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Abstract. We consider the problem of generating and tracking a trajectory
between two arbitrary parabolic profiles of a periodic 2D channel flow, which
is linearly unstable for high Reynolds numbers. Also known as the Poiseuille
flow, this problem is frequently cited as a paradigm for transition to turbulence.
Our procedure consists in generating an exact trajectory of the nonlinear sys-
tem that approaches exponentially the objective profile. Using a backstepping
method, we then design boundary control laws guaranteeing that the error be-
tween the state and the trajectory decays exponentially in L2, H1, and H2

norms. The result is first proved for the linearized Stokes equations, then
shown to hold locally for the nonlinear Navier-Stokes system.

1. Introduction. One of the few situations in which analytic expressions for so-
lutions of the stationary flow field are available is the channel flow problem. Also
known as the Poiseuille flow, this problem is frequently cited as a paradigm for tran-
sition to turbulence. Poiseuille flow requires an imposed external pressure gradient
for being created and sustained (see [5]). The magnitude of the pressure gradient
determines the value of the centerline velocity, which parameterizes the whole flow.

It is very well known that this solution goes linearly unstable for Reynolds num-
bers greater than the so-called critical Reynolds number, ReCR ≈ 5772 (see [34]),
even though the non-normality of the problem [32] may lead to large transient
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growth and enable a transition to turbulence at substantially smaller Reynolds num-
ber. Stabilization of Navier-Stokes equation for general geometries has been widely
studied (see, e.g., [17, 18, 4, 30, 31] and the references therein, see also [11, 21] for
the Euler equations of incompressible fluids). For channel flow geometry, there are
some particular results. The problem of locally stabilizing the equilibrium has been
considered by means of discretized optimal control (see [25]), Lyapunov analysis
(see [1, 2]), spectral decomposition and pole placement (see [3, 41]), and using the
backstepping technique (see [42, 45]). Observers have been developed as well using
dual methods (see [24, 43]).

However, all prior works in channel flow consider a constant pressure gradient
and a developed flow which is already close to the desired solution. The problem of
tracking time varying profiles generated by unsteady pressure gradients has, so far,
not been considered from a control point of view. Stability for channel flow driven by
unsteady pressure gradient has been previously studied (see [27]). Velocity tracking
problems have been considered in an optimal control framework (see [22]).

In this paper, we consider the problem of moving the state from one Poiseuille
equilibrium to another, following a pre-determined flow trajectory that should be
“nice” in some sense. For example, we may wish to smoothly accelerate fluid at rest
up to a given Reynolds number, probably over the critical value, avoiding transition
to turbulence. The means at our disposal are the imposed pressure gradient and
boundary control of the velocity field. We consider velocity actuation at one of the
walls.

This is a problem of practical interest which, to the best of our knowledge, has
not been solved or even been considered so far, since all control laws in the literature
are designed for one given Poiseuille flow (fixed Reynolds number).

A possible solution for the problem would be to apply quasi-static deformation
theory; this would require to modify the pressure gradient very slowly, and simul-
taneously gain-schedule a fixed Reynolds number boundary controller (see [42]) for
tracking a (slowly) time varying trajectory, which in general would not be an ex-
act solution of the system. This idea has been already used for moving between
equilibria of a semilinear heat equation (see [13]), a semilinear wave equation (see
[14]), or a Schrödinger’s equation (see [6, 7]). Other applications include the shallow
water problem (see [12]) and the Couette-Taylor flow controllability problem (see
[35]). In this paper, however, we follow an alternative approach, finding analyti-
cally an exact, fast trajectory of the system which is then stabilized by means of
boundary control. The advantage of this approach is that it reaches the objective
profile requiring substantially less time and, apart from the imposed pressure gra-
dient which steers the system, the boundary velocity control effort is only necessary
for stabilization and will be zero in the absence of perturbations.

The procedure used for stabilization is similar to the method used in [45] for
local stabilization of a steady Poiseuille profile, and it is based on the backstepping
method (see [37, 39]), which has been also employed in other flow control problems
(see [44]). The method requires to solve a nonstandard partial integro-differential
boundary value problem, and we provide a proof of its solvability. A simpler and
similar looking equation was used, for other purposes, in [10] and in [36], where
time analyticity of coefficients is assumed for obtaining solvability. Later, in [26] it
is shown that for general C∞ coefficients the equation has no solutions. We settle
the issue by showing that the most natural class of functions for which the equation
is solvable is the Gevrey class (see [20]).
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The organization of the paper is as follows. Section 2 contains a detailed pre-
sentation of the results: the model is described in Section 2.1; an expression for
the control laws designed using a backstepping method, the main result and the
strategy of the proof are provided in Section 2.4. Section 3 is devoted to the proof
of the main result: mathematical preliminaries are given in Section 3.1; then, a sta-
bilization result is proved for the linearized system in Section 3.2; the main result
(Theorem 2.1) is finally derived in Section 3.3. Section 4 is an appendix containing
technical results needed in the proof.

2. Main result.

2.1. Channel flow model. We consider a 2D incompressible fluid filling a region
Ω between two infinite planes separated from each other by a distance L. The exact
setting is depicted on Figure 1, on which an example of an equilibrium profile is
shown. Define Uc as a velocity scale, where Uc is the maximum centerline velocity,

y = 0

y = 1

x

y

U(y)

Figure 1. 2D Channel Flow and equilibrium profile (actuation is
on the top wall).

ρ and ν as the density and the kinematic viscosity of the fluid, respectively, and
the Reynolds number, Re, as Re = Uch/ν. Then, using L, L/Uc and ρνUc/L as
length, time and pressure scales respectively, the nondimensional 2D Navier-Stokes
equations are

ut =
△u
Re

− px − uux − vuy, (1)

vt =
△v
Re

− py − uvx − vvy, (2)

where u is the streamwise velocity, v the wall-normal velocity, and p the pressure,
with boundary conditions

u(t, x, 0) = v(t, x, 0) = 0, u(t, x, 1) = U(t, x), v(t, x, 1) = V (t, x). (3)

In (3), U and V are the actuators located at the upper wall, which can be actuated
independently for each x. The fluid is considered incompressible, so that the velocity
field must verify the divergence-free condition

ux + vy = 0. (4)

In these nondimensional coordinates, Ω is defined by

Ω = {(x, y) ∈ R
2 : 0 ≤ y ≤ 1}, (5)
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with boundary ∂Ω = ∂Ω0 ∪ ∂Ω1, where ∂Ωi = {(x, y) ∈ R2 : y = i}, i = 0, 1. We
refer to ∂Ω0 as the uncontrolled boundary, and to ∂Ω1 as the controlled boundary.

2.2. Poiseuille flows. A particular family of stationary solutions of (1)–(3) is the
one-parameter Poiseuille family of parabolic profiles (Pδ) defined by

Pδ = (uδ, vδ, pδ) =

(

4δy(1 − y), 0,− 8δ

Re
x

)

,

where the parameter δ stands for the maximum centerline velocity. Note that the
velocity actuation at the wall is zero for Pδ, since both uδ and vδ are zero at the
boundaries. The pressure gradient pδ

x = − 8δ
Re must be externally sustained for Pδ

to be a stationary solution (see, e.g. [5, p. 182-183]).
We next describe in Section 2.3 a trajectory steering the system from a given

(arbitrary) Poiseuille flow Pδ0 to another one Pδ1 . In general this trajectory is
unstable, and must be stabilized by means of boundary controls. In Section 2.4,
we provide explicit feedback laws which stabilize this trajectory exponentially. We
also make precise the analytic functional framework in which one has existence
and uniqueness of a solution for the closed loop system together with exponential
stability (Theorem 2.1).

2.3. Generation of the trajectory to be tracked. Given δ0 and δ1, we first
generate a trajectory Θ(t) = (u(t), v(t), p(t)) (where space dependence is omitted
for clarity) connecting Pδ0 to Pδ1 . We assume δ0 = 0 and δ1 = 1 for simplicity.
Consider the trajectory Θq(t) defined by

Θq(t) = (uq(t), vq(t), pq(t)) = (g(t, y), 0,−xq(t)), (6)

where q is the chosen external pressure gradient. Then, Θq(t) verifies (1)–(4) with
U = V = 0 if

gt =
gyy

Re
+ q. (7)

Since P0 ≡ 0, we set Θq(0) = 0, which implies g(0, y) = q(0) = 0. We impose
g(t, 0) = g(t, 1) = 0 so no velocity control effort is needed to steer the control sys-
tem, only to stabilize it. Given these initial-boundary data, choosing q completely
determines g from (7) and consequently Θq(t), so q(t) parameterizes Θq(t). Setting

q(t) =
8

Re

(

1 − e−ct
)

, (8)

with c > 0 a design parameter, one has q(0) = 0 and limt→∞ q(t) = 8/Re. This
selection of q determines a value g in (7) that verifies

lim
t→∞

g(t, y) = 4y(1 − y)

(see Lemma 4.1 in Section 4.1 in the Appendix, where other properties of g are
derived). It follows that Θq(t) is a solution of the trajectory generation problem,
since its components are smooth and solve (1)–(4), and one has Θq(0) = P0 and
limt→∞ Θq(t) = P1, so Θq(t) connects the chosen Poiseuille profiles (reaching P1

in infinite time, however by construction through rapidly decaying exponentials,
Θq closely approaches P1 after a short time; in this sense, we consider Θq a fast
trajectory).

Remark 1. The fact that an exact trajectory is obtained from a linear parabolic
equation (Equation (7)) can be exploited to move between equilibria in arbitrary
finite time, since it is known (see [16]) that this kind of equations have finite-time
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zero controllability for even initial data (i.e., g(0, 1−y) = g(0, y), for every y ∈ [0, 1]).
Motion planning theory for the heat equation (see [29]) allows to define an explicit
finite-time trajectory, in the framework of Gevrey functions. We do not pursue a
finite-time result (exponential stability is enough for practical purposes), however
we present in Section 4.2 in the appendix a proof guaranteeing that our method
allows tracking of trajectories defined in Gevrey spaces.

2.4. Construction of stabilizing feedback laws and main result. In general,
the trajectory Θq, t ∈ [0,+∞), is unstable. Our goal is to design control feedback
laws permitting to track the trajectory Θq(t). Define first the error variables

(ũ, ṽ, p̃) = (u, v, p) − Θq(t) = (u − g(t, y), v, p+ xq(t)).

In these new variables, one has, dropping tildes for ease of notation,

ut =
△u
Re

− px − uux − vuy − g(t, y)ux − gy(t, y)v, (9)

vt =
△v
Re

− py − uvx − vvy − g(t, y)vx, (10)

and the same divergence-free condition and boundary conditions as before, i.e.,

ux + vy = 0, (11)

u(t, x, 0) = v(t, x, 0) = 0, u(t, x, 1) = U(t, x), v(t, x, 1) = V (t, x). (12)

Our new control objective is to stabilize the equilibrium at the origin in (9)–(12) by
means of suitable feedback laws U and V . Linearizing (9)–(12) around 0, we obtain
the unsteady Stokes equations

ut =
△u
Re

− px − g(t, y)ux − gy(t, y)v, (13)

vt =
△v
Re

− py − g(t, y)vx, (14)

with the divergence-free condition

ux + vy = 0, (15)

and the boundary conditions

u(t, x, 0) = v(t, x, 0) = 0, u(t, x, 1) = U(t, x), v(t, x, 1) = V (t, x). (16)

Our strategy consists in using a backstepping method in order to design control laws
stabilizing the origin of (13)–(16). Then, we prove that these control laws stabilize
locally the origin of (9)–(12).

