
Towards the Dynamic Reconfiguration of Quality Attributes

Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes

Universidad de Málaga, Andalucía Tech, Spain

{horcas,pinto,lff}@lcc.uma.es

formance, efficiency, or cost, that can be mapped to architectural
or implementation decisions, but not directly to functional compo-
nents.

The additional functionality required to satisfy some QAs (e.g.,
security) can be composed by many components (e.g., authentica-
tion, encryption, or integrity), and different applications may re-
quire a customized subset of each functionality (e.g., only encryp-
tion). Also, different QAs may have dependencies between them
which should be taken into account during architecture elicitation.
For instance, the contextual help concern of the usability QA de-
pends on the authentication concern of the security QA to be able
to offer customized help based on the user’s previous experience
with a given application. The high degree of variability exhibited
by the QAs exposes the real complexity of managing the variants
of the QAs. So, the use of a Software Product Line (SPL) (Met-
zger and Pohl 2014) to model and manage the variability of the
QAs makes sense. However, although SPLs are traditionally used
to exploit and handle the commonalities and variations of the base
functionality of the applications, QAs variability has not received
as much attention (Etxeberria et al. 2007), and there is a lack of ex-
isting approaches that integrate QA variability as a part of the sys-
tematic variability management of SPLs (Myllärniemi et al. 2012).
In this paper, we follow our previous approach (Horcas et al. 2014a)
to model the variability of the QAs separately from the base appli-
cation variability. Separately modelling the variability of the QAs
from the variability of the base application has many advantages
such as a better reusability of both the QAs and the applications.

Moreover, the functionality of the QAs can vary for several rea-
sons, such as variations in the user and usage needs (e.g., different
users may prefer a different level of usability based on their experi-
ence with the application), variations in hardware (e.g., fingerprint
authentication only works with touch screen devices) and variations
in the available resources (e.g., available space affects persistence
mechanisms). Reconfiguring the functionality of the QAs may im-
ply changes in many components at the architectural level. For QAs
with functional implications, which can vary at runtime, we need
to be able to modify the software architecture of the applications
affected by them, by changing specific elements at runtime (com-
ponents, interactions, classes, etc.). Moreover, we need to take into
account the impact of all these variations over the product’s non-
functional QAs (e.g., performance, efficiency) (Myllärniemi et al.
2012).

Systematic literature reviews (Galster et al. 2014; Mahdavi-
Hezavehi et al. 2013; Myllärniemi et al. 2012) on QAs and variabil-
ity management evidence that existing research methods focus on
how variations in the application functionality, or in the hardware
resources, affect the quality of the overall software architecture in
terms of non-functional QAs (e.g., efficiency), but little work is de-
voted to deal with the dynamic variants in the functionality required
to realize some QAs (e.g., security, usability), which, as previously
said, need to be introduced into the software architecture as func-
tional components (Horcas et al. 2014a). So, in this paper, we aim

Abstract

There are some Quality Attributes (QAs) whose variability is ad-
dressed through functional variability in the software architecture. 
Separately modelling the variability of these QAs from the variabil-
ity of the base functionality of the application has many advantages 
(e.g., a better reusability), and facilitates the reconfiguration of the 
QA variants at runtime. Many factors may vary the QA function-
ality: variations in the user preferences and usage needs; variations 
in the non-functional QAs; variations in resources, hardware, or 
even in the functionality of the base application, that directly affect 
the product’s QAs. In this paper, we aim to elicit the relationships 
and dependencies between the functionalities required to satisfy the 
QAs and all those factors that can provoke a reconfiguration of the 
software architecture at runtime. We follow an approach in which 
the variability of the QAs is modelled separately from the base 
application functionality, and propose a dynamic approach to re-
configure the software architecture based on those reconfiguration 
criteria.

