
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Variability models for generating efficient configurations of functional
quality attributes

Jose-Miguel Horcas⁎, Mónica Pinto, Lidia Fuentes
CAOSD Group, Universidad de Málaga, Andalucía Tech, Spain

A R T I C L E I N F O

Keywords:
Energy efficiency
Energy consumption
Quality attributes
Performance
Sustainability
Software product line
Variability

A B S T R A C T

Context: Quality attributes play a critical role in the architecture elicitation phase. Software Sustainability and
energy efficiency is becoming a critical quality attribute that can be used as a selection criteria to choose from
among different design or implementation alternatives. Energy efficiency usually competes with other non-
functional requirements, like for instance, performance.

Objective: This paper presents a process that helps developers to automatically generate optimum config-
urations of functional quality attributes in terms of energy efficiency and performance. Functional quality at-
tributes refer to the behavioral properties that need to be incorporated inside a software architecture to fulfill a
particular quality attribute (e.g., encryption and authentication for the security quality attribute, logging for the
usability quality attribute).

Method: Quality attributes are characterized to identify their design and implementation variants and how
the different configurations influence both energy efficiency and performance. A usage model for each char-
acterized quality attribute is defined. The variability of quality attributes, as well as the energy efficiency and
performance experiment results, are represented as a constraint satisfaction problem with the goal of formally
reasoning about it. Then, a configuration of the selected functional quality attributes is automatically generated,
which is optimum with respect to a selected objective function.

Results: Software developers can improve the energy efficiency and/or performance of their applications by
using our approach to perform a richer analysis of the energy consumption and performance of different al-
ternatives for functional quality attributes. We show quantitative values of the benefits of using our approach
and discuss the threats to validity.

Conclusions: The process presented in this paper will help software developers to build more energy efficient
software, whilst also being aware of how their decisions affect other quality attributes, such as performance.

1. Introduction

Non-functional requirements specify quality attributes (QAs) that
must be realized by the system [1]. Over the last decade, energy effi-
ciency has come to be considered as a new quality attribute that eval-
uates the resource consumption degree of software systems [2], being
especially relevant in modern Internet of Things (IoT) applications.
Energy efficiency, as well as other non-functional requirements, must
be taken into account in the early stages of the software development
process, because it affects the system’s quality. Indeed, QAs play a
critical role in the architecture elicitation phase, serving as selection
criteria to choose from among a great number of alternative designs and
ultimate implementations. As energy efficiency is such a critical issue,
we need to make the correct decisions when choosing the configura-
tions that consume fewer resources.

However, energy efficiency usually competes and conflicts with
other non-functional requirements. For example, using the greenest
implementation of a functional component reduces the energy con-
sumption, but can penalize system performance. Therefore, if both
energy efficiency and performance QAs are required, we need to find a
compromised solution. Indeed, the quality degree we wish to accom-
plish in terms of energy efficiency and performance will, in turn,
strongly influence the rationale of architectural design decisions; in-
cluding the achievement of other QAs that describe behavioural prop-
erties (e.g., security, usability) [3]. For instance, to satisfy the security
QA, applications may include an encryption component that modifies
the system behavior to provide confidentiality. Those components that
are added to the system to satisfy some QAs, may affect the perfor-
mance and energy efficiency of the system.

The specific functionality that is introduced into the application to

https://doi.org/10.1016/j.infsof.2017.10.018
Received 28 April 2017; Received in revised form 26 October 2017; Accepted 27 October 2017

⁎ Corresponding author.
E-mail addresses: horcas@lcc.uma.es (J.-M. Horcas), pinto@lcc.uma.es (M. Pinto), lff@lcc.uma.es (L. Fuentes).

Information and Software Technology 95 (2018) 147–164

Available online 31 October 2017
0950-5849/ © 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2017.10.018
https://doi.org/10.1016/j.infsof.2017.10.018
mailto:horcas@lcc.uma.es
mailto:pinto@lcc.uma.es
mailto:lff@lcc.uma.es
https://doi.org/10.1016/j.infsof.2017.10.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.10.018&domain=pdf

fulfill the desired QAs was recently coined as Functional Quality
Attribute (FQA) [4,5] as it describes the functional behavior needed to
satisfy specific QAs. This kind of functionality has some particular
properties, which can be differentiated from the base functionality of
the application. For instance, each application may require a different
variant or configuration of the FQA (e.g., for confidentiality, a parti-
cular encryption algorithm and key length could be required). It is very
important to investigate the relationships between FQAs and energy
efficiency jointly with performance since FQAs should be designed,
implemented and configured independently of the base application
components [4,5]. The energy consumption and performance should
therefore be analyzed independently of the application functionality.

Moreover, there are several frameworks and third party libraries
that provide different implementations of FQAs ready to be reused,
such as the Java Security package, the Apache Commons library, and
the Spring Framework. Unfortunately, there are not enough experi-
mental studies that show how each FQA solution addresses the energy
efficiency concern and if choosing a greener solution will affect the
performance of the FQA. A typical scenario is a developer who, al-
though is able to choose between different options providing similar
quality, simply decides to use the most popular framework with the
default configuration. In general, developers are not aware of the im-
plications of architectural decisions on the energy consumption [2].
They need some help to make the correct design decisions from the
point of view of energy efficiency, without penalizing the system per-
formance.

However, finding the optimum configuration of the FQAs that sa-
tisfies all the application’s requirements and that additionally takes into
account both energy efficiency and performance is a difficult and error-
prone task to carry out manually. First, there is no catalog to tell the
developer what parameters and variables present in the FQAs being
considered can affect the energy efficiency and the performance. For
example, the size of a message to be encrypted affects both energy ef-
ficiency and performance, but so does the algorithm used in the case of
the encryption FQA. But, developers do not have enough information to
choose the greenest encryption algorithm for a concrete message size,
without penalizing performance so much. Moreover, the same FQA can
be incorporated into different places of the application architecture. For
instance, the caching component can be added in those places of the
architecture where the access to the data supposes a bottleneck for the
application’s performance. Incorporating the same FQA in different
places of the application means that the FQA may need to be configured
differently at each point based on the interactions between components.

In this article, we define a process that helps application architects
and developers to automatically generate optimum configurations of
FQAs in terms of energy efficiency and performance for a given appli-
cation. This work centers the study of energy efficiency and perfor-
mance on FQAs, because FQAs can be modeled separately from appli-
cations and so they can be reused several times in different applications.
The main contributions of this paper are: (1) an original process for
generating optimum FQAs configurations based on experimental results
on energy efficiency and performance; (2) a characterization of the
FQAs in operations (e.g., encrypt/decrypt), contextual variables (e.g.,
the size of the object to be encrypted), configurable parameters (e.g.,
different algorithms), and implementations (e.g., existing framework
and libraries), and the corresponding usage model for each FQA that
includes all this information so it can be instantiated in the applications;
(3) we consider that an FQA can be injected in different points of the
application and also consider the dependencies between the usage
model of different FQAs. With our process it is also possible to generate
different configurations for the same implementation framework for
different points of a given application, so that the overall energy con-
sumption and/or performance are optimized; (4) a variability model
schema that models the characterization of (2) and use clonable fea-
tures to address (3) and that can be reused for any FQA; (5) a CSP
formalization that does not model energy as an attribute of each feature

as standard SPL processes do. The original work here is that we extend
the CSP formulation with: (i) a set of variables that model energy
consumption and performance as continuous variables that vary ac-
cording to the usage model; and, (ii) the dependencies between usage
models. And (6) finally, with our process, the application developer can
select a partial configuration, being able to reason about the energy
efficiency and performance of the different configurations. Indeed,
modeling explicitly the usage model to conduct experiments of soft-
ware energy consumption is original of this work.

This paper has been structured as follows. Section 2 outlines our
approach. Section 3 characterizes the QAs, identifying the functional-
ities and variables of the usage models that may affect the energy ef-
ficiency and performance. Section 4 models the variability of the FQA
usage models. Section 5 shows the experiment results obtained that
demonstrate how the different parameters affect the energy efficiency
and performance. Section 6 formalizes the variability models and the
experiment information so as to automatically generate the configura-
tions. Section 7 shows how our approach generates the best config-
urations based on the energy efficiency and performance. Section 8
evaluates our approach. Section 9 discusses related work, and
Section 10 concludes the paper.

2. Our approach

In this section we present a general overview of our approach
(Fig. 1). As discussed in the introduction, there are many variants that
need to be considered for each FQA (e.g., different parameters, values
of these parameters, operations, frameworks) and each variant will
affect energy efficiency and performance in different ways. In order to
cope with this variability, our approach is based on the definition of a
family of FQAs and, for this reason, we follow the classical Software
Product Line (SPL) engineering approach [6], which distinguishes be-
tween domain and application engineering processes. Within an SPL
two different roles are defined: (1) domain experts, who are in charge of
defining the assets of the domain engineering process, and (2) appli-
cation engineers, who use those assets, reusing and instantiating them for
each application in the application engineering process. Note that do-
main experts do their work only once. Application engineers reuse the
work done by the domain experts when they use the SPL to generate
concrete configurations according to application requirements.

FQAs Domain Engineering Process (top of Fig. 1). The primary
aim of our domain engineering process is to specify the variability
model of a set of FQAs, enriching it with energy and performance in-
formation. This information is then used during the application en-
gineering process to generate optimum configurations of the FQAs. Our
approach focuses on modeling reusable FQAs, but it does not focus on
modeling the base functionality of the applications. The additional step
required to integrate the generated FQAs configurations with the soft-
ware architecture of the base applications is described in [4].