2.4.1. Functional framework. In our main result (Theorem 2.1), an assumption of
periodicity in x is required for the initial condition. Combined with a uniqueness
argument, this permits to show that the velocity field (u, v) and the pressure p are
periodic in x with some period, say, 2h > 0. This fact is essential in our analysis,
and standard in the study of Stokes or Navier-Stokes equations (see, e.g., [40, 35]).

In order to take into account this periodicity, we set

Ωh = {(x, y) ∈ Ω : −h < x < h}.
Let L2(Ωh) be the usual space of square-integrable functions on Ωh, endowed with
the scalar product

(φ, ψ)L2(Ωh) =

∫ h

−h

∫ 1

0

φ(x, y)ψ(x, y)dydx.
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Similarly, consider the spaces H1(Ωh) and H2(Ωh), defined as usual. Define L2
h(Ω)

as the closure of the set of continuous, 2h-periodic in x, functions on Ω with respect
to the norm induced by the scalar product

(φ, ψ)L2
h(Ω) = (φ|Ωh

, ψ|Ωh
)L2(Ωh).

In other words,

L2
h(Ω) = {f ∈ L2

loc(Ω) : f |Ωh
∈ L2(Ωh), f(x+ 2h, y) = f(x, y) for a.e. (x, y) ∈ Ω}.

Furthermore, define the spaces

H1
h(Ω) = {f ∈ L2

h(Ω) : f |Ωh
∈ H1(Ωh), f |x=−h = f |x=h in the trace sense},

H2
h(Ω) = {f ∈ H1

h(Ω) : f |Ωh
∈ H2(Ωh), ∇f |x=−h = ∇f |x=h in the trace sense},

endowed with the corresponding norms. Similarly, denoting w = (u, v), define

H0
0h(Ω) = {w ∈ [L2

h(Ω)]2 : ux + vy = 0, v|∂Ω0
= 0},

H1
0h(Ω) = {w ∈ [H1

h(Ω)]2 : ux + vy = 0,w|∂Ω0
= 0},

H2
0h(Ω) = H1

0h(Ω) ∩ [H2
h(Ω)]2,

endowed with the scalar product of, respectively, [L2
h(Ω)]2, [H1

h(Ω)]2 and [H2
h(Ω)]2

(see, e.g., [40, page 9] for the precise meaning of v|∂Ω0
= 0 for w ∈ [L2

h(Ω)]2

satisfying ux + vy = 0; note that u|∂Ω0
= 0 has, in general, no meaning for w ∈

[L2
h(Ω)]2 even satisfying ux + vy = 0). These are the spaces for the velocity field

where the main result is proved.

2.4.2. Design of stabilizing controls. We now define the stabilizing control laws for
the controllers V and U . The way they are designed relies on a backstepping
method, as explained in details in Section 3. The controller V (t, x) is a dynamic
controller, found as the unique solution of the forced parabolic equation

Vt =
Vxx

Re
−

∑

0<|n|<M

∫ h

−h

eiγn(ξ−x)

(

2i

∫ 1

0

gy(t, η) cosh (γn(1 − η)) v(t, ξ, η)dη

−iuy(t, ξ, 0) − uy(t, ξ, 1)

Re

)

dξ, (17)

initialized at zero1, with the periodicity conditions V (t, x + h) = V (t, x). The
control law U is defined by

U(t, x) =
∑

0<|n|<M

∫ h

−h

∫ 1

0

eiγn(ξ−x)Kn(t, 1, η)u(t, ξ, η)dηdξ, (18)

where M = 2h
√

Re
π , and γn = πn/h. For every integer n such that 0 < |n| < M ,

Kn in (18) is the solution of the kernel equation

Knt =
1

Re
(Knyy −Knηη) − λn(t, η)Kn + fn(y, η)

−
∫ y

η

fn(ξ, η)Kn(t, y, ξ)dξ, (19)

1If the velocity field initial conditions at the boundary were not zero, then it is required that
V (0, x) = v(0, x, 1). We assume for simplicity v(0, x, 1) = 0.
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which is a linear partial integro-differential equation in the region Γ = {(t, y, η) ∈
(0,∞) × T }, where T = {(y, η) ∈ R2 : 0 ≤ η ≤ y ≤ 1}, with boundary conditions

Kn(t, y, y) = −Re
(∫ y

0

λn(σ)

2
dσ + µn(0)

)

, (20)

Kn(t, y, 0) = Re

(∫ y

0

µn(σ)Kn(t, y, σ)dσ −µn(y)

)

, (21)

and where the coefficients in (19)–(21) are

λn(t, y) = −iγng(t, y), (22)

fn(t, y, η) = − iγn

(

gy(t, y) + 2γn

∫ y

η

gy(t, σ) sinh (γn(y − σ)) dσ

)

, (23)

µn(y) =
γn

Re

cosh (γn(1 − y)) − cosh (γny))

sinh γn
. (24)

The solvability of (19)–(21) is stated in Proposition 3, and investigated in details
in Section 4.2 (Appendix).

Remark 2. Averaging (in x) Equation (17), it can be seen that the mean compo-
nent of V is zero (provided it is initialized at zero), thus the physical constraint of

zero net flux is enforced. This can be written as
∫ h

−h
V (t, ξ)dξ = 0. Verifying this

condition is crucial, since its violation would imply not satisfying mass conservation
in the channel.

2.4.3. Statement of the stability result.

Theorem 2.1. There exist ε > 0, C1 > 0 and C2 > 0, both depending only
on c, δ0, δ1, h and Re, such that, for every w0 = (u0, v0) ∈ H2

0h(Ω) satisfying
‖w0‖H0

0h(Ω) < ε and the compatibility conditions

u0(x, 1) =
∑

0<|n|<M

∫ h

−h

∫ 1

0

eiγn(ξ−x)Kn(0, 1, η)u0(ξ, η)dηdξ, v0(x, 1) = 0,

there exists a unique

w = (u, v) ∈ L2(0,∞;H2
0h(Ω)), with wt ∈ L2(0,∞;H1

h(Ω)2),

such that

u(0, x, y) = u0(x, y), v(0, x, y) = v0(x, y),

and, for some p ∈ L2(0,∞;H1
h(Ω)), Equations (9)-(12) hold with U and V defined

by (17)-(24). Moreover,

‖w(t)‖Hi
0h(Ω) ≤ C1e

−C2t‖w0‖Hi
0h(Ω), ∀t ≥ 0, ∀i ∈ {0, 1, 2}.

Remark 3. If, in the previous results, the initial data w0 belongs to the space
H1

0h(Ω), then we still have a unique solution w ∈ L2(0,∞;H1
0h(Ω)), with now

p ∈ L2(0,∞;L2
h(Ω)), and the exponential decay property in Hi

0h(Ω)-norm, for i ∈
{0, 1}.

Remark 4. The exponential decay rate C2 in the theorem can be made as large
as desired, just increasing as much as necessary M and λn in (22), so that

M =
2h

√
Re

π
+ M̄, λn = −iγng(t, y) + λ̄,
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for M̄, λ̄ > 0 large enough. Increasing M means that more modes are controlled,
whereas the uncontrolled modes (see Section 3.2.1) are more damped, except the
mode n = 0 (see the beginning of Section 3.2.1). To control and damp more the
mode n = 0, one can use, for example, the pole-shifting method described in [13].
Increasing λ means that more damping is added in the target system (49), so that
controlled modes (see Section 3.2.2) decay faster.

Remark 5. Even though the controller (17)–(24) looks rather involved, it is not
hard to compute and implement. One has to solve a finite set of linear PIDE equa-
tions (19)–(21) for computing the Kn’s; we provide an symbolically computable
solution via a convergent infinite series, whose partial sums provides an approxima-
tion to the controller. The kernel equations can be solved numerically as well, which
can be done fast and efficiently compared, for example, with LQR—where nonlin-
ear time dependent Riccati equations appear (see [37] for a numerical comparison
between LQR and backstepping).

Remark 6. The result can be extended in a number of ways. Control laws (17)–
(18) are defined by state feedback laws, so Theorem 2.1 requires knowledge of the
full state. An output feedback design is possible applying a backstepping observer
methodology dual to the techniques we follow here (see [38, 43]). Then, only mea-
surements of pressure and skin friction are required. A 3D channel flow, periodic in
two directions, is also tractable, adding some refinements which include actuation
of the spanwise velocity at the wall (see [9] for the new techniques and difficulties
involved). All cited references consider the steady problem of stabilizing a given
Poiseuille profile, therefore some modifications to account for the unsteady coef-
ficients have to be done, in the same way the present paper extends the results
of [42].

3. Proof of the main result. The structure of the proof is the following. We first
start with mathematical preliminaries (Section 3.1), then design control laws using
backstepping theory and prove the stability result for Stokes equations (Section
3.2) which represent the linearized system of the Navier-Stokes equations around
the Poiseuille profile. The main result (Theorem 2.1) is finally proved in Section
3.3.

3.1. Mathematical preliminaries.

3.1.1. Fourier series expansion. The complex Fourier coefficients (φn(y))n∈Z of a
given integrable 2h-periodic in x function φ defined on Ω are given by

φn(y) =
1

2h

∫ h

−h

φ(x, y)e
inπ

h xdx, n ∈ Z.

We will write simply φn in the sequel. It is well known that if φ ∈ L2
h(Ω), then

(φn(·))n∈Z ∈ ℓ2
(

Z, L2(0, 1)
)

, i.e.,

∑

n∈Z

∫ 1

0

|φn(y)|2dy <∞.

Conversely, if (φn(·))n∈Z ∈ ℓ2
(

Z, L2(0, 1)
)

, then one can recover φ from its Fourier

series by φ(x, y) =
∑

n∈Z
φn(y)e−

inπ
h x.

Let φ, ψ ∈ L2
h(Ω). Recall that, according to Parseval’s formula,

(φ, ψ)L2
h(Ω) = 2h ((φn) , (ψn))ℓ2(Z,L2(0,1))
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where the scalar product in ℓ2
(

Z, L2(0, 1)
)

is

((φn) , (ψn))ℓ2(Z,L2(0,1)) =
∑

n∈Z

∫ 1

0

φn(y)ψn(y)dy,

and the bar denotes the complex conjugate.
Given ψ ∈ L2(Ωh), one has

‖ψ‖2
L2(Ωh) = 2h‖ψn‖2

ℓ2(Z,L2(0,1)) = 2h
∑

n∈Z

‖ψn‖2
L2(0,1),

where ‖ψn‖2
L2(0,1) =

∫ 1

0 |ψn(y)|2dy. In the sequel we omit the subindexes when clear

from the context.

3.1.2. Poincaré’s inequalities.

Lemma 3.1. (Poincaré’s inequality in H2(0, 1)). Suppose that f is a complex val-
ued function belonging to H2(0, 1), such that f(0) = f(1) = 0. Then ‖fy‖2

L2(0,1) ≤
‖fyy‖2

L2(0,1).

Proof. Set f1(y) = ℜ(f) and f2 = ℑ(f). Since f1(0) = f1(1) = 0, there must exist
a ∈ (0, 1) such that f1y(a) = 0. Therefore,

f1y(y) =

{
∫ y

a
f1yy(η)dη for y ∈ (a, 1),

−
∫ a

y
f1yy(η)dη for y ∈ (1, a).

