
Product Line Architecture for Automatic Evolution
of Multi-Tenant Applications

Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes
Universidad de Málaga, Andalucía Tech, Spain

Email: {horcas,pinto,lff}@lcc.uma.es

Abstract—Cloud computing is becoming the predominant
mechanism to seamlessly deploy applications with special re-
quirements such as massive storage sharing or load balancing,
usually provided as services by cloud platforms. A developer can
improve the application’s delivery and productivity by following
a multi tenancy approach, where variants of the same application
can be quickly customized to the necessities of each tenant.
However, managing the inherent variability existing in multi-
tenant applications and, even more importantly, managing the
evolution of a multi-tenant application with hundreds of tenants
and thousands of different valid architectural configurations can
become intractable if performed manually. In this paper we
propose a product line architecture approach in which: (1) we
use cardinality-based variability models to model each tenant as
a clonable feature, (2) we automate the process of evolving the
multi-tenant application architecture, and (3) we demonstrate
that the implemented process is correct and efficient for a high
number of tenants in a reasonable time. We use a running case
study in the domain of medical software.

I. INTRODUCTION

Cloud computing [1] is becoming the predominant mecha-
nism to seamlessly deploy applications with special require-
ments, such as massive storage sharing, automatic scaling,
business analytics, and identity secure messaging. These are
turnkey services usually provided by cloud platforms1 (e.g.,
Microsoft Azure, Amazon Web Services,. . .) that allow devel-
opers to get their applications up and running quickly. Then,
application developers can integrate cloud platform services
as part of the software architecture of their applications.

Application providers can improve their application de-
livery processes and productivity even more by following
a multi tenancy approach [2], where variants of the same
application can be quickly customized to the necessities of
each customer. However, managing the inherent variability
existing in multi-tenant applications, where the developers
need to maintain different configurations of the application
software architecture for each tenant, is not a straightforward
task. For this reason, the Software Product Line (SPL) [3]
paradigm is a widely accepted approach [4], [5], [6] to specify
variabilities and commonalities in general, and specifically in
service-oriented architectures. However, multi-tenancy poses
a new challenge, that is, to explicitly represent and manage the
existence of simultaneous configurations of the same services,
one for each tenant [7].

Even more important than managing the variability of
multi-tenant applications is managing the evolution of these

1Azure (https://azure.microsoft.com/), Amazon (http://aws.amazon.com/)

applications. The cloud-platform providers are continuously
evolving and updating their technologies in order to be
competitive in the market. Moreover, the application specific
functionality can evolve to consider new functionality re-
quired by the tenants. In both cases, the software architecture
of the cloud application needs to be adapted to add new
components or to remove and configure the existing ones.
However, managing the evolution of a multi-tenant application
with hundreds of tenants and thousands of different valid
configurations can become intractable if performed manually.
Although SPL approaches in the context of multi-tenant
applications already exist [4], [8], [9], [5], [6], [10], most
of them present two main shortcomings: (i) they do not focus
on automating the evolution at the architectural level; (ii) and
they apply the SPL approach individually for each tenant. This
makes it more difficult to perform the changes automatically
and consistently, and increases the complexity of changing
the existing configurations of the software architecture of all
tenants at the same time.

Thus, the main goal of this paper is twofold: (1) to elicit
the changes that need to be performed within the cloud-
based applications when the platform’s service requirements
and/or the application requirements evolve; and (2) to obtain a
valid, evolved software architecture for each tenant consistent
with the configuration deployed for every tenant. In order to
achieve these goals we propose a Product Line Architecture
(PLA) [11]-based approach in which: (i) we use cardinality-
based variability models of the Common Variability Language
(CVL) [12] to model each tenant as a clonable feature, (ii) we
automate the process of evolving the multi-tenant architecture
by defining three algorithms that automatically propagate the
required changes to the architecture configuration of each
tenant, and (iii) we demonstrate that the implemented algo-
rithms are correct and efficient enough to be applied to a
high number of tenants in a reasonable time. We describe
our approach using a running case study from the domain of
medical software solutions.

This paper is organized as follows. Section II presents a
motivational example and identifies the list of challenges.
Section III explains how to model the variability of multi-
tenant applications. Section IV and Section V detail our
automatic evolution process. In Section VI our approach is
validated. Section VII discusses the related work. Finally,
Section VIII concludes the paper.

II. MOTIVATION AND CHALLENGES

Let us consider a fictitious company (UMASoft) that wants
to develop a medical software solution for hospital man-
agement and administration (HospitalSoft). In order to save
on deployment and maintenance costs, UMASoft decides to
develop HospitalSoft as a cloud application using Microsoft
Azure [13]. The intention of UMASoft is to sell HospitalSoft
to different customers, so in order to have different config-
urations for each hospital, UMASoft will follow a multi-
tenant approach, considering each hospital as a tenant. Also,
HospitalSoft plans to use some of the services provided by the
cloud platform Azure, such as persistence or geo-replication.

Suppose that UMASoft customers are the Spanish hospitals
of Málaga, Seville and Madrid, among others. Figure 1 shows
an instance of the software architecture of HospitalSoft. First,
HospitalSoft application provides a set of services that are
common to all the tenants from the same virtual machine (see
the components inside the Common Services Virtual
Machine). Some of them, stereotyped as «UMASoft»,
are hospital specific services, such as an appointment sys-
tem (Appointment System) and a medical history of
the patients (Medical History). Others, stereotyped as
«Azure», are services offered by the Microsoft’s cloud
platform, such as a persistence service to store all the med-
ical data (SQL DataBase) and the patients’ appointments
(BlobStorage), or the possibility to create multiple copies
of the data in several data centers (GeoReplication).

Secondly, in addition to these common services, UMASoft
provides each tenant (or hospital) a set of tenant-specific ser-
vices configured to their different requirements and needs. For
instance, only Málaga Hospital carries out vascular surgery,
and thus the VascularSurgery component is included
only for this tenant. Similarly, the Nephrology and the
Neurology components are instantiated for Málaga Hospital
and Madrid Hospital tenants but not for Seville Hospital.
Finally, not only will the application specific components vary
among tenants, but also some of the cloud platform services
are subject to customization by the tenants. For instance,
in Figure 1 we show how the authentication mechanism is
different for each hospital: Málaga Hospital uses a digital
certificate to authenticate the medical personnel in the system
(DigCertAuthent) and a user-password mechanism to
authenticate patients in online doctor’s appointment services
(UserPassAuthent); while Seville Hospital uses a user-
password mechanism for everyone and Madrid Hospital uses
digital certificates for everyone.