The process is described around some research questions. Firstly, we
are interested in investigating the relationships between QAs, FQAs,
energy efficiency and performance. So, the first questions that arise
here are, given a QA, which are the behavioral properties of that QA that
imply the addition of specific components to its software architecture? (i.e.,
find out the FQAs), and which are the variables and parameters that affect
the energy efficiency and performance of FQAs? The answers to these
questions are given in our approach during the characterization of the
QAs (QAs Characterization in Fig. 1). Taking as input the list of
QAs, domain experts characterize the QAs by identifying the relation-
ships between QAs and the functionalities that are usually required to
satisfy the QAs. For instance, to provide security for the applications,
some typical functionalities that are incorporated into the applications
are encryption, authentication, or hashing, among others. Each of these
functionalities has its own operations, context, configurable para-
meters, and different implementations, that can affect the energy effi-
ciency and performance of the applications. A usage model for each

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

148

FQA is defined taking into account all this information.
Now that the relevant information has been identified, the next

question is how should that information and its variability be represented in
order to manage and reason about it? In our approach, the information
identified during the QAs characterization is represented through a
variability model of the FQAs (FQAs Variability Model). The
variability model defines all the features representing different possible
configurations of the FQAs and their usage models, as well as the goals
(objective functions) to be considered (e.g., maximizing the energy ef-
ficiency, the performance, or achieving a trade-off between both of
them). This variability model is then translated to a Constraint
Satisfaction Problem (CSP) in order to reason about it (CSP Model -
Variability Model box). CSP models the features and relationships
of the variability model as variables and logical constraints, so as to

generate optimum configurations.
Since our final goal is to be able to generate those configurations of

our variability model that are optimal with respect to energy efficiency
and performance, the next question here is how do the different variables
and parameters of the usage models influence the energy efficiency and
performance attributes? The effects of each of the usage model variables
on the energy efficiency and performance are analyzed in our approach
through experimentation and simulation (Experiment Results) [7].
The experimentation corpus is determined by the valid configurations
that can be generated from the FQAs variability model (discontinuos
line between FQAs Variability Model and Experiment Re-
sults). Note that in order to choose between different configurations
for different usage models, we only need to identify the energy con-
sumption or performance tendencies and not the exact values.

But, how is the information gathered through experimentation related
with the FQAs variability model? As we have previously represented our
variability model as a constraint satisfaction problem, the experiment
information is integrated at this level. This means that we extend the
CSP model of the variability model with information about the energy
consumption and the performance information of the different variants
represented by the variability model. Integrating the experimental in-
formation at this level instead of directly in the variability model hides
the complexity of extending the variability model’s metamodel with
complex structures to represent the experiment information. Also, we
do not follow the classical approach of modeling QAs as attributes of
features (e.g., Apache web server: =energy 600 Joules [8]), instead, we
consider that a QA such as energy can vary depending on the usage
model (e.g., number of concurrent users [8]).1

Fig. 1. Software Product Line process for generating FQAs configurations based on energy efficiency and performance.

Fig. 2. QAs and the relationships with functionalities (FQAs).

1 All the information generated during the domain engineering process is available in
http://150.214.108.91/code/green-fqas

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

149

http://150.214.108.91/code/green-fqas

Table 1
Characterization and usage models of some FQAs.

QA FQA Usage model Description

Security Encryption Operations Encrypt.
Decrypt.

Variable Context Size of the message to be encrypted/decrypted.
Configurable Parameters Algorithm: AES, DES, RSA, Blowfish,...

Mode: CBC, CFB, CTR, CTS, ECB,...
Padding: PKCS1, PKCS5, OAEP,...
Key size.

Implementations javax.crypto package.
Bouncy Castle.
...

Hashing Operations Hash.
Variable Context Size of the message.
Configurable Parameters Algorithm: MD5, SHA-1, SHA-256, SHA-512,...,

Block size.
Implementations java.security.MessageDigest.

Guava.
...

Authentication Operations Authenticate.
Variable Context Number of users in the system.
Configurable Parameters Mechanism: user and password, digital certificate, biometric, social ID, pin, matrix,...

Password length.
Password type: numeric, alphanumeric, special chars,...

Implementations Java Authentication and Authorization Service (JAAS).
Spring Security.
...

Usability Logging Operations Log.
Variable Context Size of the message to be logged.
Configurable Parameters Format: plain text, XML, HTML,...

Handler: console, file, database,...
Level: trace, debug, info, warning, error,...
Messages encrypted or not.

Implementations Log4J.
LogBack.
java.util.logging package.
Simple implementation of the SLF4J API.
...

Contextual Help Operations Show help.
Variable Context Usage frequency.
Configurable Parameters Type of help: tutorial, wizard,...

Kind of user: beginner, intermediate, advanced, expert,...
User authenticated or not.

Implementations Java Wizard API.
...

Performance Caching Operations Store.
Query.

Variable Context Size of the objects.
Number of elements in memory.
Load factor of the memory.
Access frequency.

Configurable Parameters Maximum size of the memory cache.
Cache type: local, remote,...
Maximum life seconds.
Eternal objects.

Implementations Java Caching System (JCS).
Caffeine.
...

Persistence File Storage Operations Create file.
Modify file.
Delete file.

Variable Context Size of the file.
Size of the data to be stored.

Configurable Parameters Type: binary, plain text, XML, JSON,...
Implementations java.io package....

...
Database Operations Store.

Query.
Variable Context Size of the data to be store.

Frequency.
Configurable Parameters Database type: relational o no relational.

Data type: integers, floats, strings, objects...
Implementations MySQL

MongoDB
OracleDB
...

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

150

FQAs Application Engineering Process (bottom of Fig. 1). The
goal of the application engineering process is to generate FQA config-
urations based on the specific application’s requirements, as well as on
the selected objective function. These functions were defined during the
domain engineering process and one of them is now selected to gen-
erate the optimum configuration (e.g., one that maximizes the energy
efficiency). To do so, the application architect instantiates the FQAs
variability model previously specified during the domain engineering
process. This is done by selecting the features that satisfy the applica-
tion’s QAs requirements (FQAs Configuration Model). Often the
application architect can only provide a subset of the usage model’s
values, so a partial configuration is generated in these cases. Both this
partial configuration and the objective function are represented in an
(Extended CSP Model that extends the CSP model of the domain
engineering process with the partial configuration (Partial Config-
uration Model) and the selected objective function (Objective
Function). Using a solver, the constraint satisfaction problem is re-
solved and an optimum and complete FQA configuration is auto-
matically generated (Optimum FQAs Configurations), alleviating the
architect’s task of deciding between different configurations.

3. QAs characterization

In this section we cover the QAs characterization step. As sum-
marized in Fig. 2, the first step of the QAs characterization is to identify,
for each QA (security, usability, persistence,...), the functional beha-
viors (called FQAs) that must be present in the software architecture of
the system in order to satisfy that QA. Then, for each FQA, a usage
model is defined in terms of the variables that can affect both energy
efficiency and performance. These variables can be divided into: (1)
operations associated with the functionality (e.g., the encrypt/decrypt
operations for the encryption functionality) where each operation may
have a different impact on energy efficiency and performance; (2)
variables that are part of the usage context of the application (e.g.,
object size, call frequency) and whose variation affects the energy ef-
ficiency and performance of the applications; (3) the parameters of the
functionality that can be configured to be the optimum from the point

of view of energy efficiency and performance (e.g., the algorithm used
to encrypt/decrypt); and (5) the particular implementations in a pro-
gramming language that provide the functionality (e.g., Java frame-
works or libraries).

Summarizing, the usage model of an FQA is defined by means of a
set of variables that can have a positive or negative effect on other QAs
that are relevant for the system under development (energy efficiency
and performance in this case), and the values that each variable can
take. Table 1 shows the characterization for some of the most used
QAs [3], their related functionalities and several variables of their
usage models. We can observe that for each characterized QA, several
FQAs are identified (e.g., the encryption, hashing and authentication
FQAs for the security QA, or the logging and contextual help FQAs for
the usability QA). We can also observe the existing variability for the
usage models. For instance, the logging functionality of the usability
FQA has a high degree of variability: messages can be logged in dif-
ferent formats (e.g., plain text, XML, HTML,...), or can be sent to dif-
ferent outputs (handlers) such as console, file, or database. Messages
can also have different levels of severity (e.g., trace, debug, warning,...),
and can be encrypted if need be. This characterization shows the large
amount of information that needs to be taken into account when rea-
soning about the energy efficiency and performance of the system, since
each characteristic can affect the energy efficiency and performance in
different ways. Thus, without this characterization step and the formal
representation of the information obtained (described in Section 4) it
would be very difficult to generate optimum configurations based on
the energy efficiency and performance QAs.

There is another important characteristic of the FQAs that needs to
be considered. As stated, the energy efficiency and performance of an
FQA in a particular application is determined by the usage model of the
FQA. However, there are different places in a software architecture
where the same FQA has to be injected, and the usage context in these
places may be different. This means that the variables of the usage
models can have different values to represent the different usage con-
texts. To cope with this, our characterization process builds a generic
usage model that can be instantiated by the application architect
multiple times, and in different parts in the same application. To il-
lustrate this, Fig. 3 shows several usage models instantiated in different
component interactions inside an application architecture. In the in-
teraction between components C1 and C2 three functionalities have to
be injected: logging, encryption and caching. Logging and encryption
are also injected into the interaction between components C2 and C3
but here the usage models are different from those defined in the in-
teraction between C1 and C2, i.e., the values of one or more of the
variables in the usage models are different.

Assigning specific values to the usage model variables can be a
difficult task, since the values can be unknown to the application ar-
chitect. Moreover, the application architect may want to analyze the
QA level of all possible variants of the usage model. In those cases, our
proposal will support the partial instantiation of the usage model, as we
demonstrate in Section 7. An example of this partial instantiation is
shown in Fig. 4 for the Logging Usage Model 1 where the handler of
the message (i.e., console, or file) and the format (i.e., plain text, or
XML) are not provided by the application architect. The Encryption
Usage Model 1 in Fig. 4 also shows a partial instantiation where the
algorithm, mode, padding, key size, and implementation framework
have not been specified.

In addition, there can be dependencies between the usage models of
different FQAs’ functionalities. For instance, in order to encrypt the log
messages, the encryption functionality has to be applied before the
logging functionality, to the same messages in the same interaction
(interaction between components C1 and C2 in Fig. 3). Thus, the values
of the message size are shared in both usage models (see Fig. 4).
Moreover, due to the interaction between the encryption and the log-
ging functionality, encryption may require the values of the shared
variables to be changed in the logging usage model. For instance,

Fig. 3. Usage models applied to different interactions in an application architecture.

Fig. 4. Interaction between logging and encryption usage models.