Hence, by Cauchy-Schwarz inequality, |f1y(y)|2 ≤
∫ 1

0
f2
1yy(η)dη, and integrating,

the inequality follows for f1 (and analogously for f2).

Lemma 3.2. (Trace inequality in H2(0, 1)). Suppose that f is a complex valued
function belonging to H2(0, 1). Then for any A > 0, |fy(1)|2 + |fy(0)|2 ≤ (2 +
A)‖fy‖2

L2(0,1) + 1
A‖fyy‖2

L2(0,1).

Proof. We can write

|fy(1)|2 + |fy(0)|2 =

∫ 1

0

d

dy

(

(2y − 1)|fy|2
)

dy

= 2‖fy‖2
L2(0,1) +

∫ 1

0

(2y − 1)
(

fyfyy + fyfyy

)

dy

≤ 2‖fy‖2
L2(0,1) + 2

∫ 1

0

|fy||fyy|dy

and since ab ≤ A
2 a

2 + 1
2Ab

2, we get

|fy(1)|2 + |fy(0)|2 ≤ (2 +A)‖fy‖2
L2(0,1) +

1

A
‖fyy‖2

L2(0,1)

Lemma 3.3. (Poincaré’s inequalities in H1
h(Ω) and H2

h(Ω)). Let φ ∈ H1
h(Ω) be

such that φ|∂Ω0
≡ 0, and ψ ∈ H2

h(Ω) such that ψ|∂Ωi ≡ 0 for i = 0, 1. Then

‖φ‖2
L2

h(Ω) ≤ ‖φy‖2
L2

h(Ω), (25)

‖ψy‖2
L2

h(Ω) ≤ ‖ψyy‖2
L2

h(Ω). (26)
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Proof. Using Parseval’s formula, ‖φ‖2
L2

h(Ω)
= h

∑ ‖φn‖2
L2(0,1) ≤ h

∑ ‖φny‖2
L2(0,1),

where we have used the classical Poincaré’s formula for functions of H1(0, 1) van-
ishing at 0, since φ ∈ H1

h(Ω) implies φn ∈ H1(0, 1), and φ|∂Ω0
≡ 0 implies φn(0) = 0.

By the same reasoning, ψ ∈ H2
h(Ω) implies ψn ∈ H2(0, 1), and ψ|∂Ωi ≡ 0 implies

ψn(i) = 0, for i = 0, 1. Applying Lemma 3.1 for every n leads to ‖ψy‖2
L2

h(Ω)
=

h
∑

‖ψny‖2
L2(0,1) ≤ h

∑

‖φnyy‖2
L2(0,1) = ‖ψyy‖2

L2
h
(Ω), thus proving the lemma.

3.1.3. Transformations of L2 functions. The following definitions establish facts
and notations useful for designing our control laws, based on the backstepping
method (see [37]). This method consists in finding an invertible transformation of
the original variables into others whose stability properties are easy to establish.

Definition 3.4. Let T = {(y, η) ∈ R2 : 0 ≤ η ≤ y ≤ 1}. Given complex valued
functions f ∈ L2(0, 1) and K ∈ L∞(T ), we define the transformed variable g =
(I −K)f , where the operator Kf is defined by

Kf(y) =

∫ y

0

K(y, η)f(η)dη,

i.e., a Volterra operator. We call I − K the direct transformation with kernel K.
Now, if there exists a function L ∈ L∞(T ) such that f = (I+L)g, then we say that
the transformation is invertible, and we call I + L the inverse transformation, and
L the inverse kernel (or the inverse of K).

Proposition 1. One has the following properties.

1. The transformation I −K is invertible for every K ∈ L∞(T ). Moreover,

L(y, η) = K(y, η) +

∫ y

η

K(y, σ)L(σ, η)dσ = K(y, η) +

∫ y

η

L(y, σ)K(σ, η)dσ.

2. If f ∈ L2(0, 1) then the function g = (I − K)f belongs to L2(0, 1), and
‖g‖2

L2(0,1) ≤ (1 + ‖K‖L∞)2‖f‖2
L2(0,1). Similarly, if g ∈ L2(0, 1) then the func-

tion f = (I+L)g belongs to L2(0, 1), and ‖f‖2
L2(0,1) ≤ (1+‖L‖L∞)2‖g‖2

L2(0,1).

The first point of this proposition is immediate from the theory of Volterra inte-
gral equations (see [23]). The second point follows easily from the Cauchy-Schwarz
inequality.

This result allows to define a norm equivalent to the L2 norm,

‖f‖2
KL2(0,1) = ‖(I −K)f‖2

L2(0,1) = ‖g‖2
L2(0,1). (27)

For C1(T ) and C2(T ) kernels K and L, one has an equivalent version of Proposi-
tion 1, allowing to define respectively aKH1(0, 1) andKH2(0, 1) norm, respectively
equivalent to the H1(0, 1) and H2(0, 1) norm:

‖f‖2
KH1(0,1) = ‖(I −K)f‖2

H1(0,1) = ‖g‖2
H1(0,1), (28)

‖f‖2
KH2(0,1) = ‖(I −K)f‖2

H2(0,1) = ‖g‖2
H2(0,1), (29)

where higher derivatives are calculated as follows:

gy = fy −K(y, y)f(y) −
∫ y

0

Ky(y, η)f(η)dη,

gyy = fyy −K(y, y)fy(y) − 2Ky(y, y)f(y) −Kη(y, y)f(y)

−
∫ y

0

Kyy(y, η)f(η)dη,
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and similarly for the inverse transformation. In particular, one has

(1 + ‖L‖L∞ + ‖Ly‖L∞)−2‖f‖2
H1(0,1) ≤ ‖f‖2

KH1(0,1)

≤ (1 + ‖K‖L∞ + ‖Ky‖L∞)2‖f‖2
H1(0,1),

and other similar estimates hold for the H2 norm.

3.1.4. Transformations of the velocity field. We define transformations of functions
in H0

0h(Ω).

Definition 3.5. Consider a finite set A = {a1, . . . , aj} ⊂ Z, and K = (Kn(y, η))n∈A

a family of L∞(T ) kernels. Then, for w = (u, v) ∈ H0
0h(Ω), the transformed variable

ω = (α, β) = (I −K)w is defined through its Fourier components by

ωn =

{

((I −Kn)un, 0) forn ∈ A,
wn, otherwise.

The inverse transformation, w = (I + L)ω, is defined by

w =

{

((I + Ln)αn, L̂nαn) forn ∈ A,
ωn, otherwise,

where the new operator L̂n is defined by

L̂nf = −πin
h

∫ y

0

(

f(η) +

∫ η

0

L(η, σ)f(σ)dσ

)

dη.

It is straightforward to show that w is well defined. Indeed, for n ∈ A, the second
component of w is

L̂nαn = −πin
h

∫ y

0

(

αn(η) +

∫ η

0

L(η, σ)αn(σ)dσ

)

dη,

and, by definition of αn from the direct transformation, and after some manipula-
tion,

L̂nαn = −πin
h

∫ y

0

(

un(η) −
∫ η

0

(

Kn(η, σ) − Ln(η, σ)

+

∫ η

σ

Ln(η, δ)Kn(δ, σ)dδ

)

un(δ)dσ

)

dη.

By Proposition 1, one gets L̂nαn = −πin
h

∫ y

0
un(η)dη. Since the divergence-free

condition in Fourier space is πin
hun + vny = 0 and vn(0) = 0, one gets L̂nαn =

∫ y

0 vny(η)dη = vn(y). This way, even though the second component of the velocity
seems to be lost in the direct transformation, it can be recovered and the transfor-
mation is still invertible. Using a similar argument as in Proposition 1,

‖ω‖2
H0

0h
(Ω) ≤ (1 + ‖K‖L∞)2‖w‖2

H0
0h

(Ω),

‖w‖2
H0

0h(Ω) ≤ (1 +N2)(1 + ‖L‖L∞)2‖ω‖2
H0

0h(Ω),

where N = maxn∈A{π n
h}, ‖K‖L∞ = maxn∈A ‖Kn‖L∞ , ‖L‖L∞ = maxn∈A ‖Ln‖L∞ .

This allows the definition of a norm, as in (27), equivalent to the H0
0h(Ω), that we

call KH0
0h(Ω),

‖w‖KH0
0h

(Ω) = ‖ω‖H0
0h

(Ω). (30)

For C1(T ) and C2(T ) kernel families one can define as well KH1
0h(Ω) and KH2

0h(Ω)
norms, respectively equivalent to the regular H1

0h(Ω) and H2
0h(Ω) norms.
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Remark 7. All previous results hold for transformation kernels depending on time,
as long as they are uniformly bounded on the time interval (finite or infinite) con-
sidered (see Proposition 3 for such a statement).

3.2. Stabilization result for the linearized system. In this section we focus
on the linearized system (13)–(16) which consists of Stokes equations. We show how
to design, using a backstepping method, the control laws (17)–(18), and prove the
following result, which is the analogous of Theorem 2.1 but for the Stokes systems
instead of the Navier-Stokes system.

Proposition 2. There exist C1 > 0 and C2 > 0, both depending only on c, δ0,
δ1, h and Re, such that, for every w0 = (u0, v0) ∈ H2

0h satisfying the compatibility
conditions

u0(x, 1) =
∑

0<|n|<M

∫ h

−h

∫ 1

0

eiγn(ξ−x)Kn(0, 1, η)u0(ξ, η)dηdξ, v0(x, 1) = 0,

there exists a unique

w = (u, v) ∈ L2(0,∞;H2
0h(Ω)), with wt ∈ L2(0,∞;H1

h(Ω)2),

such that u(0, x, y) = u0(x, y), v(0, x, y) = v0(x, y), and, for some function p ∈
L2(0,∞;H1

h(Ω)), Equations (13)–(16) of the linear Stokes system hold with U and
V defined by (17)-(24). Moreover,

‖w(t)‖Hi
0h(Ω) ≤ C1e

−C2t‖w0‖Hi
0h(Ω), ∀t ≥ 0, ∀i ∈ {0, 1, 2}.

The remaining part of this section is devoted to the proof of that result. The
proof requires Lyapunov methods. For denoting some positive constants that arise
from various inequalities and norm equivalences, we will repeatedly use C with some
subscript.

Equations (13)–(14) written in Fourier space are

unt =
△nun

Re
− iγn(pn + g(t, y)un) − gy(t, y)vn, (31)

vnt =
△nvn

Re
− pny − iγng(t, y)vn, (32)

where △n = ∂yy−γ2
n has been introduced for simplifying the expressions, and where

γn = πn/h. The boundary conditions are

un(t, 0) = vn(t, 0) = 0, un(t, 1) = Un(t), vn(t, 1) = Vn(t), (33)

and the divergence-free condition is

iγnun + vny = 0. (34)

From (31)–(32) an equation for the pressure can be derived,

pnyy − γ2
npn = −2iγngy(t, y)vn, (35)

with boundary conditions obtained from evaluating (32) at the boundaries and using
(33),

pny(t, 0) = −iγn
uny(t, 0)

Re
, pny(t, 1) = −iγn

uny(t, 1)

Re
− V̇n − γ2

n

Vn

Re
. (36)

Equations for different n are uncoupled due to linearity and spatial invariance,
allowing separate consideration for each mode n. Most modes, which we refer to
as uncontrolled, are naturally stable and thus left without control. A finite set of
modes are unstable and require to be controlled.
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3.2.1. Uncontrolled modes. These are n = 0 and large modes that verify |n| ≥ M ,
where M > 0 will be made precise.