Keywords Quality attributes, reconfiguration, software architec-
ture, SPL, variability

1. Introduction

There are some quality attributes (QAs) that have functional im-
plications in the software architecture of the applications affected 
by them (Juristo et al. 2007). For instance, adding security to an 
application implies adding the components that provide the access 
control methods or encryption algorithms. The variability of these 
QAs is addressed through the incorporation of some QA-specific 
functional variability inside the application’s software architecture. 
For instance, the variability of the availability and the security QAs 
are achieved by having different graphical representations for desk-
top and mobile environments and by having different access 
control methods and encryption algorithms, respectively. In this 
paper we distinguish between (1) the base functionality of the 
applications;(2) the additional functionality required to satisfy 
some QAs such as security, usability, or persistence; and (3) those 
QAs, tradition-ally understood as non-functional properties, such 
as such as per-



to elicit and model the relationships and dependencies between the
functionality of the QAs, and the factors that affect them at runtime
and thus may provoke a reconfiguration of the QA functionality.
These factors include user preferences, context changes, changes in
the requirements of the base application, etc. Making explicit these
relationships is indispensable to automate the process of reconfigur-
ing the architecture at runtime, and facilitates the evaluation of the
architecture configurations. We propose a self-adapting approach
that automatically reacts to the changes on those criteria in order to
reconfigure the functionality of the QAs at runtime. To do so, we
extend our previous static approach (Horcas et al. 2014a) that sep-
arately models the variability of the QAs from the base application
in order to customize and introduce the QA functionality into the
software architecture of the applications at design time, and pro-
pose a dynamic approach to reconfigure the QA functionality. Our
approach maintains, at runtime, the benefits of separating the QA
functionalities from the base application.

The rest of the paper is organized as follows. In Section 2 we
briefly overview the state of the art and discuss existing approaches
for varying QA functionality, variability modelling of QAs, and
reconfiguration of QAs. We also motivate our approach with a
real case study. Section 3 presents our approach to dynamically
reconfigure the QA functionality at runtime. In Section 4 we show
how to separately model the variable functionality of the QAs and
how to explicitly model their relationships with the non-functional
QAs and the base application. In Section 5 we identify some open
issues related to our approach. Finally, Section 6 expounds the
conclusions and on-going work.

2. State of the Art and Motivation
There are several approaches to model variability of QAs such
as extensions to feature models (Benavides et al. 2006), goal-
based models (González-Baixauli et al. 2004), Bayesian belief net-
works (Zhang et al. 2003), or frameworks like COVAMOF (Sin-
nema et al. 2006). All these methods are compared in (Etxeberria
et al. 2007), but none of them have became a de-facto approach
for modelling the variability of QAs, nor do they deal with the
reconfiguration of QAs at runtime. Moreover, recent literature re-
views (Galster et al. 2014; Mahdavi-Hezavehi et al. 2013; Myl-
lärniemi et al. 2012) expose the lack of mature research into QA
variability.

Most of the existing approaches target QA variability from the
point of view of the non-functional requirements, such as (Alam
et al. 2013; Etxeberria et al. 2007, 2008; Myllärniemi et al. 2012;
Zhang et al. 2010). For instance, Etxeberria et al. (Etxeberria et al.
2008) model QA variability with the purpose of evaluating how
variations in the base application functionality vary the level of
performance and usability. Moreover, they usually model the QA
variability together with the variability of the base application, in-
creasing the complexity of capturing and analysing the variability.
Similarly, Zhang et al. (Zhang et al. 2010) estimate the impact of
functional features on each QA by using the Analytic Hierarchi-
cal Process (AHP), while Alam et al. (Alam et al. 2013) model the
variability of the interfaces of generic concerns and focus on the
impact of the concerns on non-functional QAs through goals-based
models.

However, there has been little work devoted to modelling the
variability of those QAs that have strong functional implications
and need to be modelled as functional components to be incorpo-
rated into the software architecture. For instance, Juristo et al. (Ju-
risto et al. 2007) propose an approach in which usability features
with major implications for software functionality (e.g., feedback,
contextual help) are incorporated as functional requirements into
the software architecture. Other static approaches that deal with QA
functionalities at the architectural level are the QADA (Quality-

driven Architecture Design and quality Analysis) method (Matin-
lassi et al. 2002) and the RiPLE-DE process (Cavalcanti et al.
2011). QADA (Matinlassi et al. 2002) is a specific method for de-
signing SPL architectures by transforming systematic functional-
ity and QAs into software architectures, but this proposal does not
explicitly take into account the quality requirements. The RiPLE-
DE (Cavalcanti et al. 2011) process is a domain design process for
SPL that can be extended to model the QA variability as part of
a family of products. The QA variability is represented in feature
model diagrams and in order to achieve desired quality levels, the
QAs are enhanced with information of the base application (e.g.,
the system’s response measure). Thus, the variability of the QA
functionalities directly depends on the base application, preventing
the QA functionalities from being reused.

