
Closing the Gap between the Specification
and Enforcement of Security Policies

José-Miguel Horcas, Mónica Pinto, and Lidia Fuentes

CAOSD Group, Universidad de Málaga, Andalucía Tech, Spain
{horcas,pinto,lff}@lcc.uma.es

Abstract. Security policies are enforced through the deployment of cer-
tain security functionalities within the applications. Applications can
have different levels of security and thus each security policy is enforced
by different security functionalities. Thus, the secure deployment of an
application is not an easy task, being more complicated due to the exist-
ing gap between the specification of a security policy and the deployment,
inside the application, of the security functionalities that are required to
enforce that security policy. The main goal of this paper is to close this
gap. This is done by using the paradigms of Software Product Lines and
Aspect-Oriented Programming in order to: (1) link the security policies
with the security functionalities, (2) generate a configuration of the se-
curity functionalities that fit a security policy, and (3) weave the selected
security functionalities into an application. We qualitatively evaluate our
approach, and discuss its benefits using a case study.

Keywords: Security enforcement, security policy, aspect-oriented pro-
gramming, software product lines.

1 Introduction
A security policy is a set of rules that regulate the nature and the context of
actions that can be performed within a system according to specific roles (i.e.
permissions, interdictions, obligations, availability, etc) to assure and enforce
security [1]. The security policies have to be specified before being enforced. This
specification can be based on different models, such as OrBAC [2], RBAC [3],
MAC [4], etc. and describes the security properties that an application should
meet. Once specified, a security policy is enforced through the deployment of
certain security functionalities within the application. For instance, the security
policy “the system has the obligation to use a digital certificate to authenticate
the users that connect using a laptop” should be enforced by deploying, within
the application, “an authentication module that supports authentication based
on digital certificates”. This module must be executed before the user connects
to the application using a laptop. In order to make explicit this relationship
between the security policies and the security functionalities that are needed to
enforce them, the links between both should be specified.

This relationship is needed because, normally, the same application can be
deployed with different security policies. This implies that a variable number
of security functionalities will be used by the application, but not all of them

simultaneously. For example, in this paper we use an e-voting case study where
the administrator can create elections of different types (e.g. national elections,
coorporative elections, social event elections, etc.). These elections are deployed
with different security policies. For instance, in a national election, users must be
authenticated by an X.509 digital certificate provided by a trusted certification
authority before they are joined to the election. Votes must be encrypted and
must preserve their integrity and authenticity. However, in a corporative election
users must be authenticated by using a user/password mechanism, while in a
social event election users do not need to authenticate. In other words, there
are different levels of security depending on the kind of election, and thus, each
security policy is enforced by different security functionalities.

All this means that the secure deployment of an application is not an easy
and straightforward task. Moreover, this is complicated even further due to the
existing gap between the specification and the enforcement of a security policy.
This gap is generated by the lack of a well-defined approach that would automat-
ically introduce into an application, the security functionalities that are required
to enforce the security policy. The main goal of this paper is to close this gap.
We do this by using two advanced software engineering approaches, Software
Product Lines (SPLs) [5] and Aspect-Oriented Programming (AOP) [6].

On the one hand, we use SPLs to: (1) model the commonalities and variabil-
ities of the security properties represented in the security policies, (2) link the
security properties to the modules that implement the security functionalities,
and (3) automatically generate a security configuration including only the secu-
rity functionalities that are required to enforce a particular security policy. On
the other hand, we use AOP to: (1) design and implement the security function-
alities separately from the applications (implementing them as aspects), and (2)
deploy a security configuration in an application without modifying the original
application. This work has been done in the context of the European project
Inter-operable Trust Assurance Infrastructure (INTER-TRUST) [1] that aims
to develop a framework to support trustworthy applications that are adapted at
runtime to enforce changing security policies.

The rest of the paper is organized as follow. Section 2 describes the SPL
and AOP approaches, introducing the main terminology. Section 3 provides an
overview of our approach, while Section 4 and Section 5 describe it in an example-
driven way using the e-voting case study. Section 6 evaluates our approach. The
remaining sections present the related work, conclusions and future work.