Mode n = 0 (mean velocity field). From (33) and (34), v0 ≡ 0. Then, u0

verifies u0t =
u0yy

Re , with u0(t, 0) = u0(t, 1) = 0. Applying Lemma 3.1, we have
d
dt‖u0‖2 ≤ − 2

Re‖u0‖2, implying ‖u0(t)‖2 ≤ e−
2

Re t‖u0(0)‖2, where ‖ ‖ stands for the

L2(0, 1), H1(0, 1), or H2(0, 1) norm.

Modes for large |n|. If wn = (un, vn), then, with Vn = Un = 0,

d

dt
‖wn‖2

L2(0,1)2 = −2
‖wny‖2

L2(0,1)2

Re
− 2γ2

n

‖wn‖2
L2(0,1)2

Re
− (gyun, vn)L2(0,1)2 − (gyvn, un)L2(0,1)2

− (un, iγnpn)L2(0,1)2 − (iγnpn, un)L2(0,1)2

− (vn, pny)L2(0,1)2 − (pny, vn)L2(0,1)2 . (37)

Consider the pressure terms like those in the second line of (37). Using the divergence-
free condition iγnun + vny = 0, and integrating by parts,

− (un, iγnpn)L2(0,1)2 = − (vny, pn)L2(0,1)2 = (vn, pny)L2(0,1)2 .

Therefore, the pressure terms in (37) cancel each other. Then, using the Cauchy-
Schwarz inequality and the inequality ab ≤ (a2 + b2)/2, one gets

d

dt
‖wn‖2

L2(0,1)2 ≤ −2
‖wny‖2

L2(0,1)2

Re
− 2γ2

n

‖wn‖2
L2(0,1)2

Re

+‖gy‖L∞(0,1)‖wn‖2
L2(0,1)2 . (38)

Since |gy(t, y)| ≤ 4 (see Lemma 4.1 in Section 4.1), choosing |γn| ≥ 2
√
Re, i.e.,

|n| ≥M = 2h
√

Re
π , yields

d

dt
‖wn‖2

L2(0,1)2 ≤ −2
‖wny‖2

L2(0,1)2

Re
− γ2

n

‖wn‖2
L2(0,1)2

Re
, (39)

therefore achieving L2 exponential stability for large modes (|n| ≥M).
The H1 exponential stability is proved for the same set of modes. Indeed, com-

pute

d

dt
‖wny‖2

L2(0,1)2 = (wny,wnyt)L2(0,1)2 + (wnyt,wny)L2(0,1)2

= −(wnyy,wnt)L2(0,1)2 − (wnt,wnyy)L2(0,1)2

= −2
‖wnyy‖2

L2(0,1)2

Re
+ 2γ2

n

‖wny‖2
L2(0,1)2

Re
−iγn(wnyy, gwn)L2(0,1)2 + iγn(gwn,wnyy)L2(0,1)2

−iγn(unyy, pn)L2(0,1) + iγn(pn, unyy)L2(0,1)

+(vnyy, pny)L2(0,1) + (pny, vnyy)L2(0,1)

+(unyy, gyvn)L2(0,1) + (gyvn, unyy)L2(0,1).
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Let us study first the terms without pressure. Using integrations by parts, the
Cauchy-Schwarz inequality and the divergence-free condition, one gets

−iγn(wnyy, gwn)L2(0,1)2 + iγn(gwn,wnyy)L2(0,1)2

+(unyy, gyvn)L2(0,1) + (gyvn, unyy)L2(0,1)

= iγn(wny, gwny + gywn)L2(0,1)2 − iγn(gwny + gywn,wny)L2(0,1)2

−(uny, gyyvn + gyvny)L2(0,1) − (gyyvn + gyvny, uny)L2(0,1)

= iγn(wny, gywn)L2(0,1)2 − iγn(gywn,wny)L2(0,1)2 − (uny, gyyvn)L2(0,1)

−(gyyvn, uny)L2(0,1) − iγn(uny, gyun)L2(0,1) + iγn(gyun, uny)L2(0,1)

= iγn(vny, gyvn)L2(0,1)2 − iγn(gyvn, vny)L2(0,1)2

−(uny, gyyvn)L2(0,1) − (gyyvn, uny)L2(0,1)

≤ γ2
n + 1

Re
‖wny‖2

L2(0,1)2 +Re
(

‖gy‖2
L∞(0,1) + ‖gyy‖2

L∞(0,1)

)

‖wn‖2
L2(0,1)2 .

Concerning the pressure terms, we have

−iγn(unyy, pn)L2(0,1) + iγn(pn, unyy)L2(0,1)

+(vnyy, pny)L2(0,1) + (pny, vnyy)L2(0,1)

=

[

vnyy(t, y)pn(t, y) + vnyy(t, y)pn(t, y)

]y=1

y=0

= Re

[

pny(y)pn(y) + pny(y)pn(y)

]y=1

y=0

, (40)

where the last equality is deduced from (32) evaluated at the boundaries. Hence

∣

∣

∣

∣

− iγn(unyy, pn)L2(0,1) + iγn(pn, unyy)L2(0,1)

+(vnyy, pny)L2(0,1) + (pny, vnyy)L2(0,1)

∣

∣

∣

∣

≤ 2Re (|pny(1)||pn(1)| + |pny(0)||pn(0)|)

Lemma 3.6. There exists a constant C1 > 0 such that

|pny(1)||pn(1)| + |pny(0)||pn(0)| ≤
‖wnyy‖2

L2(0,1)

2Re2
+ C1

1 + γ2
n

2
‖wny‖2

L2(0,1).

Proof. Solving the Poisson pressure equation (35) as a function of the boundary
conditions pny(1) and pny(0) we get

pn(y) = 2i

∫ y

0

cosh(γnη) cosh(γn(1 − y))

sinh γn
gy(η)vn(η)dη

+2i

∫ 1

y

cosh(γny) cosh(γn(1 − η))

sinh γn
gy(η)vn(η)dη

+
cosh(γny)

γn sinh γn
pny(1) − cosh(γn(1 − y))

γn sinh γn
pny(0)
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Hence

|pn(y)| ≤ 2‖gy‖L∞(0,1)

∣

∣

∣

∣

cosh(γny) cosh(γn(1 − y))

sinh γn

∣

∣

∣

∣

∫ 1

0

|vn(η)|dη

+

∣

∣

∣

∣

cosh γn

γn sinh γn

∣

∣

∣

∣

(|pny(1)| + |pny(0)|)

and since cosh(γny) cosh(γn(1−y)) ≤ cosh γn, and for |n| ≥M we have | tanh γn| ≥
tanhγM , it follows that

|pn(y)| ≤ 2

tanh γM
‖gy‖L∞(0,1)‖vn‖L2(0,1) +

1

|γn| tanhγM
(|pny(1)| + |pny(0)|) .

Then,

|pny(1)||pn(1)| + |pny(0)||pn(0)|

≤ |pny(1)| + |pny(0)|
tanhγM

(

2‖gy‖L∞(0,1)‖vn‖L2(0,1) +
|pny(1)| + |pny(0)|

|γn|

)

.

Hence,

|pny(1)||pn(1)| + |pny(0)||pn(0)|

≤ 1

tanh γM

(

|γn|‖gy‖2
L∞(0,1)‖vn‖2

L2(0,1) + 3
|pny(1)|2 + |pny(0)|2

|γn|

)

.

Noting that |γn| ≤ 1 + γ2
n and the pressure boundary conditions (36)

|pny(1)||pn(1)| + |pny(0)||pn(0)|

≤ (1 + γ2
n)

tanh γM
‖gy‖2

L∞(0,1)‖vn‖2
L2(0,1) + 3|γn|

|uny(1)|2 + |uny(0)|2
Re2 tanh γM

,

then applying Lemma 3.2 with A = 6|γn|
tanh γM

we obtain

|pny(1)||pn(1)| + |pny(0)||pn(0)| ≤
‖unyy‖2

L2(0,1)

2Re2
+

18γ2
n

tanh2 γM

‖uny‖2
L2(0,1)

Re2

+
(1 + γ2

n)

tanhγM
‖gy‖2

L∞(0,1)‖vn‖2
L2(0,1)

and applying Poincare’s inequality we obtain the result. Note that C1 depends only
on Re and h (since M depends only on Re and h).

From the previous estimates and applying Lemma 3.6, one gets

d

dt
‖wny‖2

L2(0,1)2 ≤ −
‖wnyy‖2

L2(0,1)2

Re
+ C2(1 + γ2

n)‖wny‖2
L2(0,1)2

+C3‖wn‖2
L2(0,1)2 ,
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for some C2, C3 > 0. Setting L =
1+ReC3+ReC2(1+γ2

n)
2 ‖wn‖2

L2(0,1)2 + ‖wny‖2
L2(0,1)2 ,

which is obviously equivalent to the H1 norm, one has

d

dt
L ≤ −1 +ReC3 +ReC2(1 + γ2

n)

2

(

2
‖wny‖2

L2(0,1)2

Re
+ γ2

n

‖wn‖2
L2(0,1)2

Re

)

−
‖wnyy‖2

L2(0,1)2

Re
+ C2(1 + γ2

n)
‖wny‖2

L2(0,1)2

Re
+ C3‖wn‖2

L2(0,1)2

≤ −1

2
γ2

n

‖wn‖2
L2(0,1)2

Re
−

‖wny‖2
L2(0,1)2

Re
−

‖wnyy‖2
L2(0,1)2

Re

−C3‖wny‖2
L2(0,1)2 + C3‖wn‖2

L2(0,1)2

≤ −
(

2 + γ2
n

2Re
‖wn‖2

L2(0,1)2 +
‖wny‖2

L2(0,1)2

Re

)

≤ −C4L,

where C4 > 0 depends on Re and h, but not on n. This establishes a H1 stability
property for wn with a decay rate independent of n.

We next prove H2 stability. For |n| ≥M , one has

‖wn‖2
H2(0,1)2 = ‖unyy‖2

L2(0,1) + ‖vnyy‖2
L2(0,1) + γ2

n(‖uny‖2
L2(0,1) + ‖vny‖2

L2(0,1))

+γ4
n(‖un‖2

L2(0,1) + ‖vn‖2
L2(0,1)).

Integrating by parts, one gets

‖△nun‖2
L2(0,1) = (unyy − γ2

nun, unyy − γ2
nun)L2(0,1)

= ‖unyy‖2
L2(0,1) + γ4

n‖un‖2
L2(0,1) − γ2

n(unyy, un)L2(0,1)

−γ2
n(unyy, un)L2(0,1),

= ‖unyy‖2
L2(0,1) + γ4

n‖un‖2
L2(0,1) + 2γ2

n‖uny‖2
L2(0,1),

and hence, ‖△nwn‖L2(0,1)2 is equivalent to ‖wn‖H2(0,1)2 .

Lemma 3.7. For w verifying (31)–(32), the norm ‖△nwn‖L2(0,1)2 (and therefore

‖wn‖H2(0,1)2) is equivalent to the norm ((1 + γ2
n)‖wn‖2

H1(0,1)2 + ‖wnt‖2
L2(0,1)2)

1/2.

