
Variability and Dependency Modeling of Quality Attributes

José Miguel Horcas, Mónica Pinto, Lidia Fuentes
CAOSD Group, University of Málaga, Spain

horcas@lcc.uma.es, pinto@lcc.uma.es, lff@lcc.uma.es

Abstract—Functional Quality Attributes (FQAs) are quality
attributes that have strong functional implications and so can
be easily modeled by software components. Thus, we use
an aspect-oriented software product line approach, to model
the commonalities and variabilities of FQAs from the early
stages of the software development. However, FQAs cannot be
modeled in isolation since they usually have dependencies and
interactions between them. In this paper we focus on identifying
and modeling the dependencies among different FQAs. These
dependencies are automatically incorporated into the final
software architecture of the system under development, even
when the software architect may be unaware of them.

Keywords- AO-ADL; dependencies; feature models; quality at-
tributes.

I. INTRODUCTION

The critical quality attributes (QAs) of a software system
must be well understood and articulated early in the develop-
ment of a system, so that the architect can design a software
architecture that satisfies them [1]. Our work focuses only
on those QAs that have strong functional implications and so
can be easily modeled by software components (like security,
usability, error handling, etc.), which we call functional
quality attributes (FQAs).
Modeling FQAs is not a straightforward task due to

several reasons. On the one hand, they are usually very
complex, being composed by many concerns. For exam-
ple, security is a FQA composed by authentication, access
control, encryption and non-repudiation concerns, among
others. On the other hand, the concerns that comprise a
given FQA have dependencies and interactions between
them. For example, the confidentiality concern will depend
on the authentication, and encryption concerns. A FQA has
also dependency relationships with other FQAs, since some
concerns are shared and required by different FQAs. Security
is a typical example, where their concerns are required to
satisfy other FQAs (e.g. usability, adaptability).
Another difficulty of modeling FQAs is that each software

system requires a variable number of FQA’s concerns to be
incorporated into its software architecture. For instance, one
application may require the authentication and encryption
concerns of security while another application may require
the non-repudiation and the privacy security concerns. The
concerns that are not required should be easily removable
from the final software architecture.
Combining the use of SPLs and Aspect-Oriented Software

Figure 1: Our approach

Development (AOSD)1 technologies, in [2] we proposed an
Aspect-Oriented Software Product Line (AO SPL) approach
to model the commonalities and variabilities of complex
FQAs. Using this approach the software architect can auto-
matically derive a valid configuration of a FQA that includes
only the software components modeling those concerns that
are required by a particular software system. However,
in that work, we focused only on modeling one single
FQA without considering that FQAs have dependencies and
interactions between them that make it impossible to model
them in insolation, being the main shortcomings in that case
the following ones: (1) FQAs would include concerns that
do not pertain to that FQA – e.g. authentication would be
modeled as a concern of the usability FQAs because the
authentication of the user is needed in order to provide
him/her contextual help, and (2) the same concerns would
be scattered in the models of several FQAs — e.g. the
authentication concern would be modeled as a concern of
both security and usability.
The approach followed in this paper to avoid the afore-

mentioned shortcomings consists on the identification of the
dependencies between FQAs from the early stages of the
development. Concretely, we extend our previous work to
include the specification of the dependencies between the
concerns of different FQAs. Thus, in our approach, experts
on the domain of each FQA jointly specify the commonal-
ities and variabilities of a set of FQAs, as well as all the
dependencies among them. Then, the application architect
selects the concerns that are required by the application
according to the requirements specification document. This
selection implies the automatic incorporation to the software
architecture of any other concern of the same or other
FQAs the selected concerns depend on, even if the software
architect was unaware of these dependencies.
After this introduction, Section II describes the back-

ground, motivation, and a case study. In Section III we model
1http://www.aosd.net/

the dependencies between different FQAs. Section IV uses
our case study to illustrate the customization of the FQAs.
Finally, Section V discusses the related work and Section VI
presents our conclusions and future work.