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

151

depending on the encryption algorithm, the mode and the padding, the
output encrypted message may vary in size compared to the original
message. When this happens, the value of the message size variable in
the logging usage model needs to be modified. Our proposal will
manage this kind of dependency and will update the affected usage
models accordingly.

4. FQAs variability modeling

Based on the domain information captured during the character-
ization of the QAs, in this step the domain experts model the variability
of the QAs, their FQAs and the usage model as a part of an SPL.

Fig. 5 shows the schema of the resulting variability model. The
variability model specifies at the second level the QAs (e.g., security,
usability,...) and at the third level the functionalities of each of them
(FQAs). First, each FQA is modeled as a clonable feature to allow dif-
ferent configurations of that functionality to be generated in different
places of the application. A clonable feature (features with [1..*]) al-
lows that feature to be instantiated multiple times, and all its sub-fea-
tures can be configured differently for each instance [9]. Cardinality of
the clonable feature ([1..*]) specifies the number of instances that can
be generated, i.e., 1 as the minimum and * as the undefined maximum.
Second, for each FQA all variables of its usage model defined in the last
section are specified under the UsageModel sub-tree, including the
Variable Context, the Operations, the Configurable Para-
meters, and the Implementations. Finally, the objectives that can
be considered when generating a specific configuration are explicitly
represented in the variability model. For instance, in our approach the
application architect can select maximizing the energy efficiency over
the performance, maximizing the performance, or achieving a trade-off
between them by assigning a weight to each objective.

Figs. 6–8 are part of our FQAs variability model, but they are shown
as separate models due to the lack of space to represent all the in-
formation in the same figure. Also, the FQA variability models shown in
these figures are not complete in some of them, but readers can retrieve
the complete version online.2 Concretely, the encryption, logging, and
caching functionalities are modeled by the clonable features

Encryption [1..*], Logging [1..*] and Caching [1..*]. This
means that multiple instances of the usage model of these features can
be generated straightforwardly, which in turn, enables different vari-
able contexts, operations, configurable parameters, and implementa-
tions to be selected for each instance. The child features of any usage
model feature are those variables of the FQA that affect the energy
efficiency and performance. Note that some variables of the usage
models can have dependencies between them. For example, in the case
of the logging FQA (Fig. 7), not all frameworks provide the possibility
of logging the message in XML format, such as the simple im-
plementation of SLF4J (Simple). We therefore specify the constraint
Format.XML implies NOT Implementations.Simple to prevent
that framework from being selected when the format is XML. Similarly,
we explicitly define the dependency with the encryption functionality
when the log messages need to be encrypted (EncryptedMessages
implies Security.Encryption). This means that by selecting the
EncryptedMessages feature, an additional instance of the encryption
functionality needs to be created in order to be configured, sharing the
dependent variables of the usage model.

5. Energy efficiency and performance experimentation

The effect of each variable of the usage model on the energy effi-
ciency and performance of the FQA is pre-calculated through experi-
mentation [7]. As part of our proposal we measure the energy con-
sumption of the different configurations of the FQAs. An example of this
experimentation is presented in this section. The set-up of the experi-
ments is detailed in Section 8.3.1.

Note that the goal of our approach is to analyze the energy con-
sumption and performance trends of the FQAs when the values of the
usage models’ variables change. Thus, in our approach it is not relevant
how accurate the energy consumption and performance values of FQAs
are, but rather assessing whether one configuration consumes more or
less than another, or has a lower or higher performance. For this reason,
in this paper we assume that the FQA characterization and the analysis
of the energy efficiency and performance can be performed at the do-
main engineering level, independently of a specific application.
However, any experimental measure of energy consumption and per-
formance must be considered as an estimation only, since the power
and time consumed by an application will be different in successive

Fig. 5. Variability model schema of the QAs with their FQAs and the usage model.

2 Complete variability models are available in http://150.214.108.91/code/green-fqas

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

152

http://150.214.108.91/code/green-fqas

executions. This is because there are many uncontrollable factors that
affect power consumption and computational time (e.g., temperature,
garbage collection), so we need to identify the power consumption and
computational time tendencies.

Part of our experiment results for the encryption, logging, and
caching FQAs are shown in Figs. 9–11, respectively. They show the
energy consumption and execution times for a subset of the variants
generated from the variability models specified in Figs. 6–8. For the
encryption functionality we encrypted messages, varying the message
size. We also used three different encryption algorithms of symmetric
keys: AES, Triple DES (DESede), and Blowfish, provided by two dif-
ferent implementations: the javax.crypto package and the Bouncy

Castle3 encryption library. Similarly, experiments to characterize the
logging functionality consisted of delivering a set of log messages using
four different implementations of the SLF4J (Simple Logging Facade for
Java)4 logging API: the java.util.logging package directly provided by
the Java JDK, the Log4J5 and the LogBack6 frameworks, and a simple

Fig. 6. Encryption FQA variability.

Fig. 7. Logging FQA variability.

Fig. 8. Caching FQA variability.

3 https://www.bouncycastle.org/
4 https://www.slf4j.org/
5 http://logging.apache.org/log4j/1.2/index.html
6 https://logback.qos.ch/

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

153

https://www.bouncycastle.org/
https://www.slf4j.org/
http://logging.apache.org/log4j/1.2/index.html
https://logback.qos.ch/

implementation of SLF4J7. We logged plain text messages varying the
message size from 100 Bytes to 10 MBytes in powers of 10. For the
caching functionality, experiments consisted of filling a memory cache
with a specified maximum size until a specific load factor, and then
inserting a string object of 1MB in a cache with that load factor, i.e., we
study the effect of the load factor parameter. We use an eternal, not
remote cache, with different configurations for the maximum size
parameter. To design the experiments, we automatically generate all
the valid configurations from the variability models (see Section 8.4)
and implement different tests by varying the variables and parameters
until covering all generated configurations. Each test (or trial) in the
experimentation considers a specific complete configuration, and is
evaluated to measure its energy consumption and computational time
(see Section 8.3.1).

Fig. 9 shows the results of the energy measurements (in Joules) and
the computational time (in milliseconds) of the encryption functionality
for different message sizes. In all cases, the mode selected is Cipher
Block Chaining (CBC) and the padding is PKCS5. AES and Blowfish
algorithms use an encryption key of 16 bytes, while the DESede algo-
rithm uses an encryption key of 24 bytes. We observe similar energy
consumption for the three algorithms with no significant variations. A
very similar curve is generated for performance. Here, we can observe
that the energy consumed by the encryption FQA is co-related with the

execution time. However, even in this case where both curves have the
same tendency we can observe that the greenest algorithm (AES with
the javax.crypto implementation) has the worst performance. So, it is
not trivial to select the best configuration to improve both energy ef-
ficiency and performance in the case of the encryption FQA.

Regarding the logging experiments, the results allow a more inter-
esting analysis. Fig. 10 shows the experimentation results for different
message sizes, using two different handlers: console and file. On the one
hand, we can observe that the most eco-efficient configurations are
those that use the simple implementation of the SLF4J API, while the
configurations with the higher energy consumptions are, in all cases,
those that use the LogBack framework. In general, Log4J and LogBack
frameworks consume more than others because their purpose is to
provide full functionality and a great performance regardless of energy
consumption. The tendency for the energy consumption is more or less
the same for all the alternatives evaluated, for logging the messages to
console or to file. However, considering the performance, there are
differences, depending on the message size, between logging to console
or to file that are worth analyzing. Configurations that log the messages
to console demonstrate the lowest performance as the message in-
creases in size. The simple implementation of the SLF4J API (the
greenest framework) is one of the frameworks with the worst perfor-
mance for huge messages (10MB), but the most efficient for short
messages (less than 10 KB). Similar behavior is observed for the ja-
va.util.logging and Log4J implementations using the console handler.

Fig. 9. Energy efficiency and performance: encryption FQA.

7 https://www.slf4j.org/apidocs/org/slf4j/impl/SimpleLogger.html

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

154

https://www.slf4j.org/apidocs/org/slf4j/impl/SimpleLogger.html

The experiment results for the caching FQA show that in general for
both energy efficiency and performance, it is better to use the minimum
possible size for the cache, i.e., a smaller cache. However, identifying
the best configuration is not an easy task, since tendencies of both
energy efficiency and performance are similar but not trivial. For in-
stance, if we have a cache with the capacity for 1000 elements and the
load factor is actually 20% (i.e., 200 elements), filling the cache and
inserting an element consumes 126.02 J of energy and takes 5.9 s, while
in a cache with a maximum capacity for 400 elements, where the load
factor is 50%, the operations consume 104.75 J and take 6.5 s. Thus, in
these conditions, choosing a cache with a capacity of 400 elements will
improve the energy efficiency by around 17%, but the performance will
deteriorate by approximately 10%.

The effects of the usage model dependencies between FQAs on the
energy and time consumption have also been measured as part of our
experiments. For instance, for the existing dependency between the
usage models of the logging and the encryption FQAs, our experi-
mentation results show that the size of messages to be logged increases
by up to 33% when they are encrypted. Both logging and encryption
consider message size as part of the usage model, so this means that the
usage models are automatically updated by our approach when the
application architect selects interacting FQAs.

6. Representation in CSP

Our goal is to generate optimum configurations considering energy
consumption and/or performance, we therefore need to formally re-
present the variability model and the experimentation results. Different
approaches have been used to generate optimum product line config-
urations such as constraint satisfaction problems [10], or evolutionary

algorithms [11], among others. In this section we will show how we
represent the variability model and configurations as a Constraint Sa-
tisfaction Problem (CSP) [12], since CSP is one of the most used ap-
proaches to formalize variability models [10].

Our contributions with respect to other approaches, which also
reason about variability models using CSP is that we integrate the in-
formation obtained from the experiments, as well as the dependencies
between the usage models into the CSP model. With CSP we avoid the
need to extend the metamodel of the variabiblity model or classical
feature models or enrich it with attributes [6] to represent the experi-
ment information and associate it with the different configurations. In
contrast to other approaches such as evolutionary algorithms [11], CSP
allows reasoning about variability, as well as other capacities of
variability models and feature models like the generation of valid
product configurations, or the quantification of the number of possible
configurations [10]. In the case of evolutionary algorithms, generated
configurations may not be optimal nor even correct since solutions are
randomly generated by applying specific operators (e.g., selection,
crossover, mutation), and configurations may not satisfy the tree and
cross-tree constraint defined in the variability model. In those cases, an
additional step to fix the generated configurations is required. More-
over, integrating the experiment information within the configurations
is not an easy task because configurations are previously unknown.