Proof. From (31)–(32), one has

‖wnt‖2
L2(0,1)2 =

‖△nwn‖2
L2(0,1)2

Re2
+ Λ,

where

Λ = −iγn(pn, unt)L2(0,1) − iγn(g(t, y)un, unt)L2(0,1) − (gy(t, y)vn, unt)L2(0,1)

−(pny, vnt)L2(0,1) − iγn(g(t, y)vn, vnt)L2(0,1)

+
1

Re

(

iγn(△nun, pn)L2(0,1) + iγn(△nun, g(t, y)un)L2(0,1)

−(△nun, gy(t, y)vn)L2(0,1) − (△nvn, pny)L2(0,1)

+iγn(△nvn, g(t, y)vn)L2(0,1)

)

.

Integrating by parts and using the divergence-free condition,

− iγn(pn, unt) − (pny, vnt)L2(0,1) = (pn, iγnunt + vnyt)L2(0,1) = 0. (41)
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Then,

iγn(△nun, pn)L2(0,1) − (△nvn, pny)L2(0,1) = − (△nvn(t, y)pn(t, y))
y=1
y=0 ,

and using Equation (40) and Lemma 3.6,

|△nvn(t, y)pn(t, y)|y=1
y=0 = Re |pny(t, y)pn(t, y)|y=1

y=0

≤
‖△nwn‖2

L2(0,1)2

2Re
+
C1

2
(1 + γ2

n)‖wn‖2
H1(0,1)2 .

Hence, we can obtain

|Λ| ≤ C5(1 + γ2
n)‖wn‖2

H1(0,1)2 +
3

4

(

‖wnt‖2
L2(0,1)2 +

‖△nwn‖2
L2(0,1)2

Re2

)

,

for some C5 > 0. Taking into account that (1 + γ2
n)‖wn‖2

H1(0,1)2 is bounded by

C6‖△nwn‖2
L2(0,1)2 for some C6 > 0, the lemma follows.

Now, taking a time derivative in Equations (31)–(32), and applying the same
argument as in the proof of L2 stability, one gets

d

dt
‖wnt‖2

L2(0,1)2 ≤ −2
‖wnt‖2

L2(0,1)2

Re
+ C7‖wnt‖L2(0,1)2‖wn‖L2(0,1)2 ,

where the last term is due to the time-varying coefficients. Combining with the
previous estimates for the L2 and H1 norms and Lemma 3.7, the H2 stability
property follows.

3.2.2. Controlled modes, and design of control laws. The remaining modes, such
that 0 < |n| < M , are open-loop unstable and must be controlled. We design the
control laws in several steps.

Pressure shaping. Solving (35)–(36), one gets

pn = −2i

∫ y

0

gy(t, η) sinh (γn(y − η)) vn(t, η)dη

+2i
cosh(γny)

sinh γn

∫ 1

0

gy(t, η) cosh (γn(1 − η)) vn(t, η)dη

+i
cosh (γn(1 − y))

sinh γn

uny(t, 0)

Re

−cosh (γny))

sinh γn

(

i
uny(t, 1)

Re
+
V̇n

γn
+ γn

Vn

Re

)

. (42)

Note that Vn appears in (42), allowing to “shape” it. We design Vn to enforce in
(42) a strict-feedback structure in y (see [28]). This structural property is a sort
of “spatial causality”, requiring that in the expression for, say, f(t, y), no value
of f(t, s) for s > y appears. It is a technical requirement in the backstepping
method for parabolic equations (see [37, 39]) used next. Seeking the strict-feedback
structure in (42), we choose Vn such that

V̇n

γn
= −γn

Vn

Re
− i

uny(t, 0) − uny(t, 1)

Re

−2i

∫ 1

0

gy(t, η) cosh (γn(1 − η)) vn(t, η)dη, (43)
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i.e.,

Vn = −i
∫ t

0

e−γ2
nτ

(

γn
uny(τ, 0) − uny(τ, 1)

Re

+2

∫ 1

0

gy(τ, η) cosh (γn(1 − η)) vn(τ, η)dη

)

dτ. (44)

Plugging (43) into (42), the pressure reduces to

pn = −2i

∫ y

0

gy(t, η) sinh (γn(y − η)) vn(t, η)dη

+i
cosh (γn(1 − y)) − cosh (γny)

sinh γn

uny(t, 0)

Re
. (45)

Substituting (45) into (31)–(32) yields

unt =
unyy

Re
− γ2

nun

Re
− iγng(t, y)un − gy(t, y)vn

−2γn

∫ y

0

gy(t, η) sinh (γn(y − η)) vn(t, η)dη

+γn
cosh (γn(1 − y)) − cosh (γny)

Re sinhγn
uny(t, 0), (46)

vnt =
vnyy

Re
− γ2

nvn

Re
− iγng(t, y)vn

+2iγn

∫ y

0

gy(t, η) cosh (γn(y − η)) vn(t, η)dη

+iγn
sinh (γn(1 − y)) + sinh (γny)

Re sinhγn
uny(t, 0). (47)

Control of velocity field. Our objective is now to control (46)–(47) by means of
Un. By (34), vn can be computed as vn(y, t) = −iγn

∫ y

0 un(t, η)dη. Then, only (46)
has to be considered. Using (34), we express (46) as an autonomous equation in un,

unt =
△nun

Re
+ λn(t, y)un +

∫ y

0

fn(t, y, η)un(t, η)dη + µn(y)uny(t, 0),

with boundary conditions

un(t, 0) = 0, un(t, 1) = Un(t), (48)

where λn, fn and µn were defined in (22)–(24). This is a boundary control problem
for a parabolic PIDE with time-dependent coefficients, solvable by backstepping
(see [39]) thanks to the strict-feedback structure. Following [39], we map un, for
each mode 0 < |n| < M , into the family of heat equations

αnt =
1

Re

(

−γ2
nαn + αnyy

)

, αn(k, 0) = αn(k, 1) = 0, (49)

where

αn = (I −Kn)un, un = (I + Ln)αn, (50)

are respectively the direct and inverse transformation. The kernel Kn is found to
verify Equations (19)–(21), and Ln verifies a similar equation, or can be derived
from Kn using Proposition 1. For (19)–(21), the following result holds.
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Proposition 3. For every n ∈ A, there exists a solution Kn(t, y, η) of (19)–(21)
defined in Γ = {(t, y, η) ∈ (0,∞) × T } and such that, for every k ∈ N, Kn ∈
L∞(0,∞; Ck(T )), where T = {(y, η) ∈ R2 : 0 ≤ η ≤ y ≤ 1}.

A proof of this Proposition is provided in Section 4.2 (Appendix).
The control law is, from (50), (49) and (48),

Un =

∫ 1

0

Kn(t, 1, η)un(t, k, η)dη, (51)

Stability properties of the closed loop system follow from (49) and (50). From (49),
one infers

‖αn(t)‖2
L2(0,1) ≤ e−

2
Re t‖αn(0)‖2

L2(0,1)

‖αn(t)‖2
H1(0,1) ≤ e−

2
Re t‖αn(0)‖2

H1(0,1),

‖αn(t)‖2
H2(0,1) ≤ e−

1
Re t‖αn(0)‖2

H2(0,1).

Hence, from (50) and using the norms (28)–(29), we obtain

‖un(t)‖2
KnL2(0,1) ≤ e−

2
Re t‖un(0)‖2

KnL2(0,1),

‖un(t)‖2
KnH1(0,1) ≤ e−

2
Re t‖un(0)‖2

KnH1(0,1),

‖un(t)‖2
KnH2(0,1) ≤ e−

1
Re t‖un(0)‖2

KnH2(0,1).

3.2.3. Stability for the whole system. Set A = {n ∈ Z : 0 < |n| < M} and
K = Kn(t, y, η)n∈A. Applying the control laws (51) and (44) in physical space

(which yield (17)–(18)), we next prove stability in KH0
0h(Ω) norm, defined by (30),

estimating

‖w‖2
KH0

0h(Ω) =
∑

n/∈A

‖wn‖2
L2(0,1)2 +

∑

n∈A

‖un‖2
KnL2(0,1)

≤ e−
2

Re t

(

∑

n/∈A

‖wn(0)‖2
L2(0,1)2 +

∑

n∈A

‖un(0)‖2
KnL2(0,1)

)

≤ e−
2

Re t‖w(0)‖2
KH0

0h(Ω). (52)

By norm equivalence, this proves the L2 part of Proposition 2. Similarly,

‖w‖2
KH1

0h(Ω) = ‖u0‖2
H1(0,1) +

∑

0<|n|<M

‖un‖2
KnH1(0,1) +

∑

|n|≥M

‖wn‖2
H1(0,1)2

≤ e−
2

Re t‖u0(0)‖2
H1(0,1) +

∑

0<|n|<M

e−
2

Re t‖un(0)‖2
KnH1(0,1)

+
∑

|n|≥M

C1e
−C2t‖wn(0)‖2

H1(0,1)2

≤ C3e
−C4t‖w(0)‖2

KH1
0h(Ω).

A similar argument shows H2 stability.
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3.2.4. Well-posedness. It remains to prove the well-posedness of the Stokes equa-
tions (13)–(16) with control laws (17)–(18). Define the spaces

H1
per(−h, h) =

{

φ ∈ H1(−h, h) : φ(h) = φ(−h)
}

and
H2

per(−h, h) =
{

φ ∈ H2(−h, h) : φ(h) = φ(−h), φx(h) = φx(−h)
}

.

Proposition 4. Given T > 0, assume that the velocity field (u, v), solution of (13)–
(16), verifies (u, v) ∈ L2(0, T ;H2

0h(Ω)). Then, the control laws V and U respectively
defined by (17) and (18) verify

U, V ∈ L2(0, T ;H2
per(−h, h)) ∩H1(0, T ;H1

per(−h, h)). (53)

Proof. From (17), one has Vt = Vxx

Re − f(t, x), where

f(t, x) =
∑

0<|n|<M

∫ h

−h

eiγn(ξ−x)

(

2i

∫ 1

0

gy(t, η) cosh (γn(1 − η)) v(t, ξ, η)dη

−iuy(t, ξ, 0) − uy(t, ξ, 1)

Re

)

dξ,

with V (t, h) = V (t,−h) and initial conditions V (0, x) = 0. Since f is defined
as a finite sum of convolutions in the periodic domain of certain functions with
the smooth function eiγnx, we get that f ∈ L2(0, T ; Cp

per([−h, h]) for every inte-

ger p, where g ∈ Cp
per([−h, h]) means that g is of class Cp and g(i)(−h) = g(i)(h)

for every i ∈ {0, . . . , p}. Therefore, by standard properties of the heat equation
(see for example [15, pg. 360, Theorem 5] for the non-periodic case), we get
V ∈ H1([0, T ), Cp

per([−h, h]) for every integer p, and the conclusion follows for V .
Similarly, the definition of U is

U(t, x) =
∑

0<|n|<M

∫ h

−h

∫ 1

0

eiγn(ξ−x)Kn(t, 1, η)u(t, ξ, η)dηdξ,

and the same kind of argument applies.

We use a slightly modified version of [22, Theorem 2.1] (see also [19, Theorem
4.4] for a similar argument). Note that, from Remark 2 and the assumptions of
Proposition 2, the following compatibility conditions are verified:

u0(x, 1) = U(0, x), v0(x, 1) = V (0, x),

∫ h

−h

V (t, x)dx = 0.