2 Background Information
This section introduces the SPL and AOP approaches, and the main terminology.

2.1 Software Product Lines

In software engineering we usually need to create and maintain applications that
contain: (1) a collection of similar functionalities from a shared set of software
assets (i.e. commonalities) and (2) a collection of variant functionalities (i.e.
variabilities). These applications require software developers to build a base on

the application commonalities, and to efficiently express and manage the appli-
cation variabilities, allowing the delivery of a wide variety of applications in a
fast, comprehensive and consistent way. The enabling technology to do that is
the Software Product Lines (SPLs) [5]. SPLs allow the specification and mod-
eling of the commonalities and variabilities of applications in an abstract level,
creating different configurations of those variabilities for the implemented func-
tionalities, and generating final applications with the customized functionalities
according to those configurations.

The security functionalities that need to be deployed inside an application are
clearly variable. One the one hand, security is composed by many concerns, such
as authentication, authorization, encryption, and privacy concerns, among oth-
ers, which are regarded as configurable functionalities of security. For instance,
there are many possible mechanisms to authenticate users (e.g. digital certifi-
cate, password based, biometric based), or there are a variable number of places
within an application where communications need to be encrypted. On the other
hand, an application will require different levels of security, based on the require-
ments specified in different security policies. So, different security configurations
for the same application can be generated by modeling security using an SPL.

Between the methods, tools and techniques provided by SPLs to model vari-
ability with the guarantee of a formal basis, some of the most commonly used are
feature models [7] in which the variability functionalities are specified in the ab-
stract level by using tree-based diagrams that include optionals and mandatories
features, multiplicity, cross-tree constraint, among other characteristics. In this
paper, we will use the Common Variability Language (CVL) [8] that apart from
providing the same characteristics of feature models, is a domain-independent
language and allows modeling and resolving the variability over models defined
in any language based on Meta-Object Facility (MOF) [9].

2.2 Aspect-Oriented Programming
In object-orientedprogrammingand component-based software engineering, there
are concerns of an application that are dispersed or replicated in multiple modules.
This occurs even when the functionalities are well-encapsulated in a class or a com-
ponent (e.g. an encryption component), because the rest of the modules requiring
these concerns need to include implicit calls to them (e.g. all the components in
the application need to call the encryption component in order to encrypt/decrypt
their interactions). These kinds of properties are known as crosscutting concerns,
and their direct incorporation into the main functionality of an application cause
scattered (i.e. dispersion) and tangled (i.e. mixing) code.

Security is a well-known crosscutting concern in the aspect-oriented com-
munity [10,11]. Figure 1 shows an example of how several security function-
alities crosscut the base components of our e-voting application. For instance,
Authentication is required for voters and administrators, so this functionality
is scattered within the Voter Client and Admin Client components. In ad-
dition, the code of the authentication functionality is tangled with these main
components. Integrity and Signature functionalities are also tangled within
the Voting Ballot component; while Encryption is also dispersed in several

Fig. 1. Security functionalities crosscutting an e-voting application

places in the application. Modeling the variability of these security functionalities
joinly with the base application is a difficult and error-prone task.

One of the most advanced techniques for dealing with crosscutting concerns is
Aspect-Oriented Programming (AOP) [6]. AOP separates crosscutting concerns
from the base functionality of an application by first encapsulating them in
entities called aspects, and by then weaving (i.e. incorporating) these aspects
into the existing code of the base application without modifying it. Aspects
are described in terms of join points, pointcuts and advices. The points inside
the code of the base application in which the crosscutting concerns come into
play are known as join points ; pointcuts are expressions that pick out certain
join points; and advices is the crosscutting behaviour to be executed when a
pointcut is reached. The mechanism in charge of weaving the main functionality
of the application and the aspects is the weaver.

Separating the security functionalities from the base functionality of the ap-
plication smoothes coupling between modules and increases the cohesion of each
of them. As a consequence of a low coupling and a high cohesion, the maintain-
ability of the global system improves due to the fact that changes in a module
affect only that module; and thus, the modeling of the security variability and
consequent deployment and enforcement of different security policies is easier.
Moreover, the reusability also improves because the three elements (the base
code, the security functionalities and the security policies) can be more easily
reused in different systems.

3 Our Approach

As we presented in the introduction, an application can be deployed with dif-
ferent security policies and each security policy is enforced by different security
functionalities. Top of Figure 2 shows the problem of the existing gap between
the specification snd the enforcement of the security policies. Bottom of Figure 2
shows our solution to close this gap.