We can observe that normally only a subset of the applica-
tion variants are deployed in each tenant. Taking into account
that UMASoft has to generate and maintain hundreds of dif-
ferent configurations of its HospitalSoft application, implying
the management of thousands of components, one important
challenge is to provide mechanisms to straightforwardly
express and manage the variability of the cloud-based
multi-tenant applications. But once deployed, multi-tenant
applications have to be adapted to both technological upgrades

and the changing necessities of customers.
In our case study, this means that UMASoft has to manage

the evolution of hundreds of HospitalSoft configurations.
For instance, cloud platform services are continuously be-
ing upgraded: new authentication (e.g., social network iden-
tity authentication, biometrics) or persistence (e.g., sharding
databases, affinity groups) mechanisms frequently appear.
UMASoft may want to offer these new services to its cus-
tomers and this implies that these services will have to be in-
corporated into all the tenants that require them. UMASoft can
also decide to change the cloud platform provider and migrate
its application to a new one (e.g., moving to Amazon Web
Services). In this case, the part of the application architecture
that depends on the platform’s services needs to be adapted to
the services offered by the new cloud platform. Finally, over
the application’s lifetime, UMASoft’s customers may demand
new functionality (e.g., a new module to manage transplant
surgery or changes to the authentication mechanisms).

Considering changes that need to be performed on the
software architecture of the multi-tenant application, all the
aforementioned situations can be expressed with three differ-
ent evolution scenarios: (1) a new component needs to be
incorporated into the software architecture, either provided
by the cloud platform (i.e., Azure) or implemented by the
application provider (i.e., UMASoft); (2) an existing com-
ponent needs to be removed from the software architecture,
and (3) an existing component needs to be configured with
new parameter values. But evolving a multi-tenant application
implies having to calculate and perform these changes for
thousands of components running on hundreds of tenants. So,
the main challenges of evolving multi-tenant applications are
the automatic calculation of the changes that must be
performed for each tenant and the automatic propagation
of these changes for all the tenants at the architectural
level. Moreover, this automatic evolution process will be
useful only if it is correct and efficient for a large number
of tenants so we need to demonstrate the efficiency and
correctness of the evolution process.

III. VARIABILITY MANAGEMENT WITH CVL

In this section we describe how our approach uses CVL to
manage the variability of the architecture for all the tenants
in a cloud-based application. As shown in Figure 2 for the
HospitalSoft application, we explicitly model the commonal-
ities and variabilities of the tenant specific functionality (i.e.,
the subtree under the TenantSpecific[1..*] feature
with the functionality that can be customized for each tenant)
and the common functionality (i.e., the subtree under the
CommonServices feature with the functionality that all
tenants share).

The CVL variability model includes: (1) an abstract part
(the tree structure on top of Figure 2) with the variability
specifications (VSpecs, or features) of the application’s func-
tionality and the cloud-platform’s services, and (2) a realiza-
tion part (middle of Figure 2) with the variation points. The
abstract part specifies the relationships between the features,

Multi-tenant application: HospitalSoft

Common Services Virtual Machine

Tenant N: Madrid HospitalSoft Virtual MachineTenant 1: Málaga HospitalSoft Virtual Machine Tenant 2: Seville HospitalSoft Virtual Machine

-privateKey : String = "MALAGA2014"

«Azure»

malaga:DigCertAuthent.

-privateKey : String = "MADRID2014"

«Azure»

madrid:DigCertAuthent.

«UMASoft»

seville:CardiothoracicSurgery

«Azure»
common:GeoReplication

«UMASoft»

madrid:IngectiousDiseases

«Azure»

malaga:UserPassAuthent.

«Azure»
common:SQLDataBase

«Azure»

seville:UserPassAuthent.

«Azure»
common:BlobStorage

«UMASoft»

common:MedicalHistory

«UMASoft»

madrid:GeneralSurgery

«UMASoft»

common:Appointment

System

...

...

«UMASoft»

madrid:NeuroSurgery

«UMASoft»

common:Paediatrics

«UMASoft»

malaga:Nephrology

«UMASoft»

common:Radiology

«UMASoft»

madrid:Nephrology

malaga:Cardiology

«UMASoft»

«UMASoft»

malaga:Neurology

«Azure»

madrid:Encryption

malaga:Operation

HistoryLog

«UMASoft»

«UMASoft»

madrid:Neurology

«UMASoft»

madrid:Operation

HistoryLog«UMASoft»

seville:Operation

HistoryLog

«UMASoft»

malaga:Vascular

Surgery

«UMASoft»

malaga:General

Surgery

«UMASoft»

seville:General

Surgery

Application

Provider

(UMASoft)

Users

(doctors,

medical staff,

patients,...)

Fig. 1: Software architecture of a multi-tenant application in Microsoft Azure.

those that are optional and those that are mandatory, and
the constraints between them. An application configuration
consists of a set of features selected (or resolved) in the tree
that respects the set of tree and cross-tree constraints. Variation
points represent the specific modifications, as model-to-model
(M2M) transformations, to be done in the architecture when
a particular feature is selected in a configuration. So, each
variation point is bound to a feature in the tree and has one
or more references to elements of the architecture.

In order to support the specification of different con-
figurations for each tenant, our approach defines the
tenant specific functionality under a clonable feature
(TenantSpecific[1..*] in Figure 2). The clonable fea-
ture has a cardinality [1..*] that indicates that this feature
can be instantiated one or more times and then its sub-
tree can be resolved differently for each instance. In our
example, the cardinality represents the number of tenants, and
each instantiation of the TenantSpecific[1..*] feature
defines the configuration for a particular tenant (e.g., Seville
hospital in the case study).

By selecting the appropriate features under the
TenantSpecific[1..*] clonable feature, and executing
CVL, our approach creates the architecture configuration
shown in Figure 1, with each tenant configured to their needs.

IV. EVOLUTION MANAGEMENT WITH CVL

Once a specific architecture configuration customized to
each tenant has been generated and deployed, the multi-tenant

application is susceptible to evolution due to both techno-
logical upgrades and the changing necessities of customers.
Coming back to our HospitalSoft application, let us suppose
Microsoft incorporates a new functionality in its cloud plat-
form: a recovery service, an authentication mechanism based
on Facebook and a persistence mechanism. UMASoft wants
to provide these new services to its tenants (i.e., the hospitals).

As the first step of our evolution process, UMASoft evolves
both the variability model (new features shown in grey in
Figure 2) and the application base architecture (the bot-
tom half of Figure 2 shows the evolved software architec-
ture) in order to incorporate the changes2. For instance, the
Recovery, SocialIdentity, Caching, MongoDB and
Sharding features have been incorporated in the variability
model in order to add the new recovery service, the new
authentication mechanism, and the aforementioned new per-
sistence mechanisms (a new non-relational database and a
new partition mechanism for database). Examples of the new
components are the Recovery, SocialIdentityAuth
and MongoDB components, among others.

The second step of the evolution process is to propagate
these changes consistently in the configuration of all existing
tenants (Figure 1). In order to automate this task our approach
proposes dividing this second step in two main parts: (i)
modifying the current configuration of all tenants, producing a
new evolved configuration (Evolve Configuration algorithm

2In the example only new features are added, but other evolution scenarios
are possible.

Tenant Specific Virtual Machine [1..*] Common Services Virtual Machine

«UMASoft»

CardiothoracicSurgery

«UMASoft»

Allergy&Inmunology

«UMASoft»

IngectiousDiseases

«Azure»

SocialIdentityAuth.

«Azure»

UserPassAuthent.