Then, for U and V satisfying (53), there exists a unique solution of the Stokes
equations (13)–(16) such that (u, v) ∈ L2(0, T ;H2

0h(Ω)). This fact, combined with
Proposition 4 and estimates of Section 3.2.3 guaranteeing the decay of the H2

0h(Ω)
norm of the velocity field, yields existence and uniqueness for the Stokes equations
(13)–(16) with control laws (17)–(18) in L2(0,∞;H2

0h(Ω)).

3.3. Proof of Theorem 2.1. Proposition 2 proved in the previous subsection deals
with the linearized system, and is actually valid for any initial condition. If we now
consider the Navier-Stokes (9)–(11), then, due to the nonlinear terms, we obtain
just local stability.

Denote the nonlinear term in the Navier-Stokes equations (9)–(11) by N =
(Nu, Nv), i.e.,

Nu = −uux − vuy, Nv = −uvx − vvy.
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It follows from [40, Lemma 3.4 p. 292] that, for some C depending only on h,

(w,N)
H0

0h(Ω) ≤ C‖w‖KH0
0h(Ω)‖w‖2

KH1
0h(Ω). (54)

The bound above is valid not only for (w,N)H0
0h(Ω) but for any partial sum of

(wn,Nn)L2(0,1)2 , by the same argument.
The application of pressure shaping and backstepping transformation to the non-

linear system yields a new term in the target system, which appears as

αnt =
1

Re

(

−γ2
nαn + αnyy

)

+Nα
n ,

where Nα
n is defined by Nα

n = (I −Kn)Nu
n + (I −Kn)Np

n . The term Np
n is due to

pressure shaping and is defined by

Np
n = 2

∑

j∈Z

(

cosh (γny)

sinh γn

∫ 1

0

N q
nj cosh (γn(1 − η)) dη +

∫ y

0

N q
nj sinh (γn(y − η)) dη

)

,

where N q
nj = −γjγn−jujun−j − iγn−jujyvn−j . Then, for n ∈ A,

(αn, N
α
n )L2(0,1) ≤ C2

(

(|αn|, |Nu
n |)L2(0,1) + (|αn|, |Np

n|)L2(0,1)

)

≤ C2‖αn‖L2(0,1)

∑

j∈Z

(

|γj |‖ujun−j‖L2(0,1)

+‖ujyvn−j‖L2(0,1)

)

(1 + C3|γn−j |) , (55)

where

C2 = 1 + ‖K‖L∞ and C3 = 2
sinh(γ1) sinh(γM ) + cosh2(γM )

sinh(γ1)
.

Bounding (55) further, one gets

(αn, N
α
n )≤ C2

2
‖αn‖L2(0,1)

∑

j∈Z

{

2|γj |2‖uj‖2
L2(0,1) + 2‖ujy‖2

L2(0,1)

+
(

1 + C2
3 |γn−j |2

)

(

‖u(n−j)‖2
L2(0,1) + ‖v(n−j)‖2

L2(0,1)

)}

≤ C4‖αn‖L2(0,1) ‖w‖2
KH1

0h(Ω), (56)

for some constant C4 > 0. For the KL2 norm of the velocity field, as in (52),

‖w‖2
KL2

0h(Ω) =
∑

n/∈A

‖wn‖L2(0,1)2 +
∑

n∈A

‖un‖2
KnL2(0,1).

Let us estimate the derivatives for each term of the right-hand side of this equality.
We have

d

dt

∑

n/∈A

‖wn‖2
L2(0,1)2 ≤

∑

n/∈A

(−2

Re
‖wny‖2

L2(0,1)2 −
γ2

n

Re
‖wn‖2

L2(0,1)2

+(wn,Nn)L2(0,1)2

)

, (57)

and for n ∈ A, since ‖un‖KnL2(0,1) = ‖αn‖L2(0,1), one has

d

dt
‖un‖2

KnL2(0,1) =
d

dt
‖αn‖2

L2(0,1)

≤ −2

Re
‖αny‖2

L2(0,1) −
2γ2

n

Re
‖αn‖2 + (αn, N

α
n )L2(0,1). (58)
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Then, summing (58) for n ∈ A, adding (57), and applying norm equivalences and
the estimate (54), we get, for some C0 > 0,

d

dt
‖w‖2

KH0
0h(Ω) ≤ −C0‖w‖2

KH1
0h(Ω) +

∑

n/∈A

(wn,Nn)L2(0,1)2 +
∑

n∈A

(αn, N
α
n )L2(0,1)

≤ ‖w‖2
KH1

0h(Ω)

(

C4‖w‖KH0
0h(Ω) + ‖w‖KH0

0h(Ω) − C0

)

.

Suppose that ‖w‖KH0
0h(Ω) < ǫ. Then

d

dt
‖w‖2

KH0
0h(Ω) ≤ ((C4 + 1)ǫ− C0) ‖w‖2

KH1
0h(Ω),

and choosing ǫ < C0

2(C4+1) ,

d

dt
‖w‖2

KH0
0h(Ω) ≤

−C0

2
‖w‖2

KH1
0h(Ω) ≤ −C5‖w‖2

KH0
0h(Ω),

by Poincaré’s inequality, where C5 > 0. This proves local exponential stability in
the KH0

0h(Ω) norm and therefore in the H0
0h(Ω) norm.

A similar argument applies with the H1
0h(Ω) and H2

0h(Ω) norms for proving local
exponential stability; we skip the details since it is clear that the extra nonlinear
convection terms that would appear in the proof (in a similar way to the proof for
the H0

0h(Ω) norm) can be bounded by the linear terms in w, wx and wy for small
H1

0h(Ω) and H2
0h(Ω) norms2. Well-posedness follows in the same way as in Sec-

tion 3.2.4, since the argument of [22] applies to nonlinear Navier-Stokes equations.

4. Appendix.

4.1. Properties of the function g.

Lemma 4.1. Let κm = π(2m+1). Consider g(t, y) defined by (7) where q is given
by (8), boundary conditions g(t, 0) = g(t, 1) = 0 and initial conditions g(0, y) ≡ 0.
Assume as well that cRe 6= κ2

m for any m ∈ N. Then g has the following properties.

i. The explicit expression for g in (0,∞) × [0, 1] is given by

g = 16

∞
∑

m=0

sin (κmy)

κm





1 − e−
κ2

m
Re t

κ2
m

− e−ct − e−
κ2

m
Re t

κ2
m − cRe



. (59)

ii. There holds limt→∞ g(t, y) = 4y(1 − y).
iii. The function g belongs to the space Cω(0,∞) × C∞[0, 1] (i.e., analytic in t

and smooth in x).
iv. The estimates 0 < g(t, y) ≤ 1, |gy(t, y)| ≤ 4, −8 < gyy(t, y) ≤ 0, hold for

every t ≥ 0 and every y ∈ [0, 1].

Proof. In the proof we make use of many properties of the heat equation [15].
Point i is obtained by a Fourier expansion and application of Duhamel’s Principle

for solving (7). That yields the solution

g(t, y) = 2
∞
∑

m=0

sin (κmy)

κm

∫ t

0

e−
κ2

m
Re (t−τ)q(τ)dτ,

2The only extra detail required would be a minor modification of Lemma 3.6 to account for
the extra nonlinear terms in the pressure Poisson equation.
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and plugging in the expression (8) for q and solving explicitly the integral (where
the assumption on c is used), (59) is found.

Point ii is obtained by passing to the limit in (59) as t goes to infinity. Then

lim
t→∞

g(t, y) = 16

∞
∑

m=0

sin (κmy)

κ3
m

= 4y(1 − y), (60)

which can be verified by computing the Fourier series of 4y(1 − y) which coincides
with the infinite sum.

Point iii is a standard property of the solutions of the heat equation, taking into
account that q itself is Cω(0,∞) × C∞(0, 1).

Point iv is proved using the maximum principle for the heat equation. Having
proved smoothness in Point iii, we can first consider the equation that gyy verifies
by differentiation of (7)

(gyy)t =
1

Re
(gyy)yy. (61)

The boundary conditions for (61) can be determined plugging (8) in (7), and taking
limit as y goes to 0 and 1. Then, using the fact that g(t, 0) = g(t, 1) = 0, it follows
that gyy(t, 0) = gyy(t, 0) = −8(1 − e−ct). The initial condition is gyy(0, y) = 0, and
it holds that limt→∞ gyy(t, y) = −8. By the maximum and minimum principle, and
since −8 < gyy(t, 0) < 0, it follows that −8 < gyy < 0.

Consider now gy. The fact that the boundary conditions of g are g(t, 0) =
g(t, 1) = 0, the initial condition is zero, and (7) has constant coefficients in y,
implies that g is symmetric around y = 1/2, i.e., g(y) = g(1 − y). Hence, it follows
that gy(y) = −gy(1 − y), which implies gy(1/2) = 0. Then,

gy(t, y) =

{ ∫ y

1/2 gyy(t, η)dη for y ∈ (1/2, 1),

−
∫ 1/2

y gyy(t, η)dη for y ∈ (0, 1/2),

and the bound |gy(t, y)| ≤ 4 follows. For g, one has

g(t, y) =

{

−
∫ 1

y gy(η)dη = −
∫ 1

y

∫ η

1/2 gyy(t, σ)dσdη for y ∈ (1/2, 1),
∫ y

0 gy(η)dη = −
∫ y

0

∫ 1/2

η gyy(t, σ)dσdη for y ∈ (0, 1/2),

and the bound |g(t, y)| ≤ 1 follows, thus finishing the proof of Point iv.

4.2. Kernel equations, and proof of Proposition 3. We actually derive a more
general statement which includes Proposition 3 as a particular case. We first recall
the definition of the Gevrey class of functions, which plays an important role in
studying solutions of the heat equation (see [20, 8]). As shown later, solutions to
kernel partial integro-differential equations that appear in unsteady backstepping
theory are members of some Gevrey class.

Definition 4.2. A smooth function f defined on (0, T ), for T ∈ (0,∞], is Gevrey
of order α, and we denote f ∈ Gα(0, T ), if there exists numbers Q,R > 0 such that,
for every positive integer k,

sup
t∈(0,T )

∣

∣

∣

∣

dkf

dtk

∣

∣

∣

∣

≤ Q
(k!)α

Rk
.

For a nonempty open subset O of R
n, and for m ∈ N, we denote by Hm,∞(O)

the set of functions ϕ ∈ L∞(O) whose derivatives ∂αϕ, α = (α1, . . . , αn) ∈ Nn with
|α| =

∑n
i=1 αi ≤ m, are in L∞(O) (with the agreement that H0,∞(O) = L∞(O)).
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This space, endowed with its usual norm, is a Banach space. For functions of time
and space, we define the following classes.

Definition 4.3. Given m ≥ 0 integer, a function f : (0, T )×O → R, (t, y) 7→ f(t, y)
is said to be Gevrey of order α in time t ∈ (0, T ) and Hm,∞(O) in space, and we
denote f ∈ Gα(0, T ;Hm,∞(O)), if f(t, ·) ∈ Hm,∞(O) for every time t ∈ (0, T ),
f(t, ·) possesses time derivatives of every order which also belong to Hm,∞(O), and
there exist numbers Q,R > 0 such that, for every positive integer k,

sup
t∈(0,T )

∣

∣

∣

∣

∣

∣

∣

∣

dkf

dtk

∣

∣

∣

∣

∣

∣

∣

∣

Hm,∞(O)

≤ Q
(k!)α

Rk
.