As previously mentioned, our approach combines the use of SPL and AOP.
Firstly, as shown in Figure 2, left side under the Solution label, we model the
variability of the security functionalities in an abstract level by specifying all the
possible features of each security functionality in a tree-based diagram (i.e. we

Fig. 2. Problem overview and solution proposal

specify the SPL). This variability model is linked to the complete implementation
of the security functionalities, by linking each feature in the tree to the pieces
of code that have to be included and configured (e.g. a class, a parameter, a
value,. . .). Secondly, the right-hand side of Figure 2, under the Solution label,
shows how, for each security policy, we create a configuration of the previously
specified SPL by selecting those features in the tree that meet the security policy
— i.e. we instantiate the SPL. This step can be done by a security expert or can
also be done automatically by a reasoning engine that extracts the knowledge of
the security policy and selects the appropriate features.

Using AOP, the security functionalities are implemented as aspects with the
purpose of deploying them in the application without modifying the base code
of the original application. Thus, the last step of our approach (see bottom
half of Figure 2) is weaving the application and the aspects that implement a
particular security configuration. The generated application includes the security
functionalities that are needed to guarantee the enforcement of the security
policy. The following sections describe our approach in more detail.

4 Variability Modeling of Security Functionalities

In this section we explain how to specify the SPL for modeling the variability of
the security functionalities. We use the variability model of CVL that comprises
two parts: (1) the variability specifications (VSpecs) tree (i.e. the abstract level)

<<aspect>>
Encryption

<<aspect>>
Authorization

TrustInteroperability [1..*] ChannelProtection [1..*] Filtering [1..*] MessageSecurity [1..*] DataSecurity [1..*]

Authentication Unlinkability

FilteringTrust

IPSec

Authorization

AccessControl [1..*]

1..1

Pseudonymity

Privacy [1..*]

1..1

WifiSecurity

1..1

Signature

Authenticity

Hashing

Integrity Confidentiality Cypher

1..*

Authentication_CU

Authorization_CU

Trust_CU

Unlinkability_CU

Pseudonymity_CU

IPSec_CU

WifiSecurity_CU Signature_CU

Filtering_CU Hashing_CU

Confidentiality_CU

<<aspect>>
Trust

<<aspect>>
Unlinkability

<<aspect>>
Pseudonymity

<<aspect>>
IPSec

<<aspect>>
WifiSecurity

<<aspect>>
Filtering

<<aspect>>
Signature

<<aspect>>
Hashing

Security Functionalities

Cypher_CU

<<aspect>>
Authentication

Security

0..*

V
ar
ia
bi
lit
y
sp
ec

ifi
ca
ti
on

s
(V
S
pe

cs
) t
re
e

Va
ria

tio
n
po

in
ts

B
as
e
m
od

el

Authenticity implies Integrity

V
ar
ia
bi
lit
y
m
od

el

ChoiceFeature [1..*]

CompositeVariability_Cv

Variable: Type
1..n

between 1 and n
selections

Constraint

ConfigurableUnit_CU

mandatory
feature

optional
feature

reference between
variation points and

features

binding between
variation points

and functionalities

CVL Legend

1 or more
instances

yes/no
decision

specify a
value of a type

intricate relationships
among features

container of
variation points

container of
specifications trees

selections in a
configuration

Fig. 3. Modeling security concepts in CVL

that allows us to specify the security features in a tree-structure with the rela-
tionships between them; and (2) the variation points, that allows us to link the
features of the tree with the implementation of the security functionalities.

Figure 3 shows the variability model with these two parts and the imple-
mentation of the security functionality encapsulated inside the aspects. In the
VSpecs, security is decomposed into more specific concepts and configurable fea-
tures. For instance, the AccessControl concept contains the Authentication
and Authorization features. The multiplicity [1..*] beside the AccessControl
concept indicates that we can create multiple instances of it, each of them will
require the configuration of different Authentication or Authorization fea-
tures. For each of these instances there will be an aspect instantiated with the
appropriate security functionality configured. In this case, variation points link
each feature with the aspect that contains the configurable functionality.

