instantiated any parameter of the pattern, as shown in Fig. 5(b). This could

Fig. 4. Instance of the variability model for the encryption functionality and patterns.



Fig. 5. Instances of the encryption patterns for (a) Req 1. and (b) Req. 3.

occur when the requirements do not provide enough information, the software
architect does not know how to interpret the requirements, or does not have
the required knowledge to instantiate the pattern. In this case our approach
identifies a larger set of join points and the software architect has to manually
select the correct ones. At least it knows all the matching points that need to
be considered.

The encryption patterns show the parameters that can be customized accord-
ing the application’s requirements. The patterns for applying encryption to the
communications (Communication Encryption Pattern) and to the storage of
information (Storage Encryption Pattern) are described in more details in
Fig. 5(a) and (b), respectively. Providing a value in the feature tree means
that this element in the pattern will be instantiated with the provided value.
For instance, to satisfy Req. 1, the software architect has instantiated the
Communication Encryption Pattern of Fig. 5 (a) with the following parame-
ters: the data type of the information to be encrypted (i.e., the PaymentMethod
type), and the identifiers of the client and the server hosts (E-PaymentClient
and E-PaymentServer). The following section explains how we correctly identify
the join points from the previously customized patterns in our approach.



4 Supporting the Composition Process

Once the variability model has been instantiated, now the security and the
application models are composed. To achieve this, the composition patterns
customized in the previous step are mapped on structures in the application
architecture by using M2M transformations. The mapping process can be used
in two complementary ways: (1) guiding the software architects in selecting the
correct join points, and (2) supporting them in verifying their choices of join
points.

4.1 Automatically Identifying the Join Points

In order to identify the join points where the customized patterns have to be
applied and guaranteeing that the final architecture satisfies the security require-
ments, the model transformations can be treated as a separate previous step to
the composition process. Before the composition process, checking each instan-
tiated pattern with our e-payment application architecture (Fig. 1) finds all pos-
sible matchings where the pattern can be applied (Fig. 6). The number of identi-
fied matchings directly depends on the number of parameters for which a specific
value was provided during the instantiation of the variability model.

For instance, the first instantiated pattern (Encryption for Req. 1)
matches the application model in the join points Req. 1. Matching 1 and
Req. 1. Matching 2 in Fig. 6. The software architect provided just the data
type to be encrypted (PaymentMethod) and the hosts’ information, while the con-
crete components where the encrypt and decrypt methods will be composed has

Fig. 6. Matchings for the encryption patterns in the e-payment architecture.



been automatically identified. To satisfy Req. 2, two patterns were instantiated:
CommunicationEncryption and ResponseEncryption. Each of them matches
the application architecture in Req. 2. Matching 1 and Req. 2. Matching 2,
respectively. In this case, the identifiers of the two communicating compo-
nents were directly provided: the PaymentServer and the BankTransaction
components. All information exchanged between these two components will be
encrypted before sending and decrypted after being received. Finally, for Req. 3,
the StorageEncryption pattern was instantiated without specifying any para-
meters. This implies that there will be multiple matchings for this pattern, as
Req. 3. Matching 1 and Req. 3. Matching 2 in Fig. 6. Both matchings are cor-
rect for this pattern. However, Req. 3 only specifies that the payment card infor-
mation that is stored in the user’s device need be encrypted (Req. 3. Matching
1) and, thus, the information about the receipts of the transactions (Req. 3.
Matching 2) does not need to be encrypted. In such a case, we give the soft-
ware architect the opportunity to make an explicit choice of the matching, or to
instantiate the pattern again by providing more specific information such as the
type of data to be encrypted (e.g., the PaymentMethod in this case).

4.2 Verifying the Security Requirements

To demonstrate that the security functionality has been applied in the correct
way and places, the M2M transformations can be applied to a model where
the security model has already been composed with the application model. For
instance, when the join points were manually identified. The same instance of
the variability model shown in Figs. 4 and 5 can now be used to verify that the
security property was correctly added to all the matchings of the final application
model (the base application model composed with the security model). In our
case study, a software architect could verify whether the final application model
includes encryption in all the matchings shown in Fig. 6. Comparing the final
application model and the matchings, the software architect may realise that
encryption was not added to some of the identified matchings. This supposes
a hole in the security of the application, but it can be easily resolved accord-
ing to the information provided automatically by our approach. Thus, the tool
supporting the instantiation of the patterns can also be used to check that the
software architect has applied them in all the correct places.