The conclusion is that there are few approaches that address the
variability of the QA functionalities using SPLs, and those existing
approaches do not consider that the QA functionalities that are
independent from the application (e.g., authentication mechanisms,
hashing and encryption algorithms, usability features, etc.) should
not be modelled along side the functionality of the base application,
but rather they should be modelled separately.

Following an approach similar to Juristo et al. (Juristo et al.
2007), our work aims to elicit similar functionalities for other QAs
(e.g., security, persistence), not only usability. A difference to ex-
isting approaches is that we separately model the context informa-
tion, the non-functional QAs, the variability of the QA functionali-
ties and the variability of the base application. Moreover, we iden-
tify and explicitly define the dependencies with the non-functional
properties (e.g., performance, level of security or usability, user
preferences) with the purpose of reconfiguring the QA function-
ality at runtime based on those reconfiguration criteria. The main
benefit is that in our approach the same QA functionalities can be
reused for different applications and this facilitates the reconfigu-
ration of those functionalities at runtime.

2.1 Motivating Case Study
In order to illustrate our approach, we consider the following case
study: an electronic voting (e-voting) application1 that allows cre-
ating and joining different kinds of elections (national, corporative,
and social elections) and casting votes from different devices (e.g.,
smart phones, desktop, etc.). Apart from this basic functionality,
some of the QA requirements that could be taken into account in
the development of the e-voting application are: (1) all the clients
must be authenticated before creating/joining an election, and (2)
all the votes must be encrypted. So, an authentication mechanism
and an encryption algorithm must be introduced into the software
architecture of the e-voting application — i.e., authentication and
encryption are the QA functionalities required to satisfy security.
However, each kind of election requires a different level of secu-
rity — i.e., a non-functional QA requirement. For instance, na-
tional elections require a higher level of security than social elec-
tions, and thus, this also affects the QA functionality because differ-
ent authentication mechanisms and encryption algorithms must be
used for each kind of election. Each kind of authentication mech-
anism provides a different level of usability for the user. For in-
stance, identifying the user using a social network identifier (e.g.,
the user’s Facebook profile) provides a high level of usability be-
cause it only requires a simple click by the user to log in to the
application, but the level of security is lower than using a digital
certificate authentication. Furthermore, each encryption algorithm
has a different memory consumption and efficiency. When the bat-
tery of the smart phone is lower, the encryption algorithm needs to
be reconfigured at runtime to use a lighter encryption algorithm.

1 http://www.inter-trust.eu/



«App»

«App»

«App»

«App»

«QA»

«QA»

«QA»

Application Architecture + 

QA Architecture

KNOWLEDGE

MONITOR 

and 

ANALYSIS

EXECUTE

Execute Reconfiguration 

(Weaving process)

PLAN

QAs Domain 

Requirements

Variability Modelling of QAs

(commonalities, variabilities, dependencies,…)

Generate Reconfiguration of 

QAs

Pre-Loaded 

Configurations

Optimization 

Algorithms

ECA Rules

Constraint 

Satisfaction 

Problem

Aspect-Oriented 

Programming

M2M Transformations

Changes Awareness

Reconfiguration is needed?

(non-functional QAs, resources, 

user preferences, contextual 

changes,...)

Non-Functional 

QAs

User 

Preferences

Device 

Resources

...

...

Initial 

Configuration

QA Variability 

Model

QA Software 

Architecture
...

product 

configuration

Design time

Runtime

User preferences, 

resources, context 

information,...

SPL Variability

1..*

Quality 

Attributes

Quality 

Attribute 

functionalities

Application

Application 

Variability Model

Application Software 

Architecture

«App»

«App»

«App»

«App»

«QA»

«QA»

«QA»

Application Architecture +

QA Architecture

Figure 1. Reconfiguration approach for QA functionalities.