-virtualized : boolean

«Azure»
SQLDataBase

«Azure»
GeoReplication

-privateKey : String

DigCertAuthent.

«Azure»
«UMASoft»

GeneralSurgery

«UMASoft»

Ophthalmology

«Azure»

Authentication -timeDays : Integer

«Azure»

Recovery

«UMASoft»

MedicalHistory

«Azure»
TableStorage«UMASoft»

NeuroSurgery

«Azure»
BlobStorage

«Azure»
Persistence

«UMASoft»

Appointment

System

«Azure»
SQLServer

«UMASoft»

Nephrology
«UMASoft»

Paediatrics

«UMASoft»

Operation

HistoryLog

«Azure»

Encryption

«UMASoft»

Cardiology

«UMASoft»

Neurology

«Azure»
MongoDB

-size : Integer

«Azure»
Caching

«UMASoft»

Radiology

«UMASoft»

Vascular

Surgery

«Azure»
Sharding

«Azure»
MySQL

BlobStorage

HospitalSoft

TenantSpecific [1..*] CommonServices

ApplicationFunctionality

SQLDatabase

TableStorage

Persistence

1..*

SQLServerVM
Sharding

MySQL MongoDB

PartitioningScheme

SQLServer
SocialIdentityUserPassword

Authentication

1..*

DigitalCertificate

EncryptionRecovery

CloudPlatformServices

1..*

Surgery

Specialties

1..*

Cardiothoracic

NeurosurgeryVascular

InternalMedicine

FamilyMedicine

1..*

Cardiology Neurology Nephrology

1..*

General

1..*

Ophthalmology

PaediatricsRadiology

InfectiousDiseases

MedicalHistoryOperationLogs AppointmentSystem

Allergy&Immunology

Application

1..*

CloudPlatform

1..*Availability

Geo-replicationCaching

VMDatabase

1..*RelationalDB

1..* 1..*

NonRelationalDB

OperationLogs

CacheSize: Integer

TimeDays: Integer

PrivateKey: String

ChoiceClonable [1..*] Variable: Type 1..n
group multiplicity

(between 1 and n selections)

OCL Constraint

mandatory
feature

optional
feature

Legend

1 or more
instances

yes/no
decision

specify a
value of a type

cross-tree
constraints

evolved
features

CloudPlatformServices
implies Recovery

:ParametricSlotAssignment
slotIdentifier = “privateKey”

:ObjectSubstitution
target = “Authentication”

:ObjectExistence
target = “Cardiology”

BlobStorage

:ObjectExistence
target = “GeoReplication”

:ObjectSubstitution
target = “Persistence”

:ObjectSubstitution
target = “Persistence”

...

V
ar

ia
b

ili
ty

 s
p

ec
if

ic
at

io
n

s
(V

S
p

ec
s)

 t
re

e
V

ar
ia

ti
on

 p
oi

nt
s

S
o

ft
w

a
re

 A
rc

h
it

ec
tu

re
V

ar
ia

b
ili

ty
 m

o
de

l

VSpecs
bindings

Architecture
references

Fig. 2: HospitalSoft CVL Variability Model and Software Architecture.

of Section IV-A); and (ii) calculating the differences between
the evolved configuration and the one previously deployed
(Difference Configuration algorithm of Section IV-B).

The third and most difficult step consists in automatically
propagating the evolution changes calculated by previous
algorithms to the previously deployed software architecture.
To do this, we define the Create Weaving Model algorithm
(Section V) that generates a weaving model in CVL, which
is in charge of applying the modifications defined previously
at the feature level for the software architecture specified
in MOF. The ‘execution’ of the weaving model will weave
new components into the evolved software architecture, will
unweave components from the original one, or will modify
existing components by changing their parameters’ values.
This algorithm is one of the main contributions of the paper
since, as discussed in Section 8, existing approaches that
manage the evolution with SPLs (as in [14], [15]) only
tackle the evolution management problem at the feature level,
and require manually modifying the software architecture to
reflect the calculated changes — e.g., modifying each tenant’s
configuration files, or defining a manual mapping between the
feature model configuration and the evolved architecture for

each tenant. The rest of this section describes the first two
algorithms. The third algorithm is described in Section V.
Finally, the CVL engine is executed with the weaving model
as input in order to obtain the final architecture with the
evolution changes for each tenant.

A. Evolve Configuration Algorithm

The main steps of the Evolve Configuration algorithm3

are shown in Figure 3. The algorithm takes as input the pre-
vious configuration model (that will be evolved), the evolved
variability model (previously upgraded by the application
provider), and the new services required by each customer;
and generates an evolved configuration model. The generated
model represents a new valid configuration of the multi-
tenant application with all the tenants’ configurations evolved
(i.e., the hospitals’ configurations). The algorithm ensures that
the generated configuration contains all the required features,
taking into account the tree and cross-tree constraints defined
in the variability model.

3The formalization of the algorithms and their complete definition can be
found in http://caosd.lcc.uma.es/papers/evolutionAlgorithms.pdf.

Evolved
Variability Model

Previous
Configuration

New Requirements New Evolved Configuration

Evolve Configuration Algorithm
1. Create a new configuration model conforms to the structure of the Evolved Variability Model.

2. Copy unmodified features from Previous Configuration model.

3. Add/Remove/Change features based on the New Requirements.
4. Add features to respect mandatory features, OCL constraints, and groups multiplicity.

5. Check if all needed features are present.

Tenant1 Tenant2 TenantN...

Tenant1 Tenant2 TenantN...

X ~✔

Tenant1 Tenant2 TenantN...

Fig. 3: Evolve Configuration algorithm.

Figure 4 shows a partial view of the three inputs of this
algorithm. After initializing the output model, it copies those
features that do not change from the previous configuration
(see white features in Figure 4); adds the selected features
(in green), does not add the unselected features (in red)
and adds the modified features (in yellow); and adds those
features required by the new constraints of the evolved vari-
ability model (in grey); and finally performs some validity
checks of the output (i.e., the evolved configuration). For
instance, for the Málaga tenant the UserPassword feature
is removed and the SocialIdentity feature is added as
a new requirement. Moreover, the PrivateKey parameter
of the digital certificate is updated with a new value in
both the Málaga tenant (“MALAGA2015”) and Madrid tenant
(“MADRID2015”). Also, the Recovery feature and its
TimeDays parameter, which specifies the time delay of the
back-up, are added in all tenants due to the new constraint
(CloudPlatformServices implies Recovery) in
the evolved variability model.

Once a valid evolved configuration model is generated, the
next algorithm calculates the differences between the previous
configuration and the new one.

B. Difference Configuration Algorithm
The Difference Configuration algorithm is defined in

Figure 5. The algorithm takes as input two configurations (i.e.,
the previous configuration and the new evolved configuration
generated with the Evolve Configuration algorithm) and calcu-
lates the differences between them. Differences are determined
by: (1) the new features selected in the new configuration
that were not in the previous one (SELECTIONS); (2) the
features of the previous configuration that are deselected in
the new one (UNSELECTIONS); and (3) the variable features
that change their values from the previous configuration to the
new one (MODIFICATIONS).