5 Evaluation Results and Discussion

We have tested the validity of our approach by implementing the patterns and
M2M transformations using the Henshin transformation language [12].2 We have
used two case studies: the e-payment application used throughout this paper,
and an electronic voting application.3 In this section we qualitatively argue the
correctness, extendibility, and reusability of our approach.
2 They are available at http://150.214.108.91/code/interfacesfqa/tree/master.
3 http://inter-trust.eu/.

http://150.214.108.91/code/interfacesfqa/tree/master
http://inter-trust.eu/


Correctness. The correctness of our approach depends on the correctness of the
specification of the patterns and on the implementation of the M2M trans-
formations. The patterns and M2M transformations are formally modeled
conforming to a specific metamodel, so if the domain experts do their job
correctly, the identification and checking of the join points will also be correct.
Moreover, separately modeling the security functionality and the base appli-
cation considerably facilitates the verification of the security properties of an
application since a security expert can rely on the automatic output provided
by applying the patterns, instead of manually checking all the modules in the
base application to ensure that all security requirements have been correctly
enforced. Finally, our approach is able to ensure the level of security required
by an application even when the software architect is not completely aware of
the elements in the application architecture that are affected by the security
requirements, but is able to indicate at least, the structural patterns that
are affected by security (e.g., encrypt the communications between compo-
nents, or encrypt the data store in a data storage). In this case, our approach
identifies a larger set of join points because most of the pattern’s parameters
are not specified. We can ensure that all of them are correct. The software
architect then has two options: (1) add encryption to all the identified join
points. This will guarantee that the security of the application is ensured,
or (2) manually select a subset of them. In this case, our approach is not
responsible for the security gaps that may be introduced.

Extendibility. In this paper we have focused on the confidentiality property and
have shown in the SPL only the variability of the encryption algorithms. How-
ever, the SPL can be easily extended to cover more security properties such as
authentication, integrity, anonymity, etc. Moreover, the variability model can
consider any variable security functionality such as the management of the
keys for encryption or the passwords for the authentication concern, not just
the variation between algorithms. Note that although the intricacy of this
approach may seem inadequate for only adding encryption to an application,
our final goal is much more ambitious as this work is part of an approach to
separately modeling the variability of quality attributes [5]. Concretely, we
have an SPL modeling the variability of several quality attributes, not only
security (e.g., contextual help, persistence) and the approach presented in
this paper is applicable to all of them.

Reusability. Our approach improves the reusability of the security concerns by
modeling the security functionalities separately from the core functionality
of the application, from early stages. This reduces the coupling and increases
the cohesion of software architectures. Also, thanks to the combined use of
the separation of concerns and the SPLs, we can reuse the same security
functionality and patterns with different applications.

6 Related Work

Security is usually achieved in several ways, but most of the approaches present
security as a set of non-functional properties [6,9,13,14], instead of focusing on



the functional part of the security concerns as we have done for confidentiality
in this paper. For instance, in [6], the authors present a systematic approach for
weaving non-functional requirements into software architecture using architec-
tural tactics similar to our composing patterns. However, we consider security as
extra-functionality that needs to be present as functional components inside the
application architecture to satisfy the requirements. So, we focus on the iden-
tification of the correct places where security must be incorporated, instead of
providing the systematic steps to perform the composition of the patterns, as
we also did in previous work on composing security functionalities [5,15].

Cuevas et al. [7] also describe a generic solution for non-security experts
using security patterns. The solution captures a security pattern that provides
access control to sensor data based on light-weight encryption and grant pro-
vision. No means of how and where applying encryption functionality to the
software architecture is described. Only the properties and functionalities that
are common to all implementations of the encryption-based access control are
captured using the security patterns, and thus, the customization of the patterns
is too limited because of the lack of variability. QADA [16] is a specific method
for designing SPL architectures by transforming systematic functionality into
software architectures, but this proposal does not explicitly take into account
the security requirements, so the semantic correctness of the final architecture
cannot be checked, in order to assure the quality of the system.

Another approach that separately models the security functionality from the
base application is CORE (Concern-Oriented REuse) [4]. Nevertheless, as the
other existing work [5–7,15], they do not provide mechanisms to guarantee that
security is deployed in all and correct places of the application architecture.