Eliciting and modelling the relationships and dependencies
between the base application, the QA functionalities, the non-
functional QAs, and the reconfiguration contexts in order to adapt
the software architecture at runtime is not an easy and straight-
forward task, as demonstrated in this small example. Explicitly
specifying and separately modelling the QAs allows us to anal-
yse how they affect the configuration of the application software
architecture, and facilitates its adaptation at runtime.

3. Our Approach
In this section we present our approach to automatically reconfigure
the software architecture of the QAs at runtime.

Like other existing reconfiguration approaches (Abbas et al.
2010; Pascual et al. 2015; Horcas et al. 2014b), we follow the
MAPE-K loop of the Autonomic Computing (AC) paradigm (Kephart
and Chess 2003), where “MAPE” stands for Monitoring, Analysis,
Plan, Execution and ‘K’ stands for Knowledge. The Knowledge is
one of the key aspects that differentiates a MAKE-K loop approach
from others. In our approach, the Knowledge (top of the runtime
part of Figure 1) includes the application and the QAs variabil-
ity models and software architectures, as well as the information
about the non-functional QAs, the user preferences and the device
resources that may affect the functionality of the QAs. More im-
portantly, it includes the dependency relationships between them.
Finally, an initial configuration of the application and the QAs is
included. This information needs to be modelled at design time (top
of Figure 1), and the successful reconfiguration of the QAs in an
application will largely depend on the level of details included in
the variability modelling of the QAs and in their correctness. Our
approach for specifying this information is described in Section 4.

The development of the automatic process to reconfigure the
QAs at runtime consists in providing support to: (1) Monitor the
application to listen for changes in the values of non-functional
QAs, resources, user’s preferences, context information, and any
parameter previously modelled that may provoke a reconfigura-
tion; (2) Analyse the criteria values to determine whether or not
a reconfiguration of the QA functionalities is needed (Changes
Awareness process in Figure 1); (3) generate a Plan for the
new configuration with the set of changes that need to be done
in the current configuration of the QA functionalities (Generate

Reconfiguration of QAs). Different strategies and technolo-
gies can be applied to generate the new configuration (e.g., op-
timization algorithms, Event-Condition-Action rules, Constraint
Satisfaction Problem); and (4) Execute the plan by adapting the
QA configuration deployed inside the application architecture at
runtime, according to the new configuration of the QA generated
(Execute Reconfiguration).

Since we model the variability of the applications and the QAs
separately, the reconfiguration of the QAs implies that the soft-
ware architecture of the QAs is first customized and then com-
posed/integrated into the architecture of the running application. To
do so, we use model-to-model (M2M) transformations at runtime
(e.g., using models@runtime), and Aspect-Oriented Programming
(AOP) to inject (i.e., weave) the new configuration and remove (i.e.,
unweave) the previous one (Weaving process in Figure 1). As
shown in grey in Figure 1, our contributions to the dynamic re-
configuration of the functionality of QAs are the variability mod-
elling of the QAs, i.e., the Knowledge (see Section 4), and in the
approach followed to execute the new configuration (not included
due to space limitations).

4. Variability Modelling of QAs
This section describes how the variability management of the QAs
and their functionalities can be achieved so as to successfully han-
dle the reconfiguration of the QA functionalities of our case study
at runtime. Concretely, we propose integrating the QAs and their
functionality variability as part of the systematic variability man-
agement of an SPL. Continuing with our case study, our approach
models, through different sub-tress (right to left in the variability
model of Figure 2), the following: (1) the variability of the e-voting
application functionality; (2) the variability of the QA functional-
ities; (3) the variability of the QAs as non-functional properties,
and (4) the factors that can provoke a reconfiguration of the QA
functionality, such as resources, user preferences and context infor-
mation. The dependency relationships between them are modelled
using cross-tree constraints.

The most relevant parts of our variability model are highlighted
in both Figure 2 and the example shown in Figure 3:



«QA»

«QA»

«QA»

«QA»

«QA»

«QA»

«QA»

«App»

«App»«App»

«App»

VP VP

VP

VP

VP

VP VP

VP

VP

VP

User preferences, resources, context 

information,...