Since security is composed by a lot of functionalities, and each of them has
many configurable features, we define the variability model in two levels of detail
using several related tree diagrams: (1) a high level VSpecs with all the main
security functionalities represented as features (Figure 3); and (2) a VSpecs
tree for each of these features in order to configure them appropriately. For
instance, Figure 4 shows the part of the variability model that specifies the
details to configure the Authentication functionality. Authentication is de-
composed in a set of configurable features such as the authentication mecha-
nism (DigitalCertificate or UserPassword) and the parameters and variables
that contain the selected functionality (kind of certificate (Credentials), cer-
tificate authority (TrustedCA), ldots). These can be defined as optional features

Authentication Functionality

Identity: Object

Country: String

Organization: String

OrganizationUnit: String

CommonName: String

DigitalCertificate UserPassword

X.509Certificate

TrustedCA

Authentication

1..1

Credentials

Digital
Certificate

X.509 Certificate

Certificate Authority

C:String = “ES”
O:String = “Fábrica Nacional de

Moneda y Timbre”

OU:String = “FNMT”

CN:String = “CERT.FNMT.ES”

CA

Authent.
Algorithm

User
Password

Private Key

alias:String = “voter001”
keyStore:String = “VotersRepository”

PK

V
ar
ia
bi
lit
y
sp

ec
ifi
ca
ti
on

s
(V
S
pe

cs
) t
re
e

V
ar
ia
ti
on

 p
oi
nt
s

B
as
e
m
od

el

<<aspect>>
Authentication

Advice

Pointcut

SessionKey

KeyAlias: String

KeyStore: String

:ParametricSlotAssignment
slotIdentifier = “target”

:ObjectSubstitution
target = “Digital Certificate”

:ParametricSlotAssignment
slotIdentifier = “C”

:ParametricSlotAssignment
slotIdentifier = “O”

...

:ObjectSubstitution
target = “Authent. Algorithm”

:ObjectSubstitution
target = “Authent. Algorithm”

......

V
ar
ia
bi
lit
y
m
od

el

owner: Object = Voter

Fig. 4. Variability Modeling of Authentication functionality

(ObjectExistencevariation point), variable features (ObjectSubstitutionvari-
ation point), parameterizable features (ParametricSlotAssignment variation
point), among others. In our case, we only need to use the ObjectSubstitution
and the ParametricSlotAssignment variations point in order to substitute the
selected authentication mechanism to be used (Authent. Algorithm) and to
assign the values to the variables (e.g. parameters of the TrustedCA).

Note that the main benefit of our approach is that this SPL specification,
although it is complex, only needs to be specified once by a software engineer,
expert on security. Then, application developers will only have to select those se-
curity functionalities that need to be used in their applications and, as explained
in the next section, our approach will generate a security configuration that en-
forces the required security policy, and is ready to be used by the application.

5 Enforcement of Security Policies

This section explains how to create a security configuration that enforces a se-
curity policy and how to deploy it within the application.

5.1 Configuring the security functionality

In order to select and configure the proper functionality that enforces a security
policy, the security rules specified in the policy need to be analyzed and inter-
preted. This can be done by a security expert, an administrator, or automatically,
by a reasoning engine that extracts the security knowledge from the rules, selects
the security features, and assigns the appropriate values in the VSpecs — i.e.
we instantiate the SPL by creating a configuration for the VSpecs.

Following our e-voting case study, Listing 1.1 shows an excerpt of a security
policy defined in the OrBAC model for a national election in Spain. The first
two rules specify that voters and administrators must be authenticated by a
digital certificate in the spanish administration server (GOB_ES). The other rules
specify permission for administrators and voters in order to create elections
(rule 3) and to access the general elections (rule 4) respectively, to guarantee
the authenticity and integrity of the votes (rule 5), and the encryption of all the
interactions between the users and the server (rule 6).