A CSP problem is defined by a triplet (X, D, C), where X is the set of
variables, D is a set of domains for the variables, and C is the set of
constraints that must be satisfied.

6.1. Representation of the variability model and configurations

We formalize the variability model in CSP as follows:

Fig. 10. Energy efficiency and performance: logging FQA.

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

155

• Variables (XVM): XVM is a proper subset of X (XVM⊂ X) and is
composed by the following subsets of variables: = ∪X X XVM F V .

• XF is the set of variables that represents the features of the tree in
the variability model. For example, for the logging FQA we define
the following set of variables: =XFlogging

x x x x x x

x x x x x x x x x

x x

{ , , , , ,

, , , , , , , , ,

, , }

usagemodel variablecontext messagesize operations log configurableparameters

handler file console format txt xml implementations log j logback

javautillogging simple

4

.

• XV is the set of variables that represents those features which re-
present attributes (i.e., they take specific values such as the size of
the message in the logging functionality). An example of this set
for the logging FQA is: =X v{ }V messagesizelogging .

• Domain (DVM): DVM⊂ D, = ∪D D DVM F V .

• =D {0, 1}F . The domain of the variables in XF is {0, 1} to indicate
whether the feature is selected or not in a configuration. Formally:
∀v∈ XF, v∈ {0, 1}.

• The domain of the variables in XV is the domain of the specific
type defined in the variability model for each variable (e.g., the
domain of the variable vmessagesize is the set of natural numbers).

• Constraints (CVM): CVM⊂ C, where CVM is the set of constraints that
models the relationships of the variability tree, as well as the cross-
tree constraints. An example of this kind of constraint is

+ + + =x x x x 1,log j logback javautillogging simple4 which guarantees that

only one framework of logging is selected in a specific configuration.
Another example is =x x ,variablecontext messagesize which models the
mandatory relationship (parent-child) between the
VariableContext and the MessageSize features of the varia-
bility model (see Fig. 7). Finally, the constraint

− <x x 1encryptedmessages encryption models the dependency between the
EncryptedMessage and Encryption features.

Configurations of the variability model are defined by the following
set of constraints:

• Constraints (CC): CC⊂ C, where CC is the set of constraints that
models the selections made by the software architect in a config-
uration of the variability model. For example, the following con-
straints model a partial configuration of logging that correspond to
the Logging Usage Model 1 of Fig. 4 (and the Logging1 instance
in Fig. 13)8:
(1) =x 1,usagemodel1 (2) =x 1,variablecontext1 (3) =x 1,operations1 (4)

=x 1,configurableparameters (5) =x 1,implementations (6) =x 1,messagesize1 (7)
vmessagesize1≥ ∧vmessagesize1≤ 10. (8) =x 1,encryptedmessages (9)

Fig. 11. Energy efficiency and performance: memory cache FQA.

8 For simplicity we have omitted features/variables not selected in the configuration,
the values of which are 0.

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

156

=x 1,logback

Sufix ‘1’ after the name of the variables identifies the instance ‘1’ of
the logging clonable feature. This sufix number is incremented for
each clone feature.

6.2. Representation of the energy efficiency and performance information

We extends the CSP model with the following definitions:

• Variables (XQA): XQA⊂ X, = ∪X QA QA ,QA E P where:
• QAE is the set of variables that represents the energy consumed for
each possible full configuration of an FQA. For instance, for log-
ging, we have a variable e for each different configuration of the
logging FQA. = …QA e e e e{ , , , }E configlog configlog configlog configlogN1 2 3

• QAP is the set of variables that represents the execution time for
each possible full configuration of an FQA. Similarly to the
energy efficiency variables, for logging, =QA p{P configlog1

…p p p, , , }configlog configlog configlogN2 3

• Domain (DQA): DQA⊂ D, = =Dom QA Dom QA() ()E P . The do-
main of the variables in QAE and QAP together form the set of real
numbers that represent the energy consumed (in Joules) and the
execution time (in seconds), respectively, of a configuration.

• Constraints (CQA): CQA⊂ C, where CQA is the set of constraints
that defines the values of a particular configuration obtained in the
experimentation (see Section 5). The CQA constraints relate
the variables in XQA with each specific configuration. An
example of this kind of constraint is:
xconsole∧xtxt∧xlog4j∧xmessagesize∧vmessagesize≥ 0.01∧vmessagesize≤ 10⇒
econfigLog1, which together with the constraint =e 11, 6736configLog1
represents a complete instance of the usage model, assigning an
energy consumption value to a configuration. Note that to simplify
the CSP model we have chosen the worst case in the energy con-
sumption for each interval of values in the message size.

6.3. Representation of dependencies between usage models

Initially we can suppose that by resolving the CSP for each partial
configuration of each FQA, we can obtain the most eco-efficient con-
figuration of each FQA. However, this reasoning cannot be performed
in isolation for every FQA, because the configuration of one FQA can
have a collateral effect on the energy consumption of another. For in-
stance, an encryption algorithm may modify the size of the messages or
the objects before storing them in a database (i.e., persistence FQA).
Note that different configurations of the encryption algorithms produce
encrypted objects of different sizes, and therefore the energy consumed
by the persistence FQA will be different depending on the configuration
of the encryption algorithm previously used.

To take into account these kinds of dependencies in our proposal,
we formalize them using a new set of variables A:

• A⊂ XV is the set of variables of the usage model whose values may
be affected when a specific functionality of an FQA is applied (e.g.,
encryption functionality changes the size of the message). An ex-
ample of the set A for the logging FQA is =A x{ }logging messagesize . Note
that the domain of the variables in A is the same as the domain of
the variables in XV.

Let us define UM1 as the set of variables that compose the usage
model of an FQA’s functionality (e.g., logging), and UM2 as the set of
variables of the usage model of a second FQA’s functionality (e.g., en-
cryption). When there is a dependency between two FQAs (e.g., logging
implies encryption) the intersection of the sets UM1, UM2, and A is not
empty (UM1 ∩UM2 ∩A≠∅). In this case, when generating the con-
figurations, our proposal: (1) uses the usage model’s variables of that
intersection, that is, uses the values of UM1 in UM2 for those common
variables in A (e.g., the message size for encryption and logging); (2)
updates those variables of A in the usage model UM1 with the appro-
priate values obtained from the experimentation after applying the first

Fig. 12. Configurations of the variability model for the encryption FQA instances.

Fig. 13. Configuration of the variability model for the logging FQA instances.

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

157

functionality, i.e., an increase of 33% in the size of the message when it
is encrypted; and (3) generates the configuration for the logging using
the original usage model (UM1) with the variables of A appropriately
updated.

To summarize, our CSP model is formally defined as a tuple (X, D,
C), where = ∪X X X ,VM QA = ∪D D D ,VM QA and = ∪ ∪C C C CVM C QA.

6.4. Representation of the objective functions

Defining the objective functions specified in the variability model
(Fig. 5) in CSP is straightforward using the previously defined variables
in X. The three objective functions are defined as follows:

• Maximize energy efficiency. This corresponds to minimizing the
energy consumption of all FQA configurations:

∑ ∈
=

e e QAMinimize ,
i

QA

i i E
1

E

(1)

• Maximize performance. This corresponds to minimizing the com-
putational time of all FQA configurations:

∑ ∈
=

p p QAMinimize ,
i

QA

i i P
1

P

(2)

• Trade-off between energy efficiency and performance. We
achieve the trade-off by minimizing both the energy consumption
and the computational time of all FQA configurations giving a
weight (we and wp) to each QA:

∑ ∑+

∈ ∈
= =

w e
N

w
p

N
e QA p QA

Minimize · · ,

, ,
i

QA

e
i

E i

QA

p
i

P

i E i P

1 1

E P

(3)

where NE and NP are normalization constants. By assigning different
weights to each objective, all possible optimum configurations from
the Pareto optimal/efficient solutions can be generated [13].

7. Generating optimum configurations

In this section we detail the application engineering process of our
proposal. The goal is to generate optimum configurations for the FQAs
required in concrete applications. By reusing the domain knowledge
already identified and modeled by the domain experts during the do-
main engineering process, the application architects would have to
identify the QAs required by their applications and instantiate the al-
ready existing usage models with those values specified in the re-
quirements. In the FQAs variability model the architect also selects the
objective function that will determine the best configurations based on

energy efficiency and/or performance.
As illustrated in Fig. 3, first, for each FQA required by the appli-

cation, the software architect needs to identify the join points (or in-
teractions) in the application architecture where the FQA will be in-
corporated. Second, for each join point the architect creates an instance
of the usage model for the injected FQA. This implies having to provide
the values of the variables that compose the usage model, i.e., speci-
fying how the FQA will be used in that specific part of the application.
This is done by selecting, in the variability model, those features spe-
cified in the application’s requirements and providing the required
values. The selections made by the software architect can generate a
complete or a partial configuration of the usage models. When the
software architect provides a complete configuration for an FQA (i.e.,
values for all the parameters of the usage model are provided), the
configuration generated may not be the best according to the objective
function, even though it fulfills the specified requirements. So, in our
approach it is more useful to partially instantiate the usage models, so
that the most efficient configuration can be automatically completed. In
many cases, the software architects’ knowledge allows him to provide
only a subset of the usage model’s values, so only a partial configuration
can be generated.

The CSP model defined in the domain engineering process is com-
pleted with the partial configuration and the objective function selected
by the application architect. The CSP model, in the application en-
gineering process, includes: (1) the selections made by the application
architect represented as the set of constraints CC defined in Section 6;
and (2) the selected objective function. Using a CSP solver, the con-
straint satisfaction problem is resolved and an optimum and complete
FQA configuration is automatically generated (Optimum FQAs Con-
figurations), alleviating the architect’s task of deciding between
different configurations.