V. PROPAGATION OF EVOLUTION CHANGES TO THE

ARCHITECTURE

In this section, we define the third algorithm of our evolu-
tion approach, which generates a weaving model in CVL in
order to propagate the evolution changes calculated with the
two previous algorithms to the deployed architecture. Firstly,
in order to precisely define the Create Weaving Model
algorithm in CVL (Section V-C), we need to formally define
the different CVL models – i.e., the variability model and

configuration models. The formalization of CVL is partially
done in [16]. However, the specification defined in [16] only
formalizes the abstract part (i.e., the VSpecs or tree) of the
variability models, but not the variation points and the config-
uration models. Thus, as part of our work we completed the
specification defined in [16] to formalize the variation points
of the variability model (Section V-A) and the configuration
models (Section V-B).

A. Formalization of the CVL variation points
Variation points define the points of the architectural model

that are variable and can be modified during CVL execution.
They also specify how those elements are modified by defining
specific modifications to be applied to the architecture by
means of M2M transformations (e.g., in ATL [17]). The
semantic of these transformations is specific to the kind of
variation point. For instance, some of the variation points
supported by CVL are the existence of elements of the ar-
chitecture (ObjectExistence) or the links between them
(LinkExistence), or the assignment of an attribute’s value
(ParametricSlotAssignment)4. An important kind of
variation point is the Opaque Variation Point (OVP)
that allows defining new custom model transformations that
are not pre-defined in CVL. During CVL execution, the CVL
engine delegates its control to a M2M engine in charge of
executing the transformations defined by the variation points.

To represent the variation points of the variability
model, we define a tuple: 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑠 =
(𝑉 𝑃, 𝑡𝑦𝑝𝑒, 𝑜𝑣𝑝𝑡𝑦𝑝𝑒, 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐, 𝑏𝑖𝑛𝑑𝑖𝑛𝑔,𝑀𝑂𝐹𝑅𝑒𝑓𝑠),
the content of which is:
𝑉 𝑃𝑉 𝑃𝑉 𝑃 . Set of finite, non-empty, unique names of variation points.
𝑡𝑦𝑝𝑒 : 𝑉 𝑃 → 𝑉 𝑃𝑇𝑦𝑝𝑒𝑡𝑦𝑝𝑒 : 𝑉 𝑃 → 𝑉 𝑃𝑇𝑦𝑝𝑒𝑡𝑦𝑝𝑒 : 𝑉 𝑃 → 𝑉 𝑃𝑇𝑦𝑝𝑒. Function that returns the type of the variation point from

the CVL variation point taxonomy.
𝑜𝑣𝑝𝑇𝑦𝑝𝑒 : 𝑉 𝑃 → 𝑂𝑉 𝑃𝑇𝑦𝑝𝑒𝑜𝑣𝑝𝑇𝑦𝑝𝑒 : 𝑉 𝑃 → 𝑂𝑉 𝑃𝑇𝑦𝑝𝑒𝑜𝑣𝑝𝑇𝑦𝑝𝑒 : 𝑉 𝑃 → 𝑂𝑉 𝑃𝑇𝑦𝑝𝑒. Partial function that for an OVP returns its type.
𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 : 𝑂𝑉 𝑃𝑇𝑦𝑝𝑒→ 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑆𝑝𝑒𝑐𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 : 𝑂𝑉 𝑃𝑇𝑦𝑝𝑒→ 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑆𝑝𝑒𝑐𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 : 𝑂𝑉 𝑃𝑇𝑦𝑝𝑒→ 𝑆𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑆𝑝𝑒𝑐. Function that returns the semantic

specification of an OVP type. This includes the transformation language and
the model transformation to be executed by the M2M engine of CVL.

𝑏𝑖𝑛𝑑𝑖𝑛𝑔 : 𝑉 𝑃 → 𝑉 𝑆𝑃𝐸𝐶𝑏𝑖𝑛𝑑𝑖𝑛𝑔 : 𝑉 𝑃 → 𝑉 𝑆𝑃𝐸𝐶𝑏𝑖𝑛𝑑𝑖𝑛𝑔 : 𝑉 𝑃 → 𝑉 𝑆𝑃𝐸𝐶. Function that returns the VSpec (i.e., feature) bound
to the variation point.

𝑟𝑒𝑓𝑠 : 𝑉 𝑃 → 𝑃 (𝑀𝑂𝐹𝑅𝑒𝑓)𝑟𝑒𝑓𝑠 : 𝑉 𝑃 → 𝑃 (𝑀𝑂𝐹𝑅𝑒𝑓)𝑟𝑒𝑓𝑠 : 𝑉 𝑃 → 𝑃 (𝑀𝑂𝐹𝑅𝑒𝑓). Function that returns the MOF references of the
software architecture that is linked with the variation point.

B. Formalization of the CVL Configuration Models

Given a CVL variability model 𝑉 , a configuration model
𝑅 for 𝑉 is a collection of VSpec resolutions (𝑉 𝑆𝑃𝐸𝐶𝑟𝑒𝑠)

4The complete taxonomy of variation points is available in [16].

New Requirements

HospitalSoft

MálagaTenant : TenantSpecific

SocialIdentityUserPassword

AuthenticationRecovery

CloudPlatformServices

TimeDays: Integer = 2

CommonServices

...

SevilleTenant : TenantSpecific MadridTenant : TenantSpecific

...
...

DigitalCertificate

X ✔ PrivateKey: String =
“MALAGA2015”

Unmodified feature

UserPassword

AuthenticationRecovery

CloudPlatformServices

TimeDays: Integer = 5

AuthenticationRecovery

CloudPlatformServices

TimeDays: Integer = 1
DigitalCertificate

PrivateKey: String =
“MADRID2015”

Encryption

...

...

Legend

~~

Mandatory features due to
relationships and constraints

X
Remove feature from

previous configuration
Add feature to the
new configuration

✔ ~

Change feature
configuration

Fig. 4: Information managed by the Evolve Configuration algorithm.

Difference Configuration Algorithm
1. Determine the features that have changed in the New Evolved Configuration with respect to
the Previous Configuration model.

 1.1. Determine selected features.
 1.2. Determine unselected features.
 1.3. Determines features that change their values (in case of variables).

Previous
Configuration

New Evolved Configuration Differences

SELECTIONS: f8,f9
UNSELECTIONS: f3
MODIFICATIONS: f7

f1
Tenant1 Tenant2

f5f2
f3

f4

TenantN

f7

f6

...

f1
Tenant1 Tenant2

f5f2
f3

f4

TenantN

f7

f6

...

f8 f9

f10

Fig. 5: Difference Configuration algorithm.