Consider now the kernel equation

ǫKyy − ǫKηη −Kt(t, y, η) = λ(t, η)K(t, y, η) − f(t, y, η) +

∫ y

η

K(t, y, ξ)f(t, ξ, η)dξ,

with boundary conditions

K(t, y, y) =
−1

2ǫ

∫ y

0

λ(t, σ)dσ − g(t, 0)

ǫ
,

K(t, y, 0) =

∫ y

0

K(t, y, σ)
g(t, σ)

ǫ
dσ − g(t, y)

ǫ
, (62)

in the domain (0, T )×T , where ǫ > 0 and T > 0. The following result hold, where
◦
T denotes the interior of T in R

2.

Proposition 5. 1. (Finite time) Assume T ∈ (0,∞). For coefficients f , g,

λ such that f ∈ Gα(0, T ;Hm−1,∞(
◦
T )), λ ∈ Gα(0, T ;Hm,∞(0, 1)), and g ∈

Gα(0, T ;Hm+1,∞(0, 1)), the problem (4.2)–(62) has a unique solution K ∈
Gα(0, T ;Hm+1,∞(

◦
T )).

2. (Infinite time) For coefficients f , g, λ verifying

f ∈ Gα(0,∞;Hm−1,∞(
◦
T )) ∩ L∞(0,∞;Hm−1,∞(

◦
T )),

λ ∈ Gα(0,∞;Hm,∞(0, 1)) ∩ L∞(0,∞;Hm,∞(0, 1)),

g ∈ Gα(0,∞;Hm+1,∞(0, 1)) ∩ L∞(0,∞;Hm+1,∞(0, 1)),

the problem (4.2)–(62) has a unique solution K ∈ Gα(0,∞;Hm+1,∞(
◦
T )) ∩

L∞(0,∞;Hm+1,∞(
◦
T )).

This result includes Proposition 3 as a particular case, with α = 1, and passing
to the limit m→ ∞.

Proof. Let us prove the first item. In the following it will be assumed that 1 ≤ α < 2.
For α < 1 one has to substitute everywhere in the section α by 1. We follow [37]
to transform the PIDE into an integral equation. Applying the change of variables

ξ = y + η and β = y − η, and denoting G(t, ξ, β) = K(t, y, η) = K
(

t, ξ+β
2 , ξ−β

2

)

,

the PIDE (4.2) is transformed into

4ǫGξβ = Gt(t, ξ, β) +A(t, ξ, β)G(t, ξ, β) −B(t, ξ, β)

+

∫
ξ+β
2

ξ−β
2

G

(

t,
ξ + β

2
+ σ,

ξ + β

2
− σ

)

f

(

t, σ +
ξ − β

2
, σ − ξ − β

2

)

dσ, (63)
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with boundary conditions

Gξ(t, ξ, 0) =
−A(t, ξ, 0)

4ǫ
,

G(t, ξ, ξ) =
−g(t, ξ)

ǫ
+

∫ ξ

0

G (t, ξ + σ, ξ − σ)
g(t, σ)

ǫ
dσ, (64)

in the domain (0, T ) × T1, where T1 = {(ξ, β) : 0 ≤ ξ ≤ 2, 0 ≤ β ≤ min{ξ, 2 − ξ}},
and where now

A(t, ξ, β) = λ

(

t,
ξ − β

2

)

∈ Gα(0, T );Hm,∞(
◦
T 1)),

B(t, ξ, β) = f

(

t,
ξ + β

2
,
ξ − β

2

)

∈ Gα(0, T ;Hm−1,∞(
◦
T 1)).

Changing the integration variable, we can rewrite Equation (63) as

4ǫGξβ = Gt(t, ξ, β) +A(t, ξ, β)G(t, ξ, β) −B(t, ξ, β)

+

∫ β

0

G (t, ξ + σ, β − σ) f (t, σ + (ξ − β), σ) dσ.

Integrating, and using the boundary conditions (64), we reach

G(t, ξ, β) =
1

4ǫ

∫ ξ

β

∫ β

0

Gt(t, τ, σ)dσdτ +
1

4ǫ

∫ ξ

β

∫ β

0

A(t, τ, σ)G(t, τ, σ)dσdτ

− 1

4ǫ

∫ ξ

β

∫ β

0

B(t, τ, σ)dσdτ

+
1

4ǫ

∫ ξ

β

∫ β

0

∫ σ

0

G (t, τ + µ, σ − µ) f (t, µ+ (τ − σ), µ) dµdσdτ

− 1

4ǫ

∫ ξ

β

A(t, τ, 0)dτ − 1

ǫ
g(t, β)

+
1

ǫ

∫ β

0

g(t, σ)G (t, β + σ, β − σ) dσ, (65)

an integro-differential equation that only contains time derivatives and spatial in-
tegrals. Following [37], we seek a successive series approximation solution

G =

∞
∑

n=0

Gn(t, ξ, β), (66)

with

G0(t, ξ, β) = − 1

4ǫ

∫ ξ

β

∫ β

0

B(t, τ, σ)dσdτ − 1

4ǫ

∫ ξ

β

A(t, τ, 0)dτ − 1

ǫ
g(t, β),
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and for n > 0,

Gn(t, ξ, β) =
1

4ǫ

∫ ξ

β

∫ β

0

(Gn−1)t(t, τ, σ)dσdτ

+
1

4ǫ

∫ ξ

β

∫ β

0

A(t, τ, σ)Gn−1(t, τ, σ)dσdτ

+
1

4ǫ

∫ ξ

β

∫ β

0

∫ σ

0

Gn−1 (t, τ + µ, σ − µ) f (t, µ+ (τ − σ), µ) dµdσdτ

+
1

ǫ

∫ β

0

g(t, σ)Gn−1 (t, β + σ, β − σ) dσ.

Since A, B, f and g are Gevrey are in Gα(0, T ;L∞(T1)), there exists R > 0 and
M > 0 such that

∥

∥

∥

∥

∂k

∂tk
A(t, ·)

∥

∥

∥

∥

L∞(T1)

+

∥

∥

∥

∥

∂k

∂tk
B(t, ·)

∥

∥

∥

∥

L∞(T1)

+

∥

∥

∥

∥

∂k

∂tk
f(t, ·)

∥

∥

∥

∥

L∞(T1)

∥

∥

∥

∥

∂k

∂tk
g(t, ·)

∥

∥

∥

∥

L∞(T1)

≤M
(k!)α

Rk
, (67)

for every t ∈ (0, T ) and every k ∈ N. Define now h(t, t0) = 1

1− t−t0

R1/α

, for t0 ∈ [0, T ).

Then, 1 ≤ |h(t, t0)| whenever t ∈ [t0,
R1/α

2 + t0). Since

∂kh(t, t0)

∂tk
=

k!
(

1 − t−t0
R1/α

)k+1
Rk/α

=
k!h(t, t0)

k+1

Rk/α
,

it is clear that, for t ∈ [t0,
R1/α

2 + t0), one has k!
Rk/α ≤ ∂kh(t,t0)

∂tk , and hence, by (67),
∥

∥

∥

∥

∂k

∂tk
A(t, ·)

∥

∥

∥

∥

L∞(T1)

+

∥

∥

∥

∥

∂k

∂tk
B(t, ·)

∥

∥

∥

∥

L∞(T1)

+

∥

∥

∥

∥

∂k

∂tk
f(t, ·)

∥

∥

∥

∥

L∞(T1)

∥

∥

∥

∥

∂k

∂tk
g(t, ·)

∥

∥

∥

∥

L∞(T1)

≤M

(

∂kh(t, t0)

∂tk

)α

, (68)

for every k ∈ N. We consider a uniform subdivision of (0, T ) into m subintervals,

(0, T ) =

(

0,
R1/α

2

)

∪
(

R1/α

2
, R1/α

)

∪ · · · ∪
(

(m− 1)
R1/α

2
, T

)

, (69)

where m is chosen so that the length of the last subinterval is less than or equal to
R1/α

2 . For each subinterval, set t0 as the infimum of the subinterval.

We show the proof for the subinterval t ∈ (0, R1/α

2 ); it proceeds equally for the rest
of the subintervals because t0 does not appear explicitly in the computations. This

means that the bounds obtained below for the interval (0, R1/α

2 ) uniformly holds in

the whole interval (0, T ). Hence, it suffices to prove the result for t ∈ (0, R1/α

2 ).
Denote h(t, 0) = h(t) for simplicity. We prove the existence of the solution defined

by the successive approximation series using a variant of the classical method of
majorants (see [29] for a similar proof).

We claim that for all n ≥ 0, k ≥ 0, and (t, ξ, β) ∈ (0, R1/α

2 ) ×
◦
T 1,

∣

∣

∣

∣

∂k

∂tk
Gn(t, ξ, β)

∣

∣

∣

∣

≤
(

∂k

∂tk
h(t)n+1

)α
Cn+1

√

βn(ξ + β)n

(n!)γ
, (70)
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where γ = 2 − α > 0 and C = 2
ǫR + 5M

ǫ .
Assume the above formula is true (it is proved next). Then, substituting in the

successive approximation series (66), one has, for k ≥ 0,

∣

∣

∣

∣

∂k

∂tk
G(t, ξ, β)

∣

∣

∣

∣

≤
∞
∑

n=0

(

∂k

∂tk
h(t)n+1

)α
Cn+1

√

βn(ξ + β)n

(n!)γ

≤
(

∂k

∂tk
H(t, ξ, β)

)α

, (71)

where

H(t, ξ, β) =

∞
∑

n=0

h(t)n+1C
(n+1)/α 2α

√

(1 + β)n(1 + ξ + β)n

(n!)γ/α

is an analytic function of all its variables in (t, ξ, β) ∈ [0, R1/α

2 ] ×
◦
T 1, whenever

α < 2. This is easily seen for ξ and β. To see it for t, substitute ξ and β by their
maximum (2 and 1 respectively). Then,

H(t, ξ, β) =

∞
∑

n=0

h(t)n+1C
(n+1)/α 2α

√
12n

(n!)γ/α
=

∞
∑

n=0

h(t)n+1D
n+1

(n!)δ
.