Let us suppose the application architect wants to maximize the
energy efficiency of the configurations over the performance, and thus,
has selected that objective function. Figs. 12–14 show, respectively, a
configuration of the variability model with two instances for the log-
ging functionality, two instances for the encryption functionality, and
one instance for the caching functionality. All instances are customized
based on the usage models described in Fig. 3 in Section 3.

In the first interaction between components C1 and C2, the appli-
cation architect has provided, for logging (see Logging1 instance in
Fig. 13), a partial configuration of the Logging Usage Model 1 pre-
sented in Fig. 4), specifying a message size between 1MB and 10MB,
and selecting the option for encrypting the message and a specific
framework: LogBack. Taking into account the dependency between
logging and encryption, a new instance for the encryption FQA needs to
be generated (see Encryption1 instance in Fig. 12), based on the
values of the variables shared with the logging usage model (En-
cryption Usage Model 1 in Fig. 4). Concretely, using a message size
of between 1 and 10MB. With these values, the best configuration
based on maximizing the energy efficiency (one of the objectives), is

Fig. 14. Configuration of the variability model for the
caching FQA instance.

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

158

using the AES algorithm provided by the javax.crypto package with an
energy consumption around 13.98 J in the worst case (10MB). This
configuration creates encrypted messages of size 13MB (i.e., an incre-
ment of 33%). Thus, our proposal updates the original usage model for
logging with the new value of the message size variable and then
generates the optimum configuration for logging. In this case, our
proposal will select the console handler and the text plain format (TXT)
that is the most efficient configuration (in terms of energy) for the
updated usage model when the LogBack framework has been selected.

In the second instance of logging (Logging2 in Fig. 13), the ar-
chitect has provided a total configuration, but has not selected the
implementation to be used. In this case our proposal will select the
library java.util.logging because this is the most energy efficient option
that fulfills the constraints of the variability model, i.e., it is the most
energy efficient framework that allows logging message between 1 and
10 KB to file in XML (see constraint in Fig. 7). A similar configuration to
the first has been chosen for the second instance of encryption (En-
cryption2 in Fig. 12), but in this case, there is no dependency be-
tween the logging and encryption usage models for the second instance
of the encryption functionality

Finally, in the instance of the caching functionality (Fig. 14), the
architect has configured the caching FQA as follows: it is expected to
store around 400 elements between 1 and 10MB of size, and the cache
will normally be full (i.e., the load factor is 100%). The cache will be
eternal (elements do not have a maximum life time), and local (i.e., not
remote). In this context and with these requirements, the most energy
efficient configuration is having a cache with a maximum size of 600
elements. The cache with a maximum size (600 elements), should be
used which implies that the load factor will be 66.67%. Filling the
cache and inserting an element in this case consumes around 217.28
Joules, instead of using a always full (i.e, maintaining the load factor at
100%) cache with a maximum size of 400 elements, which consumes
240.28 Joules. This supposes improving the energy efficiency by 9.58%,
which is the best configuration in the current context. Another con-
figuration with a capacity of 800 or 1000 elements does not benefit
energy efficiency as shown in Fig. 11.

8. Evaluation and threats to validity

In this section we evaluate the different steps of our proposal, and
discuss the threats to validity and lessons learnt from our proposal and
evaluation.

8.1. Characterization of the QAs

We discuss the completeness and correctness of the characterization
of the QAs. The completeness intends to explore whether all behavioral
properties of the QAs and all variables and parameters that affect the
energy efficiency and performance have been identified. The correct-
ness determines whether the characterization is done for the appro-
priate QAs and the identified functionality and parameters are appro-
priate.

Table 1 in Section 3 only shows a subset of the characterization of 4
QAs and a total of 8 FQAs, obtained from different studies [3,14]. Com-
pleteness of the characterization not only depends on the knowledge
available for QAs from the domain experts, but also on the variables and
parameters that the different frameworks, which implement the FQAs,
provide, and can affect the energy efficiency and performance. Normally,
any parameter related to the functionality being characterized is con-
sidered (i.e., we consider all parameters that appear in the API or frame-
work documentation), even when the parameter does not directly affect
the energy consumption or performance. This is because, until the ex-
perimentation has been carried out, the effects of a given parameter on the
energy consumption or performance are unknown; and although some
parameters may not greatly affect on energy consumption or performance,
they may influence other parameters that do.

One threat to the internal validity of QA characterization is that the
information we have used to characterize QAs may not be accurate. For
this we have consulted papers written by domain experts and also the
documentation provided by the APIs and frameworks that implement
QAs. Now, let us consider that domain experts do not provide a com-
plete and correct characterization of QAs or that the documents we
have used to characterize QAs have errors. In this case, our approach
will not consider that parameter as part of the variability model and all
the generated configurations will have that parameter with a fixed
value provided by the API or framework (e.g., a default value). Thus,
keeping that parameter in the experimentation fixed for all configura-
tions does not affect the results presented in this paper. The threats to
external validity are determined by the lack of experimentation in in-
dustrial settings. We try to mitigate this threat by considering those
APIs and frameworks that are most used in industrial case studies.

8.2. Variability modeling and CSP formalization

We have specified the variability model using the Common
Variability Language (CVL) [15], which allows not only the variability
to be specified as feature models do [16], but also resolves the varia-
bility over MOF-compliant models. CVL enhances feature modeling and
automates the production of product models from an SPL [17]. Apart
from the advantages it offers (orthogonal variability, architecture
variability resolution, MOF-compliant, variable and clonable fea-
tures,...) [4,18], we have chosen CVL because all characteristics of
feature models can be expressed in CVL [16] and it was recommended
for adoption as a standard by the OMG.

Moreover, CVL as feature models, can be easily mapped to logical
constraints, as we formalize in CSP in Section 6 [10]. The formalization
allows us to resolve the CSP problem using a CSP solver to guarantee
that our proposal generates the same valid configurations. It also
guarantees that those configurations are the best, based on the ex-
perimental information that we have integrated within the CSP model.
Here, we have used Clafer,9 a general-purpose lightweight modeling
language, and CHOCO,10 a Java library for constraint programming, to
implement the variability models and configurations as CSP problems,
and resolve them. Configurations generated by CHOCO satisfy the
partial instantiation of the usage models introduced by the software
architect. This ensures that the configurations generated by our pro-
posal are the most efficient in terms of energy and performance, de-
pending on the objective function selected by the architect.

One threat to internal validity is that the correctness of our process
principally relies on the variability model. If this model is not correct
then it may affect the causality of our conclusions. We have checked
with Clafer and CHOCO that the variability model is structurally correct
as it does not contain dead features, false optional features or wrong
group cardinality, the typical defects of variability models, as shown
in [10]. We have not identified any threat to external validity regarding
our experimental environment, because for the CSP formalization we
have used the latest versions of Clafer and CHOCO.

8.3. Experimentation

In this section we first discuss the reliability of the experiments
discussed in Section 5 and whether they can be replicated with the same
results.11 Then we discuss the internal and external validity of the ex-
perimentation. The internal validity examines whether the experiment
results are influenced or not by other factors apart from those con-
sidered in the experiments. The external validity analyzes whether the

9 http://www.clafer.org/
10 http://choco-solver.org/
11 All resources (models, code, and experimentation results) all available in http://

150.214.108.91/code/green-fqas

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

159

http://www.clafer.org/
http://choco-solver.org/
http://150.214.108.91/code/green-fqas
http://150.214.108.91/code/green-fqas

results obtained in the experimentation can be generalized or not.

8.3.1. Experimentation set-up
The experiments were performed on a desktop computer with Intel

Core i7-4770, 3.40 GHz, 16GB of memory, Windows 10 64 bits with the
high performance option activated, and Java JDK 1.8. The profiling
platform designed to gather energy consumption and performance in-
formation in our approach is shown in Fig. 15. We use the IPPET (Intel
Platform Power Estimation Tool)12 tool that monitors the energy con-
sumption and the computational time of the CPU at process level using
the Intel Model-Specific Registers (MSRs). As a result, IPPET generates a
CSV file with the estimated power (in Watts) for each timestamp (with
the specified precision in milliseconds — 500 ms) of the execution of
the process, which is repeated 20 times. We have implemented some
Python scripts13 to run IPPET over all our experiments, extract the in-
formation, and calculate averages and standard deviations of energy
consumption (in Joules) and execution times (in milliseconds).

8.3.2. Accuracy of the results
We choose the IPPET tool for two reasons: (1) we need to perform

the measurement at the code and/or process level (e.g., measures of
operations, parameters) and not at the device level, so taking the
measurements with more precise hardware-based tools is more difficult
because it is not be easy to identify the part of the software responsible
of this consumption; and (2) IPPET can be executed as a command line
process apart from its graphical user interface, and thus, it is possible to
automatize the experiments and repeat them multiple times. This ob-
tains more precise values than manually measuring them with other
graphical tools such as Joulemeter14 or pTop.15

Although hardware solutions provide more precise measurements,
note that our goal is not to calculate the exact values obtained for each
different configuration of FQAs. As we discussed in Section 5, we are
interested in identifying energy consumption and performance varia-
tions and tendencies when the usage models vary.

8.3.3. Generalization of results
By performing the same experiments in another environment (e.g.,

another computer), the actual experimental values may vary due to
many factors (mainly hardware), but the comparative results should
remain correct. In specific cases where the execution environment is
very different from a general-purpose computer, such as super-
computers or special-purpose computers designed to perform some

processing faster, the results of the experimentation may be very dif-
ferent. In that case our proposal will not generate the same configura-
tions. However, our approach will generate the best configurations
based on the energy efficiency and performance values obtained for
that specific environment. To mitigate the external validity we have
performed a subset of the experiments on a different computer, and
have obtained similar results.

8.4. Generation of configurations

In this section the scalability of our proposal from the point of view
of both the domain and the application engineering processes is dis-
cussed. In addition, the benefits of our proposal are discussed by ana-
lyzing the improvements in energy efficiency and performance of the
FQA configurations when they are generated with our proposal.