7 Conclusions and Future Work

In this paper we have presented an approach towards the automation of the
composition process between application and security models. Specifically, the
approach consists in modeling the variability of a set of patterns to incorporate
the security functionality in the correct places of the application architecture,
according to its requirements. This means that we provide the software architect
with support for automatically identifying the join points where the security
functionality has to be incorporated. So, instead of manually identifying the join
points, as existing approaches propose, the system offers the software architect a
set of join points. It also provides support to verify the correctness of a composed
application architecture, so that the requirements of the system can be assured.
As future work we plan to improve our approach by defining the patterns in terms
of a security conceptual model that will allow the join points to be selected based
on semantic instead of just syntactic information [17].

Acknowledgment. This work is supported by the project Magic P12-TIC1814 and
by the project HADAS TIN2015-64841-R (co-financed by FEDER funds).



References

1. Preda, S., Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J., Toutain,
L.: Model-driven security policy deployment: property oriented approach. In:
Massacci, F., Wallach, D., Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965,
pp. 123–139. Springer, Heidelberg (2010)

2. Ayed, S., Idrees, M.S., Cuppens-Boulahia, N., Cuppens, F., Pinto, M., Fuentes, L.:
Security aspects: a framework for enforcement of security policies using AOP. In:
SITIS, pp. 301–308 (2013)

3. Mouelhi, T., Fleurey, F., Baudry, B., Le Traon, Y.: A model-based framework
for security policy specification, deployment and testing. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301,
pp. 537–552. Springer, Heidelberg (2008)

4. Alam, O., Kienzle, J., Mussbacher, G.: Concern-oriented software design. In:
Moreira, A., Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013.
LNCS, vol. 8107, pp. 604–621. Springer, Heidelberg (2013)

5. Horcas, J.M., Pinto, M., Fuentes, L.: An automatic process for weaving functional
quality attributes using a software product line approach. J. Syst. Softw. 112,
78–95 (2016)

6. Kim, S., Kim, D.K., Lu, L., Park, S.: Quality-driven architecture development
using architectural tactics. J. Syst. Softw. 82(8), 1211–1231 (2009)

7. Cuevas, A., Khoury, P.E., Gomez, L., Laube, A.: Security patterns for capturing
encryption-based access control to sensor data. In: SECURWARE, pp. 62–67 (2008)

8. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer, New York (2005)

9. Schumacher, M., Fernandez, E., Hybertson, D., Buschmann, F.: Security Patterns:
Integrating Security and Systems Engineering. Wiley, Chichester (2005)

10. Haugen, Ø., Wasowski, A., Czarnecki, K.: CVL: common variability language. In:
Software Product Line Conference, SPLC, vol. 2, pp. 266–267 (2012)

11. Mendonca, M., Branco, M., Cowan, D.: S.P.L.O.T.: software product lines online
tools. In: Object Oriented Programming Systems Languages and Applications,
OOPSLA, pp. 761–762. ACM (2009)

12. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.: Henshin: advanced
concepts and tools for in-place EMF model transformations. In: Petriu, D.C.,
Rouquette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394,
pp. 121–135. Springer, Heidelberg (2010)

13. Yu, H., Liu, D., He, X., Yang, L., Gao, S.: Secure software architectures design by
aspect orientation. In: ICECCS, pp. 47–55 (2005)

14. Hafiz, M., Adamczyk, P., Johnson, R.E.: Organizing security patterns. IEEE Softw.
24(4), 52–60 (2007)

15. Horcas, J.M., Pinto, M., Fuentes, L.: An aspect-oriented model transformation to
weave security using CVL. In: MODELSWARD, pp. 138–147 (2014)

16. Matinlassi, M., Niemelä, E., Dobrica, L.: Quality-driven Architecture Design and
Quality Analysis Method: A Revolutionary Initiation Approach to a Product Line
Architecture (2002)

17. Pires, P.F., Delicato, F.C., Pinto, M., Fuentes, L., Marinho, É.: Software evolution
in AOSD: a MDA-based approach. In: CBSE, pp. 193–198 (2011)


	Automatic Enforcement of Security Properties
	1 Introduction
	2 Motivating Case Study
	3 Capturing the Security Variability
	3.1 Resolving the Variability of the Application

	4 Supporting the Composition Process
	4.1 Automatically Identifying the Join Points
	4.2 Verifying the Security Requirements

	5 Evaluation Results and Discussion
	6 Related Work
	7 Conclusions and Future Work
	References