II. BACKGROUND AND MOTIVATION

A. Background information
Our AO SPL approach is presented in Figure 1. In the

upper half we see how an expert in the domain of the
FQA specifies it. Following a SPL approach, we: (1) specify
the feature model (FM) of the FQA (using the Hydra
FM [3] specification tool), (2) define a template of the FQA
software architecture (using the AO-ADL Tool Suite [4] for
the specification of AO architectures [5]), and (3) link the
features in the FM with the elements in the AO architecture
(using the Variability Modeling Language (VML) [6])2. This
is done only once for each FQA.
Then, for each application, the application architect cre-

ates a product configuration by selecting the features of
the FQA that are required by that particular application.
Using that configuration, as well as the AO-ADL template
and VML file previously created, a template instance which
includes only those components that model the selected
FQA’s concerns is automatically generated and woven with
the core architecture of the application in an AO fashion.3

B. Case Study and Motivation
In this subsection we motivate our extension to the AO

SPL approach previously presented using a case study.
The case study consists of an application which provides
information in real time on different themes such as sports
scores, news, TV listings, etc. based on the interests of the
user. The user decides what information about which themes,
and the application notifies the user of events such as a goal
of his favorite team or news about his interests.
In spite of the above core functionality, the following

extra-functional requirements must also be considered:
1. All the information must be encrypted in order to avoid
that third people can change it with fake information or
can discover the preferences of the user.

2. Contextual help must be provided for the user based on
the previous experience.

3. Feedback information is provided for the user to suggest
other possible information that may be of his/her interest.
From the aforementioned requirements, the concern en-

cryption (concern of the security FQA), and the concerns
feedback and contextual help (concerns of the usability
FQA) need to be included as part of the specification of
the application software architecture.
In order to incorporate the FQAs, the application architect

will select encryption from the security FM and feedback
2These tools are described in [2] and can be downloaded from [4], [3].
3Core architecture: software architecture modeling the core functionality of the

application, without including the FQAs.

and contextual help from the usability FM. However, since
in most cases the software architect will not be an expert in
the security or usability domains, he/she may not be aware
of all the dependency relationships between those FQAs. For
instance, to provide contextual help to the user, he/she needs
first to be authenticated to get customized help based on the
previous experience of the user with the application. But
the software architect may not identify the authentication
concern as a requirement of the system because it was not
explicitly included in the system requirements specification.
So, the approach presented in [2], in which each FQA
was modeled independently, is not enough to include these
dependencies between concerns of different FQAs.
In order to avoid this situation, the most relevant contri-

bution of our extension is that it allows the identification
and modeling of dependencies between FQAs that are not
always explicitly specified as part of the application re-
quirements. Moreover, these dependencies are automatically
incorporated to the instantiated software architecture with
no additional effort required by the application architect.

III. DEPENDENCY MODELING OF FQAS
In modeling FQAs, we distinguish two kinds of de-

pendencies: (1) intraFQA-dependencies: the dependency
relationships between the concerns of a FQA. For example,
the encryption concern of the security FQA requires a key
storage; and (2) interFQA-dependencies: the dependency
relationships between concerns belonging to different FQAs.
For example, a database storage with a secure access way
(concern of the persistence FQA) requires access control
(concern of the security FQA).
In a FM, these dependencies can be represented either

graphically or textually. Using these two mechanisms it is
possible to represent the following constraints:
• tree constraints: they represent dependencies between
concerns that belong to the same branch of the tree. Some
IntraFQA-dependencies can be modeled in this way.

• cross-tree constraints: they represent dependencies be-
tween concerns that are in different branches of the tree.
InterFQA-dependencies are always modeled in this way
because the concerns of different FQAs will always be
in different branches of the tree. Also, some intraFQA-
dependencies need to be modeled in this way.
The following subsection focuses on how we model

interFQA-dependencies which are the most interesting and
difficult to identify.

A. Dependencies between different FQAs
In this section we go through the steps of our approach in

which the modeling of the dependencies is specially relevant
(steps in a dark color in Figure 1).
Feature Model. In order to model the interFQA-depend-

encies we model all the FQAs that have dependency re-
lationships between them together in the same FM. Thus,

Figure 2: Hydra feature model of security, usability and persistence FQAs.