SPL Variability

1..*

Quality Attributes

Quality Attribute 

functionalities

Application

CROSS-TREE CONSTRAINTS

- Relationships and dependencies

- Reconfiguration criteria

Variability modelling of the base application 

functionality

Variability modelling of the functionality required 

by quality attributes

Variability modelling of quality 

attributes

Modelling of the user preferences, 

resources, context information, etc.
V

a
r
i
a
b

i
li

t
y

 

S
p

e
c
if

i
c
a

t
i
o

n

V
a
r
i
a
t
i
o

n
 

P
o

in
t
s

S
o

f
t
w

a
r
e
 A

r
c

h
i
t
e

c
t
u

r
e

Figure 2. Separately modelling the variability of the QA functionalities.

(APPLICATION BASE FUNCTIONAL VARIABILITY) Fi-
gure 2 shows that the base application and the QAs functional-
ities are separate and have their own software architecture and
variation points. The variation points define how the architec-
ture is modified when a particular feature is selected, which
enables us to automatically generate a customized software ar-
chitecture according to the features selected.

This separation between the software architecture of the base
application and the software architecture of the QAs with func-
tional implications makes sense because most of the compo-
nents that implement the functionality required to fulfil the QAs
are independent of the architecture of the base application, and
can be reused in different application domains. For instance, the
implementation of a particular encryption algorithm (e.g., RSA)
does not change from one application to another. In addition,
existing dependencies can also be modelled explicitly within
the variability model. For instance, authentication mechanisms
normally require the introduction of a panel in the application
to allow users to introduce their credentials.

In Figure 3 we show that the functionality of the e-voting ap-
plication (i.e., the different kinds of elections) is modelled sep-
arately from the non-functional QAs and from the functionality
of the QAs required to satisfy them.

(QAs FUNCTIONAL VARIABILITY) In Figure 3, we can ob-
serve the functionality required to address security, persistence,
and usability QAs.2 There are several possibilities for satisfying
the authentication requirement (e.g., using a digital certificate or
a social identity, among others), multiple encryption algorithms
available (e.g., RSA, DSA,. . . ), and the possibility to provide
contextual help to the user.

(QAs NON-FUNCTIONAL VARIABILITY) In addition to the
functional variability of some QAs, there are variants of the
QAs that are related to the architecture’s intrinsic qualities,
and the materialization of these non-functional QAs variability
does not directly affect the components and relationships in the
architecture, but it does affect them indirectly.

2 We have omitted the variation points of the software architectures in
Figure 3 for the sake of simplicity.

For instance, in Figure 3, we represent information regarding
the security QA in two different subtrees. On the one hand, we
model the functional variability of the components that imple-
ments the security features, as explained above. On the other
hand, we model the variability of the security QA as non-
functional properties indicating the assessed level of security
(e.g., high, medium, low) that satisfies a specific product re-
quirement. Thus, if a product requires a higher level of secu-
rity, security functionality needs to be reconfigured to include
a more secure authentication mechanism or a stronger encryp-
tion algorithm. The relationship is represented in the variability
model as a cross-tree constraint between the level of security in
the non-functional QAs (see cross-tree constraint (2) in Fig-
ure 3) and the feature representing the functionality to be in-
cluded in the software architecture. This functional feature is
associated with the component(s) in the QA architecture that
provides the required level of security.

(RECONFIGURATION FACTORS) Apart from the non-functional
QAs and the application functionality, there are other factors
whose variations at runtime may affect the current configura-
tion of the QA functionalities. As we stated in Section 1, vari-
ations at runtime in the context information, user preferences
and needs, resources, etc. may all provoke a reconfiguration of
the QA architecture.

We maintain the variability of those concerns separate in or-
der to facilitate the modelling of them, and to explicitly define
the reconfiguration criteria over the QA functionalities. For in-
stance, as shown in Figure 3, we model the possible contexts
in which the e-voting application can be executed (e.g., smart-
phone, desktop). In this way, the software architecture of the
QA can be reconfigured based on the context information of the
application — e.g., changing the usability level when the appli-
cation detects that it is running over a desktop or smartphone,
as a cross-tree constraint (1) as shown in Figure 3.