To check analyticity on [0, R1/α

2 ], since all terms in the sum are already analytic, we

extend H to a disk of radius R1/α in the complex plane, i.e. t ∈ C, |t| ∈ [0, R1/α

2 ] and

check convergence for t on compact subsets [33] of the disk. Set then t = R1/α

2 (1−σ),
where σ ∈ [0, 1]. Then,

H(t, ξ, β) ≤
∞
∑

n=0

(

2D

σ + 1

)n+1
1

(n!)δ
,

which converges for all values of D, σ, δ. Therefore H is also analytic in t. Then, by
using (71), it follows that G is in Gα(0, T ;L∞(T1)). Note that, as was stated before,

the proof holds as well when using h(t, t0) instead of h(t, 0), for t ∈ [t0, t0 + R1/α

2 ).
It remains to prove the estimate (70), by induction on n. For n = 0 and k = 0,

one has, using (68),

|G0(t, ξ, β)| ≤ 1

4ǫ

∫ ξ

β

∫ β

0

Mh(t)αdσdτ+
1

4ǫ

∫ ξ

β

Mh(t)αdτ+
1

ǫ
Mh(t)α 2M

ǫ
≤ Ch(t)α,

and for n = 0, k > 0,

∣

∣

∣

∣

∂kG0(t, ξ, β)

∂tk

∣

∣

∣

∣

≤ 1

4ǫ

∫ ξ

β

∫ β

0

M

(

∂k

∂tk
h(t)

)α

dσdτ

+
1

4ǫ

∫ ξ

β

M

(

∂k

∂tk
h(t)

)α

dσ +
1

ǫ
M

(

∂k

∂tk
h(t)

)α

dσdτ

≤ 2M

ǫ

(

∂k

∂tk
h(t)

)α

≤ C

(

∂k

∂tk
h(t)

)α

,

so (70) is true for n = 0.
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Suppose now it is true for n− 1. Then, for k = 0,

|Gn(t, ξ, β)| ≤ 1

4ǫ

∫ ξ

β

∫ β

0

∣

∣

∣

∣

∂Gn−1

∂t

∣

∣

∣

∣

(t, τ, σ)dσdτ

+
1

4ǫ

∫ ξ

β

∫ β

0

Mh(t)α |Gn−1| (t, τ, σ)dσdτ

+
1

4ǫ

∫ ξ

β

∫ β

0

∫ σ

0

|Gn−1| (t, τ + µ, σ − µ)Mh(t)αdµdσdτ

+
1

ǫ

∫ β

0

Mh(t)α |Gn−1| (t, β + σ, β − σ)dσ,

and, using the induction hypothesis (70),

|Gn(t, ξ, β)| ≤ 1

4ǫ

∫ ξ

β

∫ β

0

(

∂

∂t
h(t)n

)α
Cn
√

σn−1(τ + σ)n−1

((n− 1)!)γ
dσdτ

+
1

4ǫ

∫ ξ

β

∫ β

0

M
(

h(t)n+1
)α Cn

√

σn−1(τ + σ)n−1

((n− 1)!)γ
dσdτ

+
1

4ǫ

∫ ξ

β

∫ β

0

∫ σ

0

M
(

h(t)n+1
)α Cn

√

(σ − µ)n−1(τ + σ)n−1

((n− 1)!)γ
dµdσdτ

+
1

ǫ

∫ β

0

M
(

h(t)n+1
)α Cn

√

(β − σ)n−1(2β)n−1

((n− 1)!)γ
dσ.

We have the following estimates:

∫ ξ

β

∫ β

0

√

σn−1(τ + σ)n−1dσdτ ≤ 8

√

βn(ξ + β)n

(n+ 1)2
,

∫ ξ

β

∫ β

0

∫ σ

0

√

(σ − µ)n−1(τ + σ)n−1dµdσdτ ≤ 4

√

βn(ξ + β)n

(n+ 1)2
,

∫ β

0

√

(β − σ)n−1(2β)n−1dσ ≤ 2

√

(β + ξ)n(β)n

n+ 1
,

from which it follows that

|Gn(t, ξ, β)| ≤
(

h(t)n+1
)α Cn+1

√

βn(ξ + β)n

(n!)γ
.

Similarly, for k > 0, using Leibnitz’s formula together with (68) and the assumption
hypothesis (70),

∣

∣

∣

∣

∂kGn

∂tk

∣

∣

∣

∣

≤ 1

4ǫ

∫ ξ

β

∫ β

0

(

∂k+1

∂tk+1
h(t)n

)α
Cn
√

σn−1(τ + σ)n−1

((n− 1)!)γ
dσdτ

+
M

4ǫ

∫ ξ

β

∫ β

0

(

k
∑

i=0

(

k
i

)(

∂i

∂ti
h(t)

)α ∣
∣

∣

∣

∂k−iGn−1

∂tk−i

∣

∣

∣

∣

(t, τ, σ)

)

dσdτ

+
M

4ǫ

∫ ξ

β

∫ β

0

∫ σ

0

(

k
∑

i=0

(

k
i

)(

∂i

∂ti
h(t)

)α ∣
∣

∣

∣

∂k−iGn−1

∂tk−i

∣

∣

∣

∣

(t, τ + µ, σ − µ)

)

dµdσdτ

+
M

ǫ

∫ β

0

(

k
∑

i=0

(

k
i

)(

∂i

∂ti
h(t)

)α ∣
∣

∣

∣

∂k−iGn−1

∂tk−i

∣

∣

∣

∣

(t, β + σ, β − σ)

)

dσ. (72)
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Using the previous estimates, we get
∣

∣

∣

∣

∂kGn

∂tk

∣

∣

∣

∣

≤ 2

ǫ

(

∂k+1

∂tk+1
h(t)n

)α
Cn
√

βn(ξ + β)n

(n+ 1)2((n− 1)!)γ
+

(

3M

ǫ(n+ 1)
+

2M

ǫ

)

∗
(

k
∑

i=0

(

k
i

)(

∂i

∂ti
h(t)

)α(
∂k−i

∂tk−i
h(t)n

)α
)

Cn
√

βn(ξ + β)n

(n+ 1)(n− 1)!)γ
. (73)

For the first line, we will use

∂i

∂ti
h(t)n =

n

R1/α

∂i−1

∂ti−1
h(t)n+1. (74)

For the second line, using
(

∂i

∂ti
h(t)

)(

∂k−i

∂tk−i
h(t)n

)

= n
i!

(n+ k)(n+ k − 1) . . . (n+ k − i)

(

∂k

∂tk
h(t)n+1

)

,

we get

k
∑

i=0

(

k
i

)(

∂i

∂ti
h(t)

)α(
∂k−i

∂tk−i
h(t)n

)α

=

(

∂k

∂tk
h(t)n+1

)α

nα
k
∑

i=0

(i!)α−1k(k − 1) . . . (k − i+ 1)

(n+ k)α . . . (n+ k − i)α
. (75)

Lemma 4.4. For n, k ≥ 1, we have

k
∑

i=0

(i!)α−1k(k − 1) . . . (k − i+ 1)

(n+ k)α . . . (n+ k − i)α
≤ 1

n
.

Proof. Since 1 ≤ α < 2, it suffices to prove the inequality for α = 1, that can be
written as

∑k
i=0(n− 1 + k − i)(n− 2 + k − i) . . . (k − i+ 1)

(n+ k)(n+ k − 1) . . . (k + 1)
≤ 1

n
.

The proof is then obvious, by induction on n.

Using (74), (75) and Lemma 4.4, we get, from (73),
∣

∣

∣

∣

∂kGn

∂tk

∣

∣

∣

∣

≤
(

∂k

∂tk
h(t)n+1

)α
Cn+1

√

βn(ξ + β)n

(n!)γ
,

thus proving (70).

We have proved that G ∈ Gα(0, T ;L∞(
◦
T 1)). To get higher regularity in space,

we differentiate in the ξ variable the integral equation (65), obtaining

Gξ(t, ξ, β) =
1

4ǫ

∫ β

0

Gt(t, ξ, σ)dσdτ +
1

4ǫ

∫ β

0

A(t, ξ, σ)G(t, ξ, σ)dσdτ

+
1

4ǫ

∫ β

0

∫ σ

0

G (t, ξ + µ, σ − µ) f (t, µ+ (ξ − σ), µ) dµdσdτ

− 1

4ǫ

∫ β

0

B(t, ξ, σ)dσdτ − 1

4ǫ
A(t, ξ, 0)dτ,
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which explicitly defines Gξ. Next, we differentiate in the β variable the integral
equation (65), reaching

Gβ(t, ξ, β) =
1

4ǫ

∫ ξ

β

Gt(t, τ, β)dτ − 1

4ǫ

∫ β

0

Gt(t, β, σ)dσ

+
1

4ǫ

∫ ξ

β

A(t, τ, β)G(t, τ, β)dτ − 1

4ǫ

∫ β

0

A(t, β, σ)G(t, β, σ)dσ

− 1

4ǫ

∫ ξ

β

B(t, τ, β)dτ +
1

4ǫ

∫ β

0

B(t, β, σ)dσ

+
1

4ǫ

∫ ξ

β

∫ β

0

G (t, τ + µ, β − µ) f (t, µ+ (τ − β), µ) dµdτ

− 1

4ǫ

∫ β

0

∫ σ

0

G (t, β + µ, σ − µ) f (t, µ+ (β − σ), µ) dµdσ

+
1

4ǫ
A(t, β, 0)dτ − 1

ǫ
gβ(t, β)

+
1

ǫ
g(t, β)G (t, 2β, 0) +

1

ǫ

∫ β

0

g(t, σ)Gβ (t, β + σ, β − σ) dσ

+
1

ǫ

∫ β

0

g(t, σ)Gξ (t, β + σ, β − σ) dσ,

an integral equation for Gβ . It can be written as

Gβ(t, ξ, β) = Φ(t, ξ, β) +
1

ǫ

∫ β

0

g(t, σ)Gβ (t, β + σ, β − σ) dσ.

where the function Φ(t, ξ, β) is computed from G, A, B, and g. This equation is
solved using a successive approximation scheme as before. We skip the details.

Hence, Gξ and Gβ are well-defined, as long as gβ is well-defined. Iterating this
process, higher order derivatives can be computed as long as the coefficients are
differentiable. It follows that the regularity of G is determined by the regularity

of the coefficients; it is proved by induction that G ∈ Gα(0, T ;Hm+1,∞(
◦
T 1)). This

means that G has the same regularity as g, has one more derivative than λ, and
two more derivatives than f . Moreover, repeating this argument for all values of
m, if the coefficients are smooth in space, then the kernel is smooth in ξ and β.

The second item of Proposition 5 is proved similarly, covering the infinite interval

(0,∞) with an infinite number of uniform subintervals of the form [t0,
R1/α

2 +t0). We
obtain the same bounds for G. Hence a compactness argument is not required, as
we obtain a uniform, finite bound for G, showing that the successive approximation
series is well-defined for all times.
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mier mémoire. Ann. Sci. École Norm. Sup. (3), 35 (1918), 129–190.
[21] O. Glass, Asymptotic stabilizability by stationary feedback of the two-dimensional Euler equa-

tion: the multiconnected case, SIAM J. Control Optim., 44 (2005), no. 3, 1105–1147.
[22] M.D. Gunzburger and S. Manservisi, The velocity tracking problem for Navier-Stokes flows

with boundary control, SIAM J. Control Optim., 39 (2000), no. 2, 594–634.
[23] H. Hochstadt, ”Integral Equations”, Pure and Applied Mathematics, John Wiley & Sons,

New York-London-Sydney, 1973. viii+282 pp.
[24] J. Hoepffner, M. Chevalier, T.R. Bewley, and D.S. Henningson, State estimation in wall-

bounded flow systems. I. Perturbed laminar flows, J. Fluid Mech., 534 (2005), 263–294.
[25] M. Hogberg, T.R. Bewley, and D.S. Henningson, Linear feedback control and estimation of

transition in plane channel flow, J. Fluid Mech., 481 (2003), 149–175.
[26] Y. Kannai. Nonexistence for a boundary value problem arising in parabolic theory, Israel J.

Math., 71 (1990), no. 3, 349–351.
[27] C.H. von Kerczek, The instability of oscillatory plane Poiseuille flow, J. Fluid Mech., 116

(1982), 91–114.

http://www.ams.org/mathscinet-getitem?mr=1864742&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2343988&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2215059&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1744638&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2144647&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2200740&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1429633&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0492778&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1720143&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1932962&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2086173&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2258876&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1625845&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0335014&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1860125&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2026196&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1613873&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1509208&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2178059&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1788073&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0390680&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2262568&return=pdf
http://www.ams.org/mathscinet-getitem?mr=2016394&return=pdf
http://www.ams.org/mathscinet-getitem?mr=1088827&return=pdf
http://www.ams.org/mathscinet-getitem?mr=0653231&return=pdf
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