— i.e., the features selected, that can be choice reso-
lutions (𝐶𝐻𝑂𝐼𝐶𝐸𝑟𝑒𝑠), variable value assignments (𝑉 𝐴-
𝑅𝐼𝐴𝐵𝐿𝐸𝑟𝑒𝑠), and clonable instances (𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅𝑟𝑒𝑠),
where each resolution in 𝑅 resolves exactly one VSpec in 𝑉 .
Each kind of VSpec has its own kind of resolution: choices are
resolved by deciding them negatively or positively; variables
are resolved by providing a value; and clonables are resolved
by instantiating them. The formalization of a configuration
model 𝑅 mirrors the formalization of 𝑉 and extends it with
the following definitions:
𝑉 𝑆𝑃𝐸𝐶𝑟𝑒𝑠𝑉 𝑆𝑃𝐸𝐶𝑟𝑒𝑠𝑉 𝑆𝑃𝐸𝐶𝑟𝑒𝑠. Collection of finite, unique names of VSpec resolutions.

𝑉 𝑆𝑃𝐸𝐶𝑟𝑒𝑠 is partitioned into 𝐶𝐻𝑂𝐼𝐶𝐸𝑟𝑒𝑠, 𝑉 𝐴𝑅𝐼𝐴𝐵𝐿𝐸𝑟𝑒𝑠,
and 𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅𝑟𝑒𝑠. For example, 𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅𝑟𝑒𝑠 will include
all instances of the TenantSpecific clonable feature, with a different prefix
for each instance (e.g., MálagaTenant:TenantSpecific). The same
prefix is used for the children (e.g., MálagaTenant:Authentication).

𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 : 𝑉 𝑃𝑆𝐸𝐶𝑟𝑒𝑠 → 𝑉 𝑆𝑃𝐸𝐶𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 : 𝑉 𝑃𝑆𝐸𝐶𝑟𝑒𝑠 → 𝑉 𝑆𝑃𝐸𝐶𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 : 𝑉 𝑃𝑆𝐸𝐶𝑟𝑒𝑠 → 𝑉 𝑆𝑃𝐸𝐶. Function that for a given VSpec resolution
(e.g., MálagaTenant:Authentication) returns the resolved VSpec of the
variability model (e.g., Authentication).

𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 : 𝐶𝐻𝑂𝐼𝐶𝐸𝑟𝑒𝑠 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 : 𝐶𝐻𝑂𝐼𝐶𝐸𝑟𝑒𝑠 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 : 𝐶𝐻𝑂𝐼𝐶𝐸𝑟𝑒𝑠 → 𝐵𝑜𝑜𝑙𝑒𝑎𝑛. Function that for a given choice resolution
returns true if it was decided positively, or false if it was decided negatively.

𝑣𝑎𝑙𝑢𝑒 : 𝑉 𝐴𝑅𝐼𝐴𝐵𝐿𝐸𝑟𝑒𝑠 → 𝑉 𝑎𝑙𝑢𝑒𝑣𝑎𝑙𝑢𝑒 : 𝑉 𝐴𝑅𝐼𝐴𝐵𝐿𝐸𝑟𝑒𝑠 → 𝑉 𝑎𝑙𝑢𝑒𝑣𝑎𝑙𝑢𝑒 : 𝑉 𝐴𝑅𝐼𝐴𝐵𝐿𝐸𝑟𝑒𝑠 → 𝑉 𝑎𝑙𝑢𝑒. Function that for a given variable returns the
value assigned in its resolution.

C. Create Weaving Model Algorithm

The Create Weaving Model algorithm is defined in Fig-
ure 6. The algorithm takes as input: (1) the new evolved con-
figuration (obtained from the Evolve Configuration algorithm),
(2) the differences between the previous configuration and the
new evolved one (obtained from the Difference Configuration
algorithm), and (3) the base software architecture of the appli-
cation and the already deployed architecture with the previous
configuration of the components. The generated output is a
weaving model in CVL with the information about the specific
architectural elements that need to be added, removed, and/or
configured in the existing architecture configurations, and the

particular model transformations to be executed with the CVL
runtime engine to perform the required changes. Thus, the
algorithm does not directly generates the evolved software
architecture, but the evolution rules that have to be ‘executed’
to evolve the architecture.

The algorithm extends the evolved configuration model
to include the differences as new selected features in the
configuration of the weaving model (lines 2 and 3). This is
necessary because CVL only executes those variation points
associated with features resolved positively (i.e., selected in
a configuration), and unselected features in the new evolved
configuration will require unweaving (i.e., remove) some
elements from the architecture. Then the algorithm generates a
variation point for each difference in the configuration (lines 5
to 32) associating the appropriate type of variation point with
the kind of change required. Each variation point is a tuple
like the one formalized in Section V-A. For instance, in order
to substitute an existing element in the architecture we use
the FragmentSubstitution variation point (lines 13 to
15); to add a new element to the architecture we use an OVP
with a custom model transformation in charge of performing
the weaving (lines 16 to 21), which may be different for each
feature (line 17); to update the value of a variable we use
the ParametricSlotAssignment variation point (lines
22 and 23); and finally to remove an existing element in the
architecture we use another OVP with a model transformation
to perform the unweaving operation (lines 25 to 29).

Finally, the weaving model obtained is executed by the CVL
engine in order to generate the evolved architecture with the
required changes for each tenant. An additional step that is
required in order to integrate our approach with current cloud
platforms is the generation of the scripts or configuration files

CVL
execution

engine

Create Weaving Model Algorithm
/* Copy new evolved configuration and guarantee well-formed model */
1. Vweaving � NewConf
/* Incorporate differences */
2. Vweaving.VSPECres � Vweaving.VSPECres ∪ Diff
3. Vweaving.decision � Vweaving.decision ∪

 {(v,true) : v ∈ Diff.UNSELECTIONS}
/* Generate variation points */
4. vps � (∅, ∅, ∅, ∅, ∅, ∅)
5. for all v ∈ Diff do
6. vp � v ⊕ “VP”
7. vps.VP � vps.VP ∪ {vp}
8. vps.binding � vps.binding ∪ {(vp,v)}

/* Get MOF elements associated with functionality v in previous deployed architecture */
9. elementsPre � getMOFRefs(v, AppArch)

/* Get MOF elements associated with functionality v in evolved architecture */
10. elementsEvo � getMOFRefs(v, EvoArch)
11. vps.refs � vps.refs ∪ {(vp, elementsPre ∪ elementsEvo)}
12. if v ∈ Vweaving.CHOICEres ∧ v ∈ Diff.SELECTIONS then

/* Update existing MOF element */
13. if elementsPre ≠ ∅ ∧ elementsPre ⊆ AppArch then
14. vps.type � vps.type ∪ {(vp, FragmentSubstitution)}
15. else

/* Weave new MOF element */
16. vps.type � vps.type ∪ {(vp, OpaqueVariationPoint)}

/* Get weaving pattern type */
17. ovpType � getSpecialSubstitution(v)
18. vps.ovpType � vps.ovpType ∪ {(v, ovpType)}

/* Get M2M transformation */
19. spec � getSemanticSpecification(ovpType)
20. vps.semantic � vps.semantic ∪ {(ovpType, spec)}
21. end if
22. else if v ∈ Vweaving.VARIABLEres ∧ v ∈ Diff.MODIFICATIONS then

/* Update value of variable */
23. vps.type � vps.type ∪ {(vp, ParametricSlotAssignment)}
24. else