(DEPENDENCY RELATIONSHIPS) Here we highlight the dif-
ferent kinds of dependencies that exist between the QA func-
tionalities and the rest of information in our QA variability
model, and how these dependencies are modelled using tree and
cross-tree constraints. Even though the relationships between



CROSS-TREE CONSTRAINTS (DEPENDENCIES):

Device.Smartphone implies UsabilityLevel.High or UsabilityLevel.Medium

SecurityLevel.High implies Authentication.DigitalCertificate or Authentication.BioAuth

UsabilityLevel.High  implies Authentication.SocialIdentity or Authentication.UserPassword

MemoryConsumption.Percentage > 80 implies not (Encryption.RSA or Encryption.ECDSA)

Election.National implies Security.High

Election.Social implies not Security.High

...

User preferences, resources, 

context information,...

SPL Variability

1..*

Non-Functional Quality 

Attributes

Quality Attribute 

functionalities
E-Voting Application

Security Functionality

1..*

Usability Functionality

Authentication

DigitalCertificate

UserPassword

1..1

ContextualHelp

SocialIdentity
BioAuth

1..*

Persistence

QA Functionalities

1..*

Variability modeling of the functionality required by quality attributesVariability modelling of non-functional quality attributes

Encryption

DSA

ECDSARSA

1..1

(4)

(3)

(1)

Quality Attributes

1..*

Efficiency

1..*

Resource 

utilisation

Time 

behaviour

Response Time

RTMilliseconds: Integer

...

Memory 

Consumption

Percentage: Integer

ContextualHelp 

implies 

Authentication

Application

...

Context information, user 

preferences, resources,...

ContextDevice

Smartphone Desktop

1..1

Low

Medium

High

1..1

Low

Medium

High

1..1

Usability 

Level

Security 

Level

Election

National

Corporative

1..1

Social

(2)

(5)

Figure 3. Modelling dependency relationships between QA functionalities and reconfiguration criteria.

some of these elements have been already identified in previ-
ous research (Sinnema et al. 2006; Zhang et al. 2010; Pinto
and Fuentes 2011; Horcas et al. 2014a), none of the existing
work represent them explicitly in a variability model and none
of them do it in a way in which the configuration of the QAs
can be automated and performed dynamically at runtime.

Firstly, there are dependencies between the functionalities re-
quired by different QAs. For instance, in Figure 3, we can ob-
serve that the contextual help functionality requires authenti-
cation in order to provide customized help to the users based
on their previous experience with the application. Secondly,
non-functional QAs have direct dependencies with some QA
functionalities. For example, identifying the user using a social
network identifier (e.g., the user’s Facebook profile) provides a
high level of usability because it only requires a simple click
by the user to log in to the application (see cross-tree constraint
(3) in Figure 3). However, social identity authentication pro-
vides a low level of security. So, the security and usability func-
tionality need to be reconfigured when the application requires
a different level of security or usability. Thirdly, there are QA
components that can have dependencies with the application,
and are not obvious. For instance, national elections require a
higher level of security than social elections (see cross-tree con-
straint (5)), and this implies changing the authentication mech-
anism in use (see cross-tree constraint (2)).

Another reconfiguration criterion based on the memory con-
sumption of the application is modelled similarly (see cross-
tree constraint (4)). This dependency forces a reconfiguration
to avoid the use of a heavy encryption algorithms if the con-
sumption exceeds 80% memory.

4.1 Variability Modelling of QAs with CVL
In order to demonstrate the feasibility of our approach, we use the
Common Variability Language (CVL) (Haugen et al. 2008). CVL
facilitates the QA variability modelling, in contrast to using classic
feature models, principally for three reasons:

1. CVL allows us to characterize the possible variant space for
QAs (Myllärniemi et al. 2012), without needing to extend the

variability model to support additional attributes. For instance,
the variant space for the response time concern can be charac-
terized with a numeric metric, by using an integer variable in
CVL (e.g., 200 milliseconds).

2. CVL provides units of modularization (i.e., Composite Vari-
ability Specifications and Configurable Units (CVL Submission
Team 2012)) to specify the variability as a reusable sub-trees of
the model that gather a set of reusable variation points.

3. CVL allows cross-tree constraints to be defined using the Ob-
ject Constraint Language (OCL)3, and thus, include depen-
dency relationships with numeric variables.