Listing 1.1. Excerpt of an OrBAC security policy

1 Obligation(GOB_ES , User , Authenticate , Certificate , Authent_conditions) ∧
2 Obligation(GOB_ES , Admin , Authenticate , Certificate , Authent_conditions)

∧
3 Permission(GOB_ES , Admin , Create, Election , default) ∧
4 Permission(GOB_ES , User , Access, General_Election , default) ∧
5 Permission(GOB_ES , User , Sign , Votes , Signature_conditions) ∧
6 Permission(GOB_ES , User , Encrypt , Messages , Encrypt_conditions)

From these rules a configuration of the VSpecs is created. Some elements of
the security policies are used to select the desired functionality, while other ele-
ments are used to configure the selected functionality. Features in a dark color in
Figure 3 represent the security features selected for those rules. From rules 1-4
we have selected the AccessControl security concept with the Authentication
(rules 1-2) and Authorization (rules 3-4) functionality, and this requires pro-
viding two different configurations for each of these functionalities — i.e. this
implies two different instances of the authentication aspect and two different
instances of the authorization aspect, properly configured. For rule 5 we have
selected the MessageSecurity concept that includes the Signature function-
ality, but also the Hashing functionality since there is a constraint in the SPL
specification indicating that Authenticity implies Integrity. So, in order to
enforce this requirement two different aspects should be configured: Signature
and Hashing. Finally, for rule 6 we have selected the DataSecurity concept with
the Cipher functionality in order to encrypt the information exchange between
the users and the server, and thus, an encryption aspect should be configured.

Each of these aspects contain the functionality that should be configured based
on the knowledge specified in the policy. So, we have to provide a configuration
for each instance of these aspects in the VSpecs. For example, features in a
dark color in Figure 4 and concrete values assigned to the variables represent a
configuration for the instance of the Authentication aspect corresponding to
security rule 1 of the security policy1. For instance, the credential parameters
and the trusted CA information are obtained from the context of the policy in
the OrBAC model, but can also be manually assigned if the security model does
not include that information.

In order to resolve the variability and automatically generate the configured
security aspects, the CVL engine is executed taking as inputs the security vari-
ability model, the particular configuration created for the variability model, and
the implementation of the security functionalities encapsulated into aspects.
1 For reasons of space, we represent the configuration directly over the VSpecs.

5.2 Deploying the Security Aspects into the Application

Once the security aspects have been generated according the specifications of
the security policy, the deployment of them inside the base application can be
performed in a non-intrusive way —- i.e., without modifying the existing code
of the application, by using the AOP. The mechanism in charge of composing
the main functionality of the application and the aspects is the weaver, and
how the weaver deploys the aspects within the application depends on the AOP
framework chosen to define the aspects (e.g. AspectJ, Spring AOP, JBoss AOP,
etc.). For instance, Figure 5 shows an example of the Authentication aspect
(in AspectJ) woven with the e-voting application. This aspect encapsulates the
authentication functionality (AuthenticationModule). The pointcut picks out
the execution of the method vote and before it runs, the user is authenticated
(advice code). We can observe how the application class Ballot does not contain
any reference to the authentication functionality or to any other functionality
related to security, which are all introduced as aspects.

Fig. 5. Security functionality deployed within the e-voting application using AOP

6 Evaluation Results
Our approach uses consolidated software engineering technologies (SPLs and
AOP), and a proposed standard language (CVL). So, in this section we qualita-
tively discuss our work to argue the correctness, maintainability, extendibility,
separation of concerns, reusability, and scalability of our approach.
Correctness. SPLs and AOP do not improve the correctness of applications
or security functionalities as such. Functionality in both cases is the same.
However, modularizing security concerns in separate modules with AOP con-
siderably facilitates the verification of the security properties of an application
since a security expert does not have to check all the modules in the base appli-
cation to ensure that all security requirements are correctly enforced. Instead,
only the code of the aspects and the definition of the pointcuts where the
aspects will be introduced need to be checked [10].

Maintainability and extendibility. On the one hand, due to the variability
expressed in the SPL, changes of specifications in security policies are adapted
easily by re-configuring the security functionality according to those changes.

Moreover, the variability model can be extended to cover more security con-
cerns. On the other hand, AOP facilitates: (1) the modification of the security
functionalities after being deployed due to the improved modularization, and
(2) the extension of the points in which the security functionalities take place
since we only need to extend the pointcuts of the aspects.

Separation of Concerns. Our approach improves the separation of concerns
because we separate the specification of the security policies from the imple-
mentation of the core security functionalities, and from the deployment of the
functionalities as aspects within the application.

Reusability. Following our approach, we can reuse the same security func-
tionality with different applications and security policies. The main drawback
is that we cannot reuse the same generated aspects for all the applications
because the aspects are generated for a particular security policy and may
also contain application dependent knowledge (e.g. pointcuts).