/* Unweave existing MOF element */
25. vps.type � vps.type ∪ {(vp, OpaqueVariationPoint)}

/* Get unweaving pattern type */
26. ovpType � getSpecialSubstitution(“unweaving”)
27. vps.ovpType � vps.ovpType ∪ {(v, ovpType)}

/* Get M2M transformation */
28. spec � getSemanticSpecification(ovpType)
29. vps.semantic � vps.semantic ∪ {ovpType, spec)}
30. end if

/* Set up source and target references according the type of variation point */
31. associateMOFReferences(vps.refs(vp), vps.type(vp))
32. end for
33. Vweaving.variationPoints � vps
34. return Vweaving

New Evolved Configuration
(NewConf)

Software Architectures
(AppArch and EvoArch)

Differences
(Diff)

SELECTIONS: f8,f9
UNSELECTIONS: f3
MODIFICATIONS: f7

VP VP

VP

VP

VP

Weaving Model

(Vweaving)

VSPEC

binding

refs

vps}
AppArch

and

EvoArch

rule unweaving {
 from

 e : MOF!NamedElement
(e.name =

thisModule.elementName)
 to

 drop
}
...

ATL Semantic Specification
spec

f1
Tenant1 Tenant2

f5f2
f3

f4

TenantN

f7

f6

...

f8 f9

f10

Fig. 6: Create Weaving Model algorithm.

required by each platform. They are different for each platform
and are implemented by adding new OVPs with platform-
specific model-to-text transformations. The output will be the
configuration files required by the platforms. Notice that the
reconfiguration itself is performed by the mechanisms already
provided by the cloud platforms.

VI. EVALUATION

We evaluate the efficiency and correctness of our evolution
approach by calculating the time complexity of the algorithms
presented in Sections IV and V, and by modeling the CVL
models as Constraint Satisfaction Problems (CSPs). Also, a
Java implementation of the algorithms is provided5.

A. Efficiency of the evolution algorithms

The computational efficiency of an algorithm is the num-
ber of basic operations it performs depending on its input

5Code available in http://150.214.108.91/code/cvl and http://150.214.108.
91/code/cvltool.

length [18]. To evaluate the efficiency of the evolution al-
gorithms we analyze the time complexity of them. Let us
consider the following basic operations: (i) the set union with
a single element that corresponds to the addition of a feature
to the variability or configuration model; (ii) the set difference
with a single element that corresponds to removing a feature
from the model; and (iii) checking whether or not an element
is in a set. Formally, let 𝐴 be a set of features (VSpecs) and
𝑥 a single feature (i.e., a simple choice, variable, or clonable
feature). The input size of our evolution algorithms is the size
of the variability model (𝑚, the number of features) and the
size of the configuration model (𝑛, the number of resolved
features). The size of the configuration model depends on the
number of tenants (𝑡) — i.e., 𝑡 is the number of instances
resolved of the clonable features in a configuration model. To
simplify, we can consider 𝑛 = 𝑚 × 𝑡 the worst case of the
configuration model size, in which all possible resolutions for
a clonable feature are resolved. Normally, 𝑛 ≤ 𝑚× 𝑡 due to

Fig. 7: Efficiency of the evolution algorithms.

TABLE 1: Complexity of the evolution algorithms.
Algorithm Computational complexity

Evolve Configuration (Figure 3) 𝒪(5𝑛2 + 3
𝑡 𝑛

2 + (9 + 𝑡+ 1
𝑡)𝑛)

Difference Configuration (Figure 5) 𝒪(4𝑛2 + (8 + 𝑡)𝑛)
Create Weaving Model (Figure 6) 𝒪(3𝑛3 + 18𝑛2 + 3𝑛)

the tree and the cross-tree constraints.
For the Evolve Configuration algorithm (Figure 3) the worst

case corresponds to the inputs with a previous configuration
of size 𝑛 = 𝑚× 𝑡 and the new requirements input with size
also 𝑛 = 𝑚× 𝑡 which means changes in all the features. The
efficiency of this algorithm can be easily captured following
the Big 𝒪 notation. For instance, creating a new configuration
model conforming to the structure of the evolved variability
model (line 1 in Figure 3) takes 𝒪(𝑚 ⋅ 𝑛) operations. Then,
copying the previous configuration (line 2) takes 𝒪((3 +
1
𝑡)𝑛

2+𝑡⋅𝑛) operations in the worst case6. Following a similar
analysis for the rest of the algorithm, the complete Evolve
Configuration algorithm has 𝒪(𝑛2) complexity. Table 1 shows
the computational efficiency in terms of the Big 𝒪 notation for
our three evolution algorithms. The first two algorithms have
quadratic time complexity (𝒪(𝑛2)), while the third algorithm
has cubic time complexity (𝒪(𝑛3)) in 𝑛.

Figure 7 shows the results of the empirical experiments for
the three evolution algorithms. The efficiency depends on the
number of tenants (𝑡) and on the number of features in the
evolved variability model (𝑚). The experiments were done
on a laptop Intel Core i3 M350, 2.27GHz, 4 GB of memory,
and with 1.7 JVM. For instance, to evolve a configuration
model for a case study with 1000 tenants and 1000 features
resolved for each tenant, the Evolve Configuration algorithm
takes around 50 seconds. To calculate the difference between
the previous and the new configuration, the algorithm takes
around 45 seconds. Finally, creating the weaving model re-
quires around 6 minutes in the worst case — i.e., when all
features change, and thus, variation points must be defined for
all features. We can conclude that the efficiency is acceptable
for huge models (e.g., models with a million of features).

B. Correctness of the evolution algorithms

In order to demonstrate the correctness of the evolution
algorithms (i.e., check whether the algorithms generate a valid
configuration model that satisfied the new evolved variability

6See complete algorithms in http://caosd.lcc.uma.es/papers/
evolutionAlgorithms.pdf

model), we have modeled the variability model and the con-
figuration models using Choco7, a Java library for Constraint
Satisfaction Problems (CSP) [19]. A CSP is defined by a
triplet (𝑋,𝐷,𝐶), where 𝑋 is a set of variables, 𝐷 is a set of
domains for the variables, and 𝐶 is a set of constraints. We
map the CVL variability model to those concepts: (i) variables
are the features of the variability model; (ii) the domain is
{0, 1} that corresponds with the semantic of the resolved
or not resolved feature; and (iii) the constraints include the
tree and cross-tree constraints. Choco allows the automatic
generation of the set of the minimal full resolutions that satisfy
a set of initial constraints. To do that, we define an objective
function in CSP (

∑𝑛
𝑖=1 𝑣𝑖) that minimizes the number of

resolutions — i.e., the number of variables with value 1. We
have checked that the output of our algorithms correspond to
one of the tuples 𝑣 = {𝑣1, . . . , 𝑣𝑛} generated by Choco.