8.4.1. Scalability
In this section we study the scalability of our proposal. Generating

all the configurations and performing all the experiments within a
reasonable time may sound an intractable task for real world sized
systems. However, it is important to clarify that our approach is not
applied to complete systems or applications, but rather to real world
implementations of the FQAs. The degree of variability of FQAs and
their usage models (variables, operations, frameworks, and parameters)
is usually much smaller than the variability found in complete systems.
For example, we did not find any FQAs with more than 5 contextual
variables and 5 operations, while 10 is a high number of frameworks to
be studied, each one with around 15 or 20 different configurable
parameters. Note that the size of the application does not affect our
approach, but the size of the FQAs, which is often very limited as shown
in FQAs’ characterization of Section 3 does affect it. The evaluation was
carried out on the same computer as the experimentation (see
Section 8.3.1), and we have used Clafer and Choco tools to generate all
possible configurations from the variability models.

From the point of view of the domain-engineering process, Table 2
shows how our approach scales when generating all the variants spe-
cified by the variability model of each FQA. We study the size of the
usage model, i.e., total number of features, and what type of feature
(variable, operation, parameter, and framework) implies a higher
number of valid configurations and takes more time to be generated.
Note that, for integer variables, the number of configurations would
increase exponentially if we considered the complete integer domain.
However, this is avoided in our approach by splitting the range of in-
tegers into intervals in each experiment. Taking into account what the
contextual variables are representing (e.g., message sizes), we can as-
sume that 10 intervals are enough to cover the whole variable range
(e.g., dividing the values in multiple of 10). Note that in most cases 5
intervals would be enough, considering the meaning of the contextual

Fig. 15. Profiling platform designed for experimentation.

12 https://goo.gl/noZsYk
13 http://150.214.108.91/code/energy-meter
14 https://goo.gl/pND9RY
15 http://mist.cs.wayne.edu/ptop.html

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

160

https://goo.gl/noZsYk
http://150.214.108.91/code/energy-meter
https://goo.gl/pND9RY
http://mist.cs.wayne.edu/ptop.html

variables in the FQAs.
First, we generate all possible configurations for each FQA char-

acterized in Section 3 (rows 1–9 in Table 2). The values in these rows
reflect real values taken from real frameworks that implement those
FQAs. We can observe that, in general, the number of possible config-
urations of the FQAs is not very high. In most cases the configurations
are generated in a few seconds. For example, the variability model of
the Encryption FQA has 18 features that can generate up to 24,000
different configurations in 3.21 s. Only the Caching FQA has higher
execution times when the values of the integer variables are divided
into 10 intervals. In this case configurations are generated in minutes
rather than seconds. This difference is due to the larger number of
contextual variables and parameters that are integer (4 variables and 2
parameters). This increases the number of different configurations up to
12,000,000 and takes on average 22 min to generate all of them.
However, despite the longer execution time it has to be remembered
that this process is done only once by the domain expert. Moreover, the
execution times can be reduced considerably (22.97 s) if the number of
intervals is reduced from 10 to 5 (see row 8).

In order to check whether other parts of the usage model affect the
scalability of the domain engineering process, we carried out some
additional tests where ‘prepared’ numbers were used to test different
situations in which we are interested (rows 10–16). Thus, Test 1 is the
base case, the simplest one, with 1 variable, 1 operation, 1 parameter
and 1 framework. Test 1 is compared with tests 2–5 where each column
takes a value estimated as a reasonable maximum (according to the real
frameworks previously studied). With these tests it is possible to see
that in effect the number of integer contextual variables (with 10 in-
tervals) is the element that affects the number of configurations the
most (see Test 4 in comparison with Test 1–3 and Test 5).

The time to carry out the experiments of the FQAs studied in
Section 5 depends on several factors such as the computer’s perfor-
mance, the size of the specific parameters of each FQA (e.g., the mes-
sage size), the number of executions done for each experiment, the
measurement tools running along the experiments, and the number of
configurations covered by each experiment. Assuming that each ex-
periment covers only one configuration, Table 4 shows the average time
to perform one experiment of the Logging, Encryption, and Caching
FQAs, and the average time to perform all the required experiments to
cover all the configurations of the FQAs. The average execution time of
an experiment is similar for the three FQAs (around 6 s), while the time
to perform all experiments covering all possible configurations depends
a lot on the number of configurations. For instance, the Logging FQA
needs around 6 h to perform all experiments that cover its 3300 pos-
sible configurations, while the Caching FQA needs around 15 days to

perform the experiments covering 187,500 possible configurations. The
important issue to highlight here is that all the configurations and ex-
periments are done only once by the domain experts, and then the
experiment results can be reused in each application that needs to in-
corporate a configuration of the FQAs.

Additionally, from the point of view of the application engineering
process the number of generated configurations is smaller than the one
considered in Table 2. Table 3 shows how our approach scales when the
application architect creates partial configurations of the FQAs, through
their selections in the variability models. Firstly, we present the values
corresponding to the partial configurations in Figs. 12–14 (top of
Table 3). Secondly, for different FQAs we calculate the times for other
partial configurations that were created considering two different sce-
narios identified as the most usual ones: (1) the application engineer
needs help to decide the best framework to be used and the best con-
figuration of that framework, but they know the context in which the
application will be used, i.e. they know the values of the contextual
variables and of the operations, and (2) the application engineer knows
the framework to be used but it does not know the contextual in-
formation or how to configure it to obtain the greenest solution (rows
labeled with (f) next to the number of selected features). As shown in
Table 3 the execution times are always less than 2 s, except for the
Caching FQA where, as seen previously, the number of integer variables
increases the number of configurations considerably. Even in this case,
however, the execution time is less than 1 min.

Finally, finding the optimum configuration is a search problem that
has a quadratic O(n2) complexity.

8.4.2. Benefits of our proposal
To evaluate the benefits to energy efficiency and performance that a

software developer can obtain when different configurations are con-
sidered, we have chosen a subset of all configurations for an FQA and
have compared them in order to check if it makes sense to use our
process to find an optimum configuration. Tables 5 and 6 show a set of
configurations of the logging and encryption FQAs, respectively, to be
compared. We divide the variable context parameter (message size in
MB) into two intervals since observing the tendencies in Figs. 9 and 10
there are no significant changes inside those intervals. For each fra-
mework, we present two configurations, with their energy consumption
(in Joules) and their computational time (in milliseconds). For each
interval of the variable context, we highlight, in green, the most energy
efficient configuration, while the worst configuration is shown in red.
We also show, in bold, the configuration/s with the best performance,
while the worst configuration in performance is shown in strikethrough
text.

Table 2
Scalability of the domain engineering process.

FQA #Variablesa #Operations #Parametersb #Frameworks Total #Features #Configurations Time (s)

Contextual Help 1 (1,10) 1 7 1 10 160 0.52
Hashing 1 (1,10) 1 5 (1) 2 9 800 0.60
File Storage 2 (1,10) 3 4 1 10 1200 0.65
Logging 1 (1,10) 1 12 4 18 3300 1.04
Database 2 (1,10) 2 6 3 13 4800 1.08
Authentication 1 (1,10) 1 13 (1) 2 17 20,600 2.64
Encryption 1 (1,10) 2 13 (1) 2 18 24,000 3.21
Caching 4 (1,5) 2 5 (2) 2 13 187,500 22.97
Caching 4 (1,10) 2 5 (2) 2 13 12,000,000 1354.74 (∼ 22 min.)
Test 1 (base case) 1 (1,10) 1 1 1 4 20 0.47
Test 2 (operations) 1 (1,10) 5 1 1 8 25,600 2.64
Test 3 (frameworks) 1 (1,10) 1 1 10 13 51,200 2.64
Test 4 (variables) 5 (1,10) 1 1 1 8 200,000 20.43
Test 5 (parameters) 1 (1,10) 1 20 1 23 256,000 31.90
Test 6 (worst case) 1 (1,10) 5 20 5 31 6,400,000 783.87 (∼ 13 min.)
Test 7 (reduced intervals) 1 (1,5) 5 20 5 31 3,200,000 431.69 (∼ 7 min.)

a Integer variables are divided in 10 intervals (1,10) or 5 intervals (1,5).
b In parentheses the number of integer parameters that have been divided in 10 and/or 5 intervals (same intervals as contextual variables).

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

161

It can be observed that, for the logging FQA, in general, the greenest
configurations are those using the Simple Implementation framework,
as discussed in Section 5. However, for large messages (10MB), the
Simple Implementation framework demonstrates the worst perfor-
mance when messages are sent to the console.

Let us consider the following scenario, a developer has to choose
between a configuration of the logging FQA to log the message to file.
Normally, he would simply decide to use the most popular framework
(e.g., LogBack) that in this case corresponds to the worst configuration
in both energy efficiency and performance. However, our proposal will
choose the Simple Implementation framework, obtaining an improve-
ment of 63% in energy consumption (a decrease in energy consumption
from 5.31 J to 1.99 J), and 55% in performance (from 237 ms to
106 ms), for messages of between 100 B and 100KB; while for messages
of between 100 KB and 10MB the improvement is around 25% in
energy consumption (a decrease in energy consumption from 10.34 J to
6.77 J), and 29% in performance (from 462 ms to 328 ms).

In the case of the encryption FQA, the most energy efficient con-
figurations are the worst in performance, as highlighted in Table 6;
while the best configurations in performance are those with less energy
efficiency. So, applying our proposal to select the best configuration in
energy efficiency (i.e., the AES algorithm provided by the javax.crypto
library) saves between 9% and 12% in energy, in comparison with the
worst configuration (i.e., the algorithm DESede provided by the Bouncy
Castle framework). However, those optimum configurations in energy
are the worst in performance, so we would lose between 8% and 12% in
performance with respect to the best configurations in performance,
when choosing the most energy efficient configuration.

A similar analysis can be applied to the caching FQAs, as discussed
in Section 5. However, in the case of the caching FQA, as observed in
tendencies, in Fig. 11, the most energy efficient configurations are also
the best ranked in performance. So, the selection made by our proposal
is straightforward in this case.

One threat to internal validity arises through the use of the clonable
features. Thanks to its clonable features, our proposal allows multiple
instances of an FQA to be generated for the same application. However,
there are frameworks, such as the logging frameworks used in this
paper, that under the SLF4J API do not allow different frameworks to be
used in the same application. This particular case can be easily solved in
our proposal by including a new constraint that forces the selection of
the same logging framework for all instances. In addition, we can also

analyze the logging configurations selected for those instances of the
usage models and perform a trade-off between them to select the best
configuration in common, i.e., we can take into account the energy
efficiency and performance of all instances of the logging usage models
to select the best framework.