Scalability. Variability models have a considerable lack of scalability because
the tree-diagrams become unmanageable as they grow (e.g. in feature models).
However, CVL allows us to decrease the complexity of the model by dividing
the VSpecs into different levels of details, using Composite Variability features
and Configurable Units as we described in Section 4. Also, tree-diagrams is
only syntactic sugar, but it is built onto a formal basis [7] and can also be
specified using a text-based language [12].
In our follow-up work, we plan to improve our qualitative evaluation by using

Delphi [13] techniques in order to evidence the benefits and usefulness of our
approach from external experts.

7 Related Work
There is a growing interest in the SPL and AOP communities in resolving the
gap between the security policies and the security functionalities that enforce the
security policies [14,15,16]. For instance, in [14] the authors address the issue of
formally validating the deployment of access control security policies. They use
a theorem proving approach with a modeling language to allow the specification
of the system jointly with the links between the system and the policy, and with
the certain target security properties. The described algorithms, which perform
the translation of the security policy inside specific devices’ configurations, are
based on the OrBAC model with the B-Method specifications, and thus, this ap-
proach does not close the gap completely, but only for specific OrBAC models.
In addition, they do not separate the specification of the security functionality
from the base functionality of the system as we do using AOP. In [17] the au-
thors use a dynamic SPL to model runtime variability of services and propose
different strategies for re-configuring a base model using CVL (e.g. model incre-
ments/decrements). They focus on the concrete variability transformations that
need to be done in the base model in order to re-configured it, but they do not
relate the specification of the requirements and the functionality provided as we
do. Note that our approach can be extended to be applied to other requirements,
not only for security.

The INTER-TRUST project [1] also aims to cover the gap, but in a differ-
ent context. The INTER-TRUST framework regards the dynamic negotiation of
changing security policies (specified in OrBAC) between two devices. The out-
put of this negotiation is an agreement on interoperability policies, which must
be dynamically enforced in both devices. This implies configuring applications
and generating the security aspects that must be integrated into the applica-
tions [15]. The approach presented in this paper have to be seen as a possible
implementation of the aspect generation module of the INTER-TRUST frame-
work, which is the module in charge of determining the aspects that need to be
deployed in order to enforce a security policy.

Several papers deal with security in an aspect-oriented way such as [11,16].
However, none of them consider security policies for the specification of the se-
curity requirements in the applications. Moreover, most approaches in the AOP
community focus more on the security issues introduced by the AOP technology
in the applications, such as in [10]. In [16], the authors propose a framework for
specifying, deploying and testing access policies independently from the secu-
rity model, but only suitable for Java applications. They follow a model-driven
approach based on a generic security meta-model that is automatically trans-
formed into security policies for the XACML platform by using the appropriate
profile of the security model (e.g. OrBAC, RBAC). Then, the derived security
components are integrated inside the applications using AOP. The main draw-
back to this framework is that the generated security components depend on the
profiles of the specific security model used, and thus, the functionality cannot
be reused. Moreover, re-deploying a security policy implies again generating the
appropriate functionality with the consequent model transformations, which is
a expensive process. The use of an SPL allows our approach the re-deployment
of the security policy more easily and quickly.

In a previous work [18], we combined CVL and model transformations in order
to weave security functionalities within the applications and focused on defining
different weaving patterns for each security concern. Although the weaving pro-
cess was inspired in AO modeling techniques, it was completely implemented in
CVL without using AOP and the final application did not contain any aspects,
in contrast to the approach presented in this paper where security is incorpo-
rated into the application using aspects. In [19] the authors also use CVL to
specify and resolve the variability of a software design. However, their approach
depends on an external Reusable Aspect Model (RAM) weaver to compose the
chosen variants.

8 Conclusions and Future Work

The approach presented in this paper closes the existing gap between the spec-
ification and the enforcement of security policies by using consolidate software
engineers technologies, such as SPLs and AOP. These techonologies bring signifi-
cant benefits to our approach, including a better modularization, maintainability,
extendibility, and reusability. Also the use of CVL as the variability modeling

language improves the scalability of our approach and makes it suitable for any
MOF-based model. Moreover, separating the specification of the security policies
from the implementation of the security functionalities, and from the deployment
of them within the application, our approach is suitable for any security model
and facilitates the verification of the security policies enforcement.