Once a product configuration of the QA functionality has been
generated at the feature level, the variability is resolved by exe-
cuting the CVL engine and a customized architecture of the QAs
is generated by applying the specific modifications defined in the
variation points. These modifications depend on the architectural
description language used to described the architecture and are be-
yond scope of this paper.4 The new version of the QA architec-
ture needs to be integrated with the current application architecture.
This integration task can be done using MDD or AOSD techniques,
as discussed in Section 3. This maintains the benefits of the separa-
tion of concerns exposed in the modelling of the QA functionalities.

5. Open Issues
We have identified some open issues in our approach to be com-
pleted in our ongoing work:

• In the dynamic reconfiguration of QAs the trade-off between
them requires a special consideration. For instance, adding a
component to the architecture may affect performance or intro-
duce security vulnerabilities. Our approach supports the mod-
elling of the QAs trade-offs as part of the variability models by
extending the models with utilities values as in (Zhang et al.

3 http://www.omg.org/spec/OCL/
4 CVL supports any MOF-compliant language and provides a rich taxon-
omy of variation points, and custom model transformations (CVL Submis-
sion Team 2012).



2010). But in this paper we only consider some trade-off that
can be modelled as a explicit dependencies between the features
of the variability model. As future work, we plan to complete
our approach to include complete support for QA trade-offs and
safe reconfigurations.

• Specifying and modelling the dependencies between the QAs
and the application is not a straightforward task and increases
the complexity of applying our approach. However, this com-
plexity is inherent to the problem that we are solving and does
not depend on the applied approach. On the other hand, the
manual definition of these dependencies does not guarantee that
the resulting architecture complies with the desired QA. CVL
dependencies are formally defined using tree and also cross-
tree constraints, and apart from providing support to automate
the management of the dependencies, they can be used to verify
and check the correctness of the final software architectures.

• The existence of different types of dependencies such as struc-
tural, behavioural, or temporal dependencies needs to be taken
into account. Each kind of dependency may need to be mod-
elled in different levels — e.g., structural dependencies are
modelled at the architectural level, while behavioural and tem-
poral dependencies may also need sequence diagrams to cor-
rectly define them.

6. Conclusions and Future Work
Separately modelling the variability of the QAs from the variabil-
ity of the base functionality of the application has many advan-
tages (e.g., reusability, less coupled architectures, etc.). Our ap-
proach models the QA functionalities separately from the applica-
tion functionalities and adds them as components into its software
architecture. We propose a dynamic process to reconfigure the QA
functionalities based on the factors (i.e., non-functional QAs, user
preferences, resources, etc.) that may change at runtime and imply
a change in the current configuration of the QAs already deployed
within the application architecture. In order to do this we identify
and model the dependency relationships between the QA function-
alities and all those factors that may affect them, such as the non-
functional QAs.

In our ongoing work we plan to solve all the open issues de-
tected in our approach and study the impact of the technologies
(e.g., optimization algorithms) in our reconfiguration process in or-
der to complete its implementation.

Acknowledgments
Research funded by the Spanish projects TIN2012-34840 (co-
funded by EU with FEDER funds) and MAGIC P12-TIC1814.

References
N. Abbas, J. Andersson, and W. Löwe. Autonomic software product lines

(ASPL). In ECSA, 2010. ISBN 978-1-4503-0179-4. doi: 10.1145/
1842752.1842812. URL http://doi.acm.org/10.1145/1842752.
1842812.

O. Alam, J. Kienzle, and G. Mussbacher. Concern-oriented software
design. In MODELS. 2013. ISBN 978-3-642-41532-6. doi: 10.
1007/978-3-642-41533-3_37. URL http://dx.doi.org/10.1007/
978-3-642-41533-3_37.

D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. A first step
towards a framework for the automated analysis of feature models.
Managin Variability for SPLs, pages 39–47, 2006.

R. d. O. Cavalcanti, E. S. de Almeida, and S. R. Meira. Extending the
RiPLE-DE process with quality attribute variability realization. In
QoSA-ISARCS, 2011.

CVL Submission Team. Common Variability Language (CVL), OMG
revised submission. http://www.omgwiki.org/variability/, 2012.

L. Etxeberria, G. S. Mendieta, and L. Belategi. Modelling variation in qual-
ity attributes. In VaMoS, 2007. URL http://www.vamos-workshop.
net/proceedings/VaMoS_2007_Proceedings.pdf.