9. Related work

In this section, we comment on the related work on characteriza-
tion, modeling, experimentation, and configuration of the QAs and
their relationships with the associated FQAs. We principally consider
the relationships of the FQAs with energy efficiency and performance.

Despite the fact that the performance QA has been widely studied in
the literature [19–22] as one of the main QAs to take into account when
developing an application, energy efficiency has recently become an
important QA to also be considered [2]. Jagroep et al. [2] propose
energy efficiency as a QA, focusing on usage resources such as software
utilization, energy usage and workload. Thus, there are several ex-
amples of work which analyzes the energy efficiency of different as-
pects of the applications [23–25]. However, little work has been done
about the relationships between the energy efficiency and other QAs,
and even less on the relationships between the functionalities (i.e.,
FQAs) required to satisfy traditional QAs (e.g., security, usability) and
the energy efficiency of that functionalities and their different config-
urations [26].

First, regarding the characterization of the QAs. There are some
approaches that focus on identifying the functionalities (FQAs) and
parameters related to the QAs of an application [3–5,27]. However,
none of them relate the energy efficiency and performance with the
FQA functionalities. On the one hand, some papers identify FQAs and
the necessity of managing their variability. For instance, in [3], the
authors analyze around 500 non-functional requirements from different
specifications of industrial applications and identify that most of the so
called non-functional requirements are not really non-functional be-
cause they describe functional behavior of the application. In [5], the
authors identify functionalities related to the usability FQA that affect
the software architecture. However, they do not analyze the relation-
ships with different QAs such as energy efficiency and performance. On
the other hand, those papers that do analyze the relationships between
different QAs do not take into account the recurrent functionalities
offered by the FQAs nor the energy efficiency as a QA. In [28] the
authors use a multi criteria decision making method to analyze the
preferences and interactions of QAs based on a fuzzy measure. Their
approach is to define whether two QAs interplay in a complementary
way or in a redundancy way. Also, in [29], the authors consider the
relationships between QAs, but they only evaluate whether or not they
affect other QAs positively or negatively. However, none of these ap-
proaches [28,29] provide any kind of characterization with the purpose
of quantifying the QAs or experimental results to evaluate the impact in
energy efficiency and performance. Moreover, there is no formal pro-
cess to model and generate the best configurations of the QAs, as we
propose.

Energy efficiency (or sustainability) analysis is part of our approach,
and although the objective of this paper is not to provide a full set of
experimental results about energy efficiency such as the example shown
in Section 5, the energy information of different recurrent functional-
ities is important for analysis in our approach. Thus, we can consider

Table 3
Scalability of the application engineering process.

FQA conf. #Features #Selectionsa #Config. Time (s)

Fig. 12 (Encrypt1) 18 2 1200 0.79
Fig. 12 (Encrypt2) 18 2 1200 0.79
Fig. 13 (Logging1) 18 4 45 0.56
Fig. 13 (Logging2) 18 4 30 0.53
Fig. 14 (Caching1) 13 6 300 0.56
Test1 (Cont. Help) 10 2 16 0.51
Test2 (Cont. Help) 10 1 (f) 160 0.55
Test3 (Hashing) 9 2 80 0.52
Test4 (Hashing) 9 1 (f) 400 0.57
Test5 (File Storage) 10 3 4 0.50
Test6 (File Storage) 10 1 (f) 1200 0.66
Test7 (Logging) 18 2 330 0.68
Test8 (Logging) 18 1 (f) 900 0.69
Test9 (Database) 13 3 24 0.52
Test10 (Database) 13 1 (f) 1600 0.8
Test11 (Authentic.) 17 2 2060 1.09
Test12 (Authentic.) 17 1 (f) 10,300 1.72
Test13 (Encryption) 18 2 1200 0.79
Test14 (Encryption) 18 1 (f) 12,000 1.98
Test15 (Caching) 13 5 15,480 3.53
Test16 (Caching) 13 1 (f) 7,200,000 889.96

a (f) indicates that the selected feature corresponds with a specific framework, other-
wise the selections correspond with the variables and operations.

Table 4
Scalability of the experimentation.

FQA #Config. Time #Config. Time

Logging 1 6760 ms (6.76 s) 3300 6.2 h
Encryption 1 5085 ms (5.09 s) 24,000 33.9 h
Caching 1 6825 ms (6.83 s) 187,500 355.5 h (∼ 15 days)

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

162

several papers that provide the energy experimental information as a
repository [8,30–32] in order to use the information gathered in our
approach and generate the configuration based on that energy data. The
main problem is that none of these repositories provide experimental
results on energy efficiency of FQAs, but rather on other functionalities,
like, for example, for the Internet of Things (IoT) components [32], or
Java collection classes [33].

As in our approach, the relevance of reasoning about energy effi-
ciency and performance at the architectural level is to be able to
compare the energy consumption and performance of the different ar-
chitectural configurations of the same applications (architectural pat-
terns, design variations, frameworks, etc.) [19–21,34]. Some ap-
proaches focus on the definition of architectural tactics [2] and design
patterns [35] driven by the energy. Other approaches define new ar-
chitectural description languages (ADLs) that include profiles and
analysis of energy consumption and performance [34]. Whatever the
case, the experimentation consists of estimating the energy consump-
tion of the application code to analyze the effects of applying a specific
architectural pattern or design to the application [2,25,35]. It does not
consider the different configurations of the recurrent functionality,
their parameters and implementations, which can be reused in many
different applications, like the FQAs we consider in this paper.

With respect to the variability modeling and configuration of the
FQAs, several approaches try to model and customize them to appli-
cations’ requirements. Two important approaches are presented in [27]
and [4]. In [27], the authors present CORE (Concern-Oriented REuse),
where each kind of software characteristic, from base application
functionality, including FQAs to non-functional properties, are modeled
in reusable units called concerns. In [4], a process to model a family of

FQAs separately from the base application’s functionality is defined,
following a Software Product Line (SPL) approach. However, informa-
tion concerning how FQAs affect energy efficiency and performance is
not considered when modeling and customizing FQAs.

Finally, another interesting approach is presented in [36]. The au-
thors approximate the influence of each feature in the feature model on
a non-functional property, before generating the configurations. How-
ever, they predict the effects of the features instead of giving real
measurements (estimations) as we do. Additionally, they model the
applications’ variability, so they need to build a variability model for
each different application, while we focus on specific recurrent func-
tionality (FQAs). Their variability model is always the same because the
FQAs can be reused in several applications. Furthermore, they do not
consider energy efficiency of applications in their work, which is also a
novel and well-known non-functional property nowadays.

10. Conclusions and future work

The process presented in this paper will help software developers to
build more energy-efficient software, taking into account other quality
attributes such as performance. Our approach allows a richer analysis of
the energy consumption and performance of different alternatives for
functional quality attributes. Configurations generated, using our ap-
proach achieve improvements of up to 63% in energy efficiency and up
to 55% in performance.

For future work, we plan to complete our approach in order to
consider other non-functional properties such as memory consumption,
and levels of security and usability [37], of the different configurations
together with the energy efficiency and performance attributes. We also

Table 5
Comparative of configurations for the logging FQA.

Table 6
Comparative of configurations for the encryption FQA.

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

163

plan to evaluate the energy consumption and performance of the FQAs
deployed in real applications [22,38] to demonstrate the applicability
and benefits of our approach.

Acknowledgements

This work is supported by the projects Magic P12-TIC1814 and
HADAS TIN2015-64841-R (co-financed by FEDER funds).

References

[1] L. Chen, M.A. Babar, B. Nuseibeh, Characterizing architecturally significant re-
quirements, IEEE Softw. 30 (2) (2013) 38–45, http://dx.doi.org/10.1109/MS.2012.
174.

[2] E. Jagroep, J.M. van der Werf, S. Brinkkemper, L. Blom, R. van Vliet, Extending
software architecture views with an energy consumption perspective, Computing
(2016) 1–21, http://dx.doi.org/10.1007/s00607-016-0502-0.

[3] J. Eckhardt, A. Vogelsang, D.M. Fernández, Are “non-functional” requirements
really non-functional?: An investigation of non-functional requirements in practice,
38th International Conference on Software Engineering (ICSE), (2016), pp.
832–842, http://dx.doi.org/10.1145/2884781.2884788.

[4] J.M. Horcas, M. Pinto, L. Fuentes, An automatic process for weaving functional
quality attributes using a software product line approach, J. Syst. Softw. 112 (2016)
78–95, http://dx.doi.org/10.1016/j.jss.2015.11.005.

[5] F.D. Rodríguez, S.T. Acuña, N. Juristo, Reusable solutions for implementing us-
ability functionalities, Int. J. Software Eng. Knowl. Eng. 25 (04) (2015) 727–755,
http://dx.doi.org/10.1142/S0218194015500084.

[6] K. Pohl, G. Böckle, F.J.v.d. Linden, Software product line engineering: foundations,
principles and techniques, (2005).

[7] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in software engineering, (2012).

[8] D.J. Munoz, M. Pinto, L. Fuentes, HADAS and web services: Eco-efficiency assistant
and repository use case evaluation, International Conference in Energy and
Sustainability in Small Developing Economies (ES2DE), (2017), pp. 1–6, http://dx.
doi.org/10.1109/ES2DE.2017.8015334.

[9] K. Czarnecki, S. Helsen, U.W. Eisenecker, Formalizing cardinality-based feature
models and their specialization, Software Process 10 (1) (2005) 7–29, http://dx.doi.
org/10.1002/spip.213.

[10] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated analysis of feature models 20
years later: a literature review, Inf. Syst. 35 (6) (2010) 615–636, http://dx.doi.org/
10.1016/j.is.2010.01.001.

[11] G.G. Pascual, R.E. Lopez-Herrejon, M. Pinto, L. Fuentes, A. Egyed, Applying mul-
tiobjective evolutionary algorithms to dynamic software product lines for re-
configuring mobile applications, J. Syst. Softw. 103 (2015) 392–411, http://dx.doi.
org/10.1016/j.jss.2014.12.041.