As part of our future work, we plan to adapt our approach to dynamically
adapt the security functionalities to changes in the security policies at runtime.
This implies using Dynamic SPLs [20] and generating the code of the aspects so
as weaving them at runtime.

Acknowledgment. Work supported by the European INTER-TRUST FP7-
317731 and the Spanish TIN2012-34840, FamiWare P09-TIC-5231, and MAGIC
P12-TIC1814 projects.

References

1. INTER-TRUST Project: Interoperable Trust Assurance Infrastructure,
http://www.inter-trust.eu/

2. Kalam, A., Baida, R., Balbiani, P., Benferhat, S., Cuppens, F., Deswarte, Y.,
Miege, A., Saurel, C., Trouessin, G.: Organization based access control. In:
POLICY, pp. 120–131 (2003)

3. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur. 4(3),
224–274 (2001)

4. Sandhu, R.: Lattice-based access control models. Computer 26(11), 9–19 (1993)
5. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:

Foundations, Principles and Techniques. Springer-Verlag New York, Inc. (2005)
6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,

Irwin, J.: Aspect-Oriented Programming. In: Akşit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

7. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain
Analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, Soft.
Eng. Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania (1990)

8. Haugen, O., Wąsowski, A., Czarnecki, K.: CVL: Common Variability Language.
In: SPLC, vol. 2, pp. 266–267. ACM (2012)

9. OMG: Meta Object Facility (MOF) Core Specification Version 2.0 (2006)
10. Win, B.D., Piessens, F., Joosen, W.: How secure is AOP and what can we do about

it? In: SESS, pp. 27–34. ACM (2006)
11. Mouheb, D., Talhi, C., Nouh, M., Lima, V., Debbabi, M., Wang, L., Pourzandi,

M.: Aspect-oriented modeling for representing and integrating security concerns in
UML. In: Lee, R., Ormandjieva, O., Abran, A., Constantinides, C. (eds.) SERA
2010. SCI, vol. 296, pp. 197–213. Springer, Heidelberg (2010)

12. Classen, A., Boucher, Q., Heymans, P.: A text-based approach to feature mod-
elling: Syntax and semantics of TVL. Science of Computer Programming 76(12),
1130–1143 (2011); Special Issue on Software Evolution, Adaptability and Variability

13. Gordon, T.J.: The delphi method. Futures Research Methodology 2 (1994)
14. Preda, S., Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J., Toutain, L.:

Model-driven security policy deployment: Property oriented approach. In:
Massacci, F., Wallach, D., Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965,
pp. 123–139. Springer, Heidelberg (2010)

http://www.inter-trust.eu/

15. Ayed, S., Idrees, M.S., Cuppens-Boulahia, N., Cuppens, F., Pinto, M., Fuentes, L.:
Security aspects: A framework for enforcement of security policies using aop. In:
SITIS, pp. 301–308 (2013)

16. Mouelhi, T., Fleurey, F., Baudry, B., Le Traon, Y.: A model-based framework
for security policy specification, deployment and testing. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301,
pp. 537–552. Springer, Heidelberg (2008)

17. Cetina, C., Haugen, O., Zhang, X., Fleurey, F., Pelechano, V.: Strategies for vari-
ability transformation at run-time. In: SPLC, pp. 61–70 (2009)

18. Horcas, J.M., Pinto, M., Fuentes, L.: An aspect-oriented model transformation to
weave security using CVL. In: MODELSWARD, pp. 138–147 (2014)

19. Combemale, B., Barais, O., Alam, O., Kienzle, J.: Using cvl to operationalize
product line development with reusable aspect models. In: VARY, pp. 9–14 (2012)

20. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic Software Product
Lines. Computer 41(4), 93–95 (2008)

	Closing the Gap between the Specification
and Enforcement of Security Policies
	1 Introduction
	2 Background Information
	2.1 Software Product Lines
	2.2 Aspect-Oriented Programming

	3 Our Approach
	4 Variability Modeling of Security Functionalities
	5 Enforcement of Security Policies
	5.1 Configuring the security functionality
	5.2 Deploying the Security Aspects into the Application

	6 Evaluation Results
	7 Related Work
	8 Conclusions and Future Work
	References