C. Discussion

We believe that evaluating the time efficiency and correct-
ness of the evolution algorithms is the first step to be able
to apply our approach. However, there are other important
measures that need also to be taken into account and are
considered as threats to validity. For instance, although the
approach is scalable from the point of view of the time
consumed by the algorithms, also the scalability regarding
the space requirements needs to be considered. Moreover, an
experimental study to quantify the usefulness of our approach
— i.e. the value added to the developers of multi-tenant ap-
plications, would be very interesting. Other measures, such as
the maintenance and transition cost would provide important
information toward the use of our approach.

VII. RELATED WORK

Figure 8 summarizes how existing approaches about evo-
lution of multi-tenant applications cope with the challenges
identified in Section II.

Approaches that manage the variability of multi-tenant
applications use either Feature Models (FMs) in an SPL [4],
[14], [15] or reference architectures [9], [20] (see first column
in Figure 8). FMs have the advantage of being a well-
known technique supported by many tools. However, the main
shortcoming of FMs is that an additional process is required to
establish the relationship between the abstract variability and
the elements of the architecture. In [14], an external Variability

7http://choco-solver.org/

Challenge 1: Manage the variability of Cloud Multi-Tenant
Applications

Only variants for non-functional properties (e.g., titles,
workflows,...) using Orthogonal Variability Model (OVM).
No cloneables.

No evolution management. Configurations need to be
updated for each individual tenant.

Not automatic. Annotations in the variability model with
deployment information and configuration files for each
tenant.

No variability model, no multi-tenant, no cloneables.
Industrial PLA: Wingsoft Examination System Product Line
(WES-PL).

Not automatic. Evolution as small revisions (e.g., merges,
derivations,…) to a reference skeleton architecture.

No evolution changes. Linear evolution: generation of a
new product from small revisions to the reference
architecture.

SPL: cardinality-based feature models with Hydra Tool.
Cloneable features to configure different sensor devices.

Automatic only at feature level: differences and create
configuration operators for simple features (no variables).

Not automatic. A Variability Modeling Language (VML) [21]
is required to map features to actions over a reference PLA.

No variability management. No multi-tenant. Relationships
between quality attributes and architecture patterns.

Not automatic. Evolution driven by the non-functional
requirements (e.g., performance, efficiency,...).

No evolution changes. Automatic selection of an
architectural pattern based on quality metrics.

SPL, no multi-tenant, no cloneables. Extended feature
models with attributes (e.g., pricing) of the cloud platform
services.

No evolution management. No evolution changes. Conditional compiling technique
(e.g., preprocessor directives) at code level to map features
to functionalities.

SPL: variability framework with feature models and a multi-
view meta-model. No multi-tenant management at features
level.

Automatic single tenant evolution. Model Driven
Engineering (MDE): model derivations from the meta-model
for each tenant.

Automatic, but model derivation for single tenant. Meta-
model’s relatioships and OCL rules to map features and
architecture.

Mietzner et al.
[8]

Wu et al. [20]

Gamez et al.
[14]

Yang et al. [9]

Cavalcante et
al. [4]

AbuMatar et al.
[15]

Challenge 2: Manage the evolution of Cloud Multi-Tenant
Applications

Challenge 3: Automatically propagate the evolution
changes at the architectural level

We model the variability of the software architecture of
cloud multi-tenant applications using cardinality-based
variability models with CVL [12].

We define a process to automatically generate the
evolution changes over the software architecture of cloud
multi-tenant applications.

We propagate the changes required to evolve the multi-
tenant application automatically, by modifying the
software architectures of all the tenants.

Our approach

Dynamic SPL: CVL to augment BPEL processes with
variability.

No evolution management. Reconfiguration of services. Changes are directly done intrusively in the running
process instances using AOP.

Baresi et al. [6]

Service-Oriented DSPL that supports runtime sharing and
variations in a single application instance. Realization of
the variability through a compositional approach [5, 23].

Not automatic. Changes done in each layer of the SPL.
Identification of the potential impacts of a change on the
tenants [23].

Automatically by defining a script that is manually
designed [23].

Kumara et al.
[5, 23]

Feature-Oriented approach to modeling and manage
variability in process-based service compositions [10, 22].

No evolution management. Reference architecture and
WSVL language to extend and customize services [22].

Use of the WSVL language to map features to services in
the architecture [22].

Nguyen et al.
[10, 22]

Fig. 8: Our challenges and the state of the art.

Modeling Language (VML) [21] is used to map the features
to actions over the software architecture of a sensor network.
VML is dependent on the architectural language used to model
the software architecture, and thus, a custom VML file with
the mapping information needs to be manually created for
each different FM and each different architectural language.

Another point to take into account is that most of the
existing approaches focus on modeling the variability of non-
functional properties in multi-tenant applications, such as the
pricing of the services and the service availability, as in [4]
and [8], or focus on analyzing how variations in the services
affect the overall quality attributes of the architecture (e.g.,
performance, efficiency, etc.) as in [9]. But, they do not
address the variability modeling of the functional components
of the architecture (e.g., the variability of an encryption or
authentication component) as we propose. Gamez et al. [14]
is another approach that models the variability of functional
components in architectures as we do, but it focuses on sensor
networks and not multi-tenant applications. Although their
approach could be extended to multi-tenant applications, it
requires manually defining a new VML file for each multi-
tenant application. Wu et al. [20] use an industrial reference
PLA that does not explicitly model the variability. Moreover,
this approach requires the variability and configurations for
each individual tenant to be managed independently. The same
occurs in [15]. In contrast, using CVL [12], our approach
avoids the necessity of using external languages to relate
the FMs and the software architecture because CVL already
provides the required support to establish the links between
the abstract variability specifications and the elements of
the software architecture. This makes it easier to apply the

specified variations over the elements of the architecture
automatically, and ensures that the architecture configurations
fulfill the variability specification. In addition, CVL is MOF-
based and this means that any MOF-compliant architectural
language can be used with the variability model.

Baresi et al. [6] also use CVL to augment Business Process
Execution Language (BPEL) processes with variability in
order to generate a Dynamic SPL in cloud applications. They
focus on the reconfiguration of processes at runtime by using
Aspect-Oriented Programming (AOP). Nguyen et al. [10],
[22] define a Web Service Variability Description Language
(WSVL) to consider variability, configurations, mapping to
architectures, and customization of cloud applications. How-
ever, none of these work deal with the evolution of multiple
tenants, focusing on the reconfiguration of services.

Dealing with the evolution management of multi-tenant
applications, Gamez et al. [14] propose automatically updating
the previous configurations for all the tenants (sensor devices
in their approach) when the application requirements evolve,
although they only automatize the evolution process at the
FM level and for simple features (i.e., yes/no decision features
that do not support the evolution of variable domain features).
Kumara et al. [5], [23] address the runtime evolution of single-
instance multi-tenant applications and focus on controlling the
impacts of a change. Changes are realized on the runtime
model of the SPL based on models@runtime technology.
Other approaches that also manage the evolution of cloud ap-
plications require evolving each tenant configuration individ-
ually, for example by applying small changes (i.e., revisions)
to a reference architecture [20] or through model derivations
from a meta-model with the variability information [15]. As

part of our PLA, the first two evolution algorithms (Evolve
Configuration and Difference Configuration) allow us to
reason about the architectural elements (e.g., components, in-
terfaces, relationships, and parameters) that need to be added,
removed, or reconfigured for each tenant, and analyzing the
evolution effort when the application evolves.