[12] E. Tsang, Foundations of Constraint Satisfaction: the Classic Text, BoD–Books on
Demand, 2014.

[13] M.W. Mkaouer, M. Kessentini, S. Bechikh, M. Ó Cinnéide, K. Deb, On the use of
many quality attributes for software refactoring: a many-objective search-based
software engineering approach, Empir. Softw. Eng. 21 (6) (2016) 2503–2545,
http://dx.doi.org/10.1007/s10664-015-9414-4.

[14] J.I. Panach, N.J. Juzgado, F. Valverde, O. Pastor, A framework to identify primitives
that represent usability within model-driven development methods, Inf. Softw.
Technol. 58 (2015) 338–354, http://dx.doi.org/10.1016/j.infsof.2014.07.002.

[15] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G.K. Olsen, A. Svendsen, Adding stan-
dardized variability to domain specific languages, International Software Product
Line Conference, SPLC, (2008), pp. 139–148.

[16] I. Reinhartz-Berger, K. Figl, Ø. Haugen, Comprehending feature models expressed in
CVL, Model-Driven Engineering Languages and Systems, Springer, 2014, pp.
501–517.

[17] J.M. Horcas, M. Pinto, L. Fuentes, Extending the common variability language
(CVL) engine: a practical tool, International Systems and Software Product Line
Conference (SPLC), (2017), pp. 32–37, http://dx.doi.org/10.1145/3109729.
3109749.

[18] E. Rouillé, B. Combemale, O. Barais, D. Touzet, J.M. Jézéquel, Leveraging CVL to
manage variability in software process lines, Asia-Pacific Software Engineering
Conference, 1 (2012), pp. 148–157, http://dx.doi.org/10.1109/APSEC.2012.82.

[19] S. Becker, H. Koziolek, R. Reussner, The palladio component model for model-
driven performance prediction, J. Syst. Softw. 82 (1) (2009) 3–22, http://dx.doi.
org/10.1016/j.jss.2008.03.066. Special Issue: Software Performance - Modeling
and Analysis.

[20] A. Martens, H. Koziolek, L. Prechelt, R. Reussner, From monolithic to component-
based performance evaluation of software architectures, Emp. Softw. Eng. 16 (5)
(2011) 587–622, http://dx.doi.org/10.1007/s10664-010-9142-8.

[21] C. Trubiani, I. Meedeniya, V. Cortellessa, A. Aleti, L. Grunske, Model-based per-
formance analysis of software architectures under uncertainty, International ACM
Sigsoft Conference on Quality of Software Architectures (QoSA), (2013), pp. 69–78,
http://dx.doi.org/10.1145/2465478.2465487.

[22] Y. Zhuang, The performance cost of software obfuscation for android applications,
Comput. Secur. (2017), http://dx.doi.org/10.1016/j.cose.2017.10.004.

[23] K. Grosskop, J. Visser, Energy efficiency optimization of application software, Adv.
Comput. 88 (2013) 199–241, http://dx.doi.org/10.1016/B978-0-12-407725-6.
00005-8.

[24] G. Kalaitzoglou, M. Bruntink, J. Visser, A practical model for evaluating the energy
efficiency of software applications. ICT4S, (2014).

[25] C. Sahin, M. Wan, P. Tornquist, R. McKenna, Z. Pearson, W.G.J. Halfond, J. Clause,
How does code obfuscation impact energy usage? J. Softw. 28 (7) (2016) 565–588,
http://dx.doi.org/10.1002/smr.1762.

[26] C. Tomazzoli, M. Cristani, E. Karafili, F. Olivieri, Non-monotonic reasoning rules for
energy efficiency, J. Ambient. Intell. Smart Environ. 9 (3) (2017) 345–360, http://
dx.doi.org/10.3233/AIS-170434.

[27] M. Schöttle, O. Alam, J. Kienzle, G. Mussbacher, On the modularization provided by
concern-oriented reuse, Modularity, (2016), pp. 184–189.

[28] A.M. Alashqar, A.A. Elfetouh, H.M. El-Bakry, Analyzing preferences and interac-
tions of software quality attributes using choquet integral approach, International
Conference on Informatics and Systems (INFOS), (2016), pp. 298–303, http://dx.
doi.org/10.1145/2908446.2908447.

[29] F. Pinciroli, Improving software applications quality by considering the contribu-
tion relationship among quality attributes, Procedia Comput. Sci. 83 (2016)
970–975, http://dx.doi.org/10.1016/j.procs.2016.04.194.

[30] K. Djemame, D. Armstrong, R. Kavanagh, A. Juan Ferrer, D. Garcia Perez,
D. Antona, J.-C. Deprez, C. Ponsard, D. Ortiz, M. Macías Lloret, et al., Energy ef-
ficiency embedded service lifecycle: towards an energy efficient cloud computing
architecture, International Conference on ICT for Sustainability, (2014), pp. 1–6.

[31] A. Hindle, A. Wilson, K. Rasmussen, E.J. Barlow, J.C. Campbell, S. Romansky,
Greenminer: a hardware based mining software repositories software energy con-
sumption framework, Working Conference on Mining Software Repositories,
(2014), pp. 12–21, http://dx.doi.org/10.1145/2597073.2597097.

[32] D. Kim, J.-Y. Choi, J.-E. Hong, Evaluating energy efficiency of internet of things
software architecture based on reusable software components, Int. J. Distrib. Sens.
Netw. 13 (1) (2017), http://dx.doi.org/10.1177/1550147716682738.

[33] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, A. Hindle, Energy profiles of java
collections classes, International Conference on Software Engineering (ICSE),
(2016), pp. 225–236, http://dx.doi.org/10.1145/2884781.2884869.

[34] C. Stier, A. Koziolek, H. Groenda, R.H. Reussner, Model-based energy efficiency
analysis of software architectures, European Conference on Software Architecture
(ECSA), (2015), pp. 221–238.

[35] D. Feitosa, R. Alders, A. Ampatzoglou, P. Avgeriou, E.Y. Nakagawa, Investigating
the effect of design patterns on energy consumption, J. Softw. 29 (2) (2017) e1851,
http://dx.doi.org/10.1002/smr.1851.

[36] N. Siegmund, M. Rosenmüller, C. Kästner, P.G. Giarrusso, S. Apel, S.S. Kolesnikov,
Scalable prediction of non-functional properties in software product lines: footprint
and memory consumption, Inf. Softw. Technol. 55 (3) (2013) 491–507, http://dx.
doi.org/10.1016/j.infsof.2012.07.020. Special Issue on Software Reuse and Product
Lines.

[37] R.M. Savola, Quality of security metrics and measurements, Comput. Secur. 37
(Supplement C) (2013) 78–90, http://dx.doi.org/10.1016/j.cose.2013.05.002.

[38] I. Ayala, L. Mandow, M. Amor, L. Fuentes, A mobile and interactive multiobjective
urban tourist route planning system, J. Ambient Intell. Smart Environ. 9 (1) (2017)
129–144, http://dx.doi.org/10.3233/AIS-160413.

J.-M. Horcas et al. Information and Software Technology 95 (2018) 147–164

164

http://dx.doi.org/10.1109/MS.2012.174
http://dx.doi.org/10.1109/MS.2012.174
http://dx.doi.org/10.1007/s00607-016-0502-0
http://dx.doi.org/10.1145/2884781.2884788
http://dx.doi.org/10.1016/j.jss.2015.11.005
http://dx.doi.org/10.1142/S0218194015500084
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0006
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0007
http://dx.doi.org/10.1109/ES2DE.2017.8015334
http://dx.doi.org/10.1109/ES2DE.2017.8015334
http://dx.doi.org/10.1002/spip.213
http://dx.doi.org/10.1002/spip.213
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1016/j.jss.2014.12.041
http://dx.doi.org/10.1016/j.jss.2014.12.041
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0012
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0012
http://dx.doi.org/10.1007/s10664-015-9414-4
http://dx.doi.org/10.1016/j.infsof.2014.07.002
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0015
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0016
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0016
http://dx.doi.org/10.1145/3109729.3109749
http://dx.doi.org/10.1145/3109729.3109749
http://dx.doi.org/10.1109/APSEC.2012.82
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1016/j.jss.2008.03.066
http://dx.doi.org/10.1007/s10664-010-9142-8
http://dx.doi.org/10.1145/2465478.2465487
http://dx.doi.org/10.1016/j.cose.2017.10.004
http://dx.doi.org/10.1016/B978-0-12-407725-6.00005-8
http://dx.doi.org/10.1016/B978-0-12-407725-6.00005-8
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0024
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0024
http://dx.doi.org/10.1002/smr.1762
http://dx.doi.org/10.3233/AIS-170434
http://dx.doi.org/10.3233/AIS-170434
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0027
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0027
http://dx.doi.org/10.1145/2908446.2908447
http://dx.doi.org/10.1145/2908446.2908447
http://dx.doi.org/10.1016/j.procs.2016.04.194
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0030
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0030
http://dx.doi.org/10.1145/2597073.2597097
http://dx.doi.org/10.1177/1550147716682738
http://dx.doi.org/10.1145/2884781.2884869
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0034
http://refhub.elsevier.com/S0950-5849(17)30383-X/sbref0034
http://dx.doi.org/10.1002/smr.1851
http://dx.doi.org/10.1016/j.infsof.2012.07.020
http://dx.doi.org/10.1016/j.infsof.2012.07.020
http://dx.doi.org/10.1016/j.infsof.2012.07.020
http://dx.doi.org/10.1016/j.cose.2013.05.002
http://dx.doi.org/10.3233/AIS-160413

	Variability models for generating efficient configurations of functional quality attributes
	Introduction
	Our approach
	QAs characterization
	FQAs variability modeling
	Energy efficiency and performance experimentation
	Representation in CSP
	Representation of the variability model and configurations
	Representation of the energy efficiency and performance information
	Representation of dependencies between usage models
	Representation of the objective functions

	Generating optimum configurations
	Evaluation and threats to validity
	Characterization of the QAs
	Variability modeling and CSP formalization
	Experimentation
	Experimentation set-up
	Accuracy of the results
	Generalization of results

	Generation of configurations
	Scalability
	Benefits of our proposal

	Related work
	Conclusions and future work
	Acknowledgements
	References