Figure 3: Textual constraints of the feature model.
Figure 2 models security, usability and persistence in the
same FM.4

In this joint FM, the interFQA-dependencies are textually
specified using cross-tree constraints (see constraints 4-7 in
Figure 3). For instance, constraint 4 indicates that the se-
lection of the ContextualHelp feature of the usability FQA
will imply selecting also the Authentication feature of the
security FQA (ContextualHelp implies Authentication).
Moreover, since the AccessControl feature is the parent
feature of Authentication, access control is also automat-
ically incorporated inside the resulting product configura-
tion. Finally, the software architect must select between
the optional features that are children of authentication –
e.g. the use or not of a logging (AuthLogging) and hash
(AuthenticationHash), or the way of authentication.
However, in our example, the features that are automati-

cally incorporated into the product configuration once the
ContextualHelp feature is selected, are not only limited
to the ones mentioned above. Instead, let us suppose that
once Authentication has been incorporated, the application
architect selects the optional AuthLogging feature. In this
case, according to constraint 5 in Figure 3 (AuthLogging
implies Logs), the Logs feature of the usability FQA is
also selected, as well as the Feedback feature, which is the
parent feature of Logs. Moreover, according to constraint 6,
the DatabaseStorage feature of the persistence FQA is
incorporated whether the application architect chooses to
use either a user-password, a card, a biometric or a card-
password authentication mechanism. Finally, adding the
DatabaseStorage feature forces the application architect
to optionally choose the SecureDBStorage feature and, if
chosen, this feature implies the AccessControl feature of the
security FQA. To clearly show the consequences of selecting
the ContextualHelp feature in our approach with interFQA-
dependencies, in Figure 2 we show the branches of the tree
that are involved in a dark color.
Architectural Template. The AO-ADL architectural tem-

plate in the new version of our approach is extended to
4Neither all the FQAs, nor all the concerns of each FQA have been included.

Figure 5: FQAs configuration.
contain the definition of the features of all the FQAs, as
well as the relationships between them. In order to do that
we define the architectures with two levels of granularity.
In the first level, shown on the left of Figure 4, there
is a composite component representing each FQA. Thus,
Security, Usability and Persistence in Figure 4 are com-
posite parameterized components that represent three sub-
templates for modeling security, usability and persistence, as
well as their interFQA-dependencies. The right of Figure 4
shows the security and the persistence templates.
The VML file. The VML file specifies the matching

between the features chosen from the FM and the actions to
be applied on the architecture. This file and its description
can be found in [2].

IV. CREATING A CONFIGURATION OF THE FQAS

At this point, the application architect has a FM and
an architectural template that model all the FQAs that are
needed, and the dependencies between them.
Firstly, a valid configuration is created depending on the

FQAs requirements of the application. In order to do that,
we use the Hydra tool and the FM previously generated.
Figure 5 shows a valid configuration that satisfies our case
study extra-functional requirements. Nodes in a dark color
represent the features that are not explicit requirements of the
application, and that have been automatically added to the
configuration due to the interFQA-dependencies that were
modeled in section III-A. Hydra automatically selects all
the necessary features to satisfy both the intraFQA- and
interFQA-dependencies.
The next step is to instantiate the FQAs template with

the chosen configuration. Figure 6 shows the architecture
obtained for the selected FQAs. Unrequired architectural el-
ements have been automatically removed from the templates,
and others such as Authentication or Encryption, which were
parameters, have been instantiated.