The evolution management of a multi-tenant architecture
requires propagating the changes from the variability model
and configuration model to the application architecture de-
ployed for each tenant. Manually updating these architec-
ture configurations is a hard and error-prone task. Some
approaches use configuration files or scripts that usually need
to be manually updated for each tenant, as in [8], [23]. Other
approaches [15] generate a new architecture from scratch,
which can be highly inefficient for hundreds of tenants. In
our approach, in order to propagate the evolution changes
to the architecture, a weaving model in CVL is automatically
generated. This weaving model contains information about the
specific architectural elements that need to be added, removed,
and/or reconfigured in the existing architecture configurations,
and the particular model transformations to be executed with
the CVL runtime engine to perform the required changes.

Taking into account industry solutions, the OSGi (Open
Service Gateway Initiative) for Cloud8 is a Java framework for
developing and deploying modular software with support for
dependency management and resolution. The framework fo-
cuses on dynamic deployment and automatic management of
modules in multi-tenant applications. In addition, Salesforce9

is a market leader in customization of enterprise multi-tenant
solutions. Salesforce provides a metadata-driven architecture
platform in which all customizations of the tenants (e.g., code,
configuration, applications, etc.) are specified as metadata.
The metadata is kept in a layer separate from the services
layer, which allows seamless, easy upgrades. So, the evolution
management is driven in the metadata layer as updates of this
metadata. Our approach does not try to displace or compete
with these solutions, but our approach can be seen as an
additional layer that serves to the software architects in the
variability management and its evolution, when applications
needs to maintain multiple configuration for the tenants. This
is independent from the cloud platform where the applications
are deployed.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented an approach that uses CVL and
cardinality-based variability models to manage the variability
and evolution of a large number of tenants in the context
of cloud applications. Evolving thousands of configurations
in multi-tenant applications is a unaffordable task to tackle
manually. So, we have presented three algorithms to au-
tomatically evolve a previous configuration of the tenant,
calculate the changes that need to be made to the application
architecture, and propagate the evolution changes to the multi-
tenant architecture by applying M2M transformations. We

8https://www.osgi.org/developer/design/cloud/
9https://developer.salesforce.com/page/Multi_Tenant_Architecture

have formalized the CVL models as a CSP to demonstrate
the correctness of the algorithms, and we have also analyzed
the efficiency of the algorithms.

As part of our ongoing work we plan to extend our approach
to automatically deploy the evolved architecture in the specific
cloud platforms, or to automatically generate the appropriate
configuration files [8], scripts [23], or metadata (in case of
Salesforce) from the evolved architecture. Additionally, there
are other important issues of our approach that need to be
evaluated as part of our on-going work, such as the useful-
ness, maintenance efforts, scalability and space requirements,
among others.

ACKNOWLEDGMENT

This work is supported by the project Magic P12-TIC1814
and by the project HADAS TIN2015-64841-R (co-financed
by FEDER funds).

REFERENCES
[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, no. 4, pp. 50–58, 2010.

[2] R. Krebs, C. Momm, and S. Kounev, “Architectural concerns in multi-
tenant saas applications.” CLOSER, vol. 12, pp. 426–431, 2012.

[3] K. Pohl, G. Böckle, and F. J. v. d. Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag
New York, Inc., 2005.

[4] E. Cavalcante, A. Almeida, T. Batista, N. Cacho, F. Lopes, F. C.
Delicato, T. Sena, and P. F. Pires, “Exploiting software product lines
to develop cloud computing applications,” in Software Product Line
Conference, ser. SPLC, 2012, pp. 179–187.

[5] I. Kumara, J. Han, A. Colman, T. Nguyen, and M. Kapuruge, “Shar-
ing with a difference: Realizing service-based saas applications with
runtime sharing and variation in dynamic software product lines,” in
Conference on Services Computing (SCC), 2013, pp. 567–574.

[6] L. Baresi, S. Guinea, and L. Pasquale, “Service-oriented dynamic
software product lines,” Computer, vol. 45, no. 10, pp. 42–48, 2012.

[7] K. Czarnecki, S. Helsen, and U. Eisenecker, “Formalizing cardinality-
based feature models and their specialization,” SP: Improvement and
Practice, vol. 10, no. 1, pp. 7–29, 2005.

[8] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, “Variability mod-
eling to support customization and deployment of multi-tenant-aware
software as a service applications,” in Principles of Engineering Service
Oriented Systems, 2009, pp. 18–25.

[9] H. Yang, S. Zheng, W.-C. Chu, and C.-T. Tsai, “Linking functions and
quality attributes for software evolution,” in APSEC, 2012, pp. 250–259.

[10] T. Nguyen, A. Colman, and J. Han, “Modeling and managing variability
in process-based service compositions,” in International Conference on
Service-Oriented Computing, ser. ICSOC, 2011, pp. 404–420.

[11] J. Bosch, Design and use of software architectures: adopting and
evolving a product-line approach. Pearson Education, 2000.

[12] O. Haugen, B. Moller-Pedersen, J. Oldevik, G. Olsen, and A. Svendsen,
“Adding standardized variability to domain specific languages,” in
SPLC, 2008.

[13] D. Betts, A. Homer, A. Jezierski, M. Narumoto, and H. Zhang, Moving
Applications to the Cloud on Windows Azure, 3rd ed. Microsoft patterns
& practices, 2013.

[14] N. Gamez and L. Fuentes, “Architectural evolution of famiware using
cardinality-based feature models,” Information and Software Technol-
ogy, vol. 55, no. 3, pp. 563–580, 2013.

[15] M. Abu Matar, R. Mizouni, and S. Alzahmi, “Towards software product
lines based cloud architectures,” in IEEE IC2E, 2014, pp. 117–126.

[16] CVL Submission Team, “Common Variability Language (CVL), OMG
revised submission,” http://www.omgwiki.org/variability/, 2012.

[17] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Sci. Comput. Program., vol. 72, no. 1–2, pp. 31–
39, 2008.

[18] S. Arora and B. Barak, Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[19] E. Tsang, Foundations of constraint satisfaction. Academic press
London, 1993, vol. 289.

[20] Y. Wu, X. Peng, and W. Zhao, “Architecture evolution in software
product line: An industrial case study,” in Top Productivity through
Software Reuse, 2011.

[21] N. Loughran, P. Sánchez, A. Garcia, and L. Fuentes, “Language
support for managing variability in architectural models,” in Software
Composition, 2008.

[22] T. Nguyen, A. Colman, and J. Han, “Enabling the delivery of cus-
tomizable web services,” in International Conference on Web Services
(ICWS), 2012, pp. 138–145.

[23] I. Kumara, J. Han, A. Colman, and M. Kapuruge, “Runtime evolution
of service-based multi-tenant SaaS applications,” in Service-Oriented
Computing. Springer, 2013, pp. 192–206.