L. Etxeberria, G. Sagardui, and L. Belategi. Quality aware software product
line engineering. J. Braz. Comp. Soc., 14(1):57–69, 2008.

M. Galster, D. Weyns, D. Tofan, B. Michalik, and P. Avgeriou. Variability
in software systems — a systematic literature review. IEEE Transactions
on Software Engineering, 40(3):282–306, 2014. ISSN 0098-5589. doi:
10.1109/TSE.2013.56.

B. González-Baixauli, M. A. Laguna, and Y. Crespo. Product line require-
ments based on goals, features and use cases. In Requirements Reuse in
System Family Engineering, 2004.

O. Haugen, B. Moller-Pedersen, J. Oldevik, G. Olsen, and A. Svendsen.
Adding standardized variability to domain specific languages. In SPLC,
2008. doi: 10.1109/SPLC.2008.25.

J.-M. Horcas, M. Pinto, and L. Fuentes. Injecting quality attributes into
software architectures with the common variability language. In CBSE,
2014a. ISBN 978-1-4503-2577-6. doi: 10.1145/2602458.2602460. URL
http://doi.acm.org/10.1145/2602458.2602460.

J. M. Horcas, M. Pinto, and L. Fuentes. Runtime enforcement of dynamic
security policies. In European Conference on Software Architecture,
ECSA, pages 340–356, 2014b. doi: 10.1007/978-3-319-09970-5_29.
URL http://dx.doi.org/10.1007/978-3-319-09970-5_29.

N. Juristo, A. Moreno, and M.-I. Sanchez-Segura. Guidelines for eliciting
usability functionalities. IEEE Transactions on Software Engineering,
33(11):744–758, 2007. ISSN 0098-5589. doi: 10.1109/TSE.2007.
70741.

J. Kephart and D. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003. ISSN 0018-9162. doi: 10.1109/MC.2003.1160055.

S. Mahdavi-Hezavehi, M. Galster, and P. Avgeriou. Variability in quality
attributes of service-based software systems: A systematic literature re-
view. IST, 55(2):320–343, 2013. ISSN 0950-5849. doi: http://dx.doi.org/
10.1016/j.infsof.2012.08.010. URL http://www.sciencedirect.
com/science/article/pii/S0950584912001772.

M. Matinlassi, E. Niemelä, and L. Dobrica. Quality-driven Architecture De-
sign and Quality Analysis Method: A Revolutionary Initiation Approach
to a Product Line Architecture. 2002.

A. Metzger and K. Pohl. Software product line engineering and variability
management: Achievements and challenges. In FOSE, 2014. ISBN 978-
1-4503-2865-4. doi: 10.1145/2593882.2593888. URL http://doi.
acm.org/10.1145/2593882.2593888.

V. Myllärniemi, M. Raatikainen, and T. Männistö. A systematically con-
ducted literature review: Quality attribute variability in software product
lines. In SPLC, 2012. ISBN 978-1-4503-1094-9. doi: 10.1145/2362536.
2362546. URL http://doi.acm.org/10.1145/2362536.2362546.

G. G. Pascual, M. Pinto, and L. Fuentes. Self-adaptation of mo-
bile systems driven by the Common Variability Language. Future
Generation Computer Systems, 47(0):127–144, 2015. ISSN 0167-
739X. doi: http://dx.doi.org/10.1016/j.future.2014.08.015. URL
http://www.sciencedirect.com/science/article/pii/
S0167739X14001630.

M. Pinto and L. Fuentes. Modeling quality attributes with aspect-
oriented architectural templates. J. UCS, 17(5):639–669, 2011. doi:
10.3217/jucs-017-05-0639. URL http://dx.doi.org/10.3217/
jucs-017-05-0639.

M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. Modeling dependencies
in product families with COVAMOF. ECBS, 2006.

G. Zhang, H. Ye, and Y. Lin. Quality attributes assessment for feature-based
product configuration in software product line. In APSEC, 2010. doi:
10.1109/APSEC.2010.25.

H. Zhang, S. Jarzabek, and B. Yang. Quality prediction and assessment for
product lines. In CAiSE. 2003.