Persistence

Security

Quer
Conn

IPersistence

Usability

Fdbk
Conn

Acc
Conn

IDBSecQuery

IHash ICxtHelp

IFeedback

IExeCtrlIEncryp

IIntegrity

IAccessCtrl

PersistenceManager

DataBaseAdapter

SchemaEvo

FilesStorageTemporalStorage

DB
Conn

IPersistence

ISchmEvo

Tem
Conn

Files
Conn

IDBSecQuery

IFilesStIDBStITempSt

|AuthenticationDatabaseAdapter

Access
Control Integrity |Hash|EncryptionAuditing

DBA
Conn

ISession

IFeedback

IHash

Hash
Conn

Sess
Conn

Encr
Conn

IDBQuery

IQuery

IAuditing IAccessControl IIntegrityIEncryption

SecurityTemplate

PersistenceTemplate

Legend:

Template
Parameter

Component

Required Role Provided Role Aspectual Role

Figure 4: AO-ADL architectural template for the FQAs.

Persistence
Manager

DataBase
Adapter

Schema
Evo

DB
Conn

IPersistence

ISchmEvo

IDBSecQuery

IDBSt

Persistence
Template

AuthenticationDatabaseAdapter

Access
Control

Encryption

ISession

IFeedback

Sess
Conn

IDBQuery

IQuery

IAccessControl IEncryption

Security
Template

Sess
Conn

Persistence

Security

Quer
Conn

IPersistence

Usability
Acc

Conn

IFeedback

IEncryp

IAccessCtrl

Figure 6: Software architecture instantiated for the selected FQAs.
V. RELATED WORK

In [7] the authors decompose an overall diagram into a
set of individual FMs, and propose a matrix-based approach
to maintain and managing the information about feature
dependencies between different FM trees. However, from the
point of view of the domain experts, our approach facilitates
the modeling of the QAs in the same model specifying
the dependencies in an explicit way, without the necessity
of encoding them in an auxiliary structure as a matrix.
Moreover, the main difference is that they do not focus
on modeling FQAs, as we do. The support for modeling
dependencies at the FM level already exist and thus our
work focuses on using this existing support to improve and
automate the modeling of FQAs and their dependencies from
early stages of the development.
COVAMOF [8] is a framework that captures variability

of QAs in terms of variation points and dependencies by
using associations. Dependencies specify properties to the
FMs that define values of the QAs such as performance or

memory usage. In contrast to our proposal, this approach
also address the variation of non-functional QAs.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an extension to our
AO SPL approach to model the dependencies between
the concerns of different FQAs. The main contribution of
this work is that our extension allows the identification of
dependencies between FQAs that are not always explicitly
specified as part of the application requirements. In addition,
this also allows the automatic incorporation of these depen-
dencies to the software architecture in a transparent way,
from the point of view of the application architect. A goal
achieved with our extension is that it avoids the duplication
of shared concerns in different FQAs.
As part of our ongoing work, we are now exploring the

possibility of defining a complete repository of FQAs ready
to be customized and incorporated inside any application.

ACKNOWLEDGMENT
Work supported by the European INTER-TRUST 317731 and

the Spanish TIN2012-34840 and P09-TIC-5231 projects.

REFERENCES
[1] F. Bachmann and et al., “Designing software architectures to achieve

quality attribute requirements,” IEE Proceedings, vol. 152, no. 4, pp.
153–165, August 2005.

[2] R. Lence, L. Fuentes, and M. Pinto, “Quality attributes and variability
in ao-adl software architectures,” in ECSA. pp. 7:1–7:10. 2011

[3] CAOSD Group University of Málaga, “Hydra project website,”
http://caosd.lcc.uma.es/spl/hydra/.

[4] CAOSD Group University of Málaga, “AO-ADL project website,”
http://caosd.lcc.uma.es/aoadl/.

[5] M. Pinto, L. Fuentes, and J. Marı́a Troya, “Specifying aspect-oriented
architectures in AO-ADL,” Information & Software Technology,
vol. 53, no. 11, pp. 1165–1182, 2011.

[6] S. Zschaler, “Vml*: A generative infrastructure for variability man-
agement languages,” 2009.

[7] H. Ye and H. Liu, “Approach to modelling feature variability and
dependencies in software product lines,” Software, IEE Proceedings,
vol. 152, no. 3, pp. 101–109, june 2005.

[8] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, “Modeling
dependencies in product families with covamof,” in Engineering of
Computer Based Systems, 2006, 2006, pp. 9 pp.–307.

