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Abstract

Boundary control of nonlinear parabolic PDEs is an open problem with applications that include fluids, thermal, chemically-
reacting, and plasma systems. In this paper we present stabilizing control designs for a broad class of nonlinear parabolic PDEs
in 1-D. Our approach is a direct infinite dimensional extension of the finite-dimensional feedback linearization/backstepping
approaches and employs spatial Volterra series nonlinear operators both in the transformation to a stable linear PDE and in
the feedback law. The control law design consists of solving a recursive sequence of linear hyperbolic PDEs for the gain kernels
of the spatial Volterra nonlinear control operator. These PDEs evolve on domains Tn of increasing dimensions n+1 and with a
domain shape in the form of a “hyper-pyramid,” 0 ≤ ξn ≤ ξn−1 . . . ≤ ξ1 ≤ x ≤ 1. We illustrate our design method with several
examples. One of the examples is analytical, while in the remaining two examples the controller is numerically approximated.
For all the examples we include simulations, showing blow up in open loop, and stabilization for large initial conditions in closed
loop. In a companion paper we give a theoretical study of the properties of the transformation, showing global convergence of
the transformation and of the control law nonlinear Volterra operators, and explicitly constructing the inverse of the feedback
linearizing Volterra transformation; this, in turn, allows us to prove L2 and H1 local exponential stability (with an estimate
of the region of attraction where possible) and explicitly construct the exponentially decaying closed loop solutions.

Key words: Distributed parameter systems; Stabilization; Nonlinear control; Feedback Linearization; Partial differential
equations; Lyapunov Function; Boundary Conditions;

1 Introduction

Boundary control of linear parabolic PDEs is a well es-
tablished subject with extensive literature. On the other
hand, boundary control of nonlinear parabolic PDEs is
still an open problem as far as general classes of systems
are concerned, with many applications of interest in-
cluding fluids, structures, thermal, chemically-reacting,
and plasma systems. Past efforts include the book [7],
which solves problems of nonlinear parabolic PDE con-
trol but for inside-the-domain actuation, rather than
with boundary control, and developments to solve the
problem of motion planning for boundary controlled
nonlinear parabolic PDEs [23] (using flatness and for-
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mal power series) and structural systems [19] (with a
flatness/passivity approach).

When attempting to develop general methods for non-
linear PDEs, it is advisable to take a clue from finite
dimensional nonlinear systems. Clearly, one should bet
on methods that have emerged as successful there. This
essentially eliminates (direct) optimal control meth-
ods, because of the requirement to solve Hamilton-
Jacobi-Bellman PDEs, and leaves feedback lineariza-
tion/backstepping/Lyapunov approaches [14–16, 26] as
candidates for extension to PDEs. The backstepping ap-
proach for linear PDEs has reached the level of maturity
where a systematic design procedure [27] is available
for a broad class of parabolic integro-differential equa-
tions in 1-D. This systematic procedure has found many
applications [18, 29], including even extensions to the
Navier-Stokes equations [30] and to adaptive PDE con-
trol [17, 28], and is the starting point for our nonlinear
developments here.

Our early nonlinear efforts [1, 3–5] were discretization-
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based and were successful in addressing some applica-
tions but in general cannot be expected to converge when
the discretization step goes to zero, as shown in [2].

Our approach is a direct infinite dimensional ex-
tension of the finite-dimensional feedback lineariza-
tion/backstepping approaches and employs spatial
Volterra series nonlinear operators both in the state
transformation to a stable linear PDE and in the feed-
back law. The control law design consists of solving a
recursive sequence of linear hyperbolic PDEs for the
gain kernels of the spatial Volterra nonlinear control op-
erator. These PDEs evolve on domains Tn of increasing
dimensions n + 1 and with a domain shape in the form
of a “hyper-pyramid,” 0 ≤ ξn ≤ ξn−1 . . . ≤ ξ1 ≤ x ≤ 1.
We illustrate our design method with several exam-
ples. One of the examples is analytical, while in the
remaining two examples the controller is numerically
approximated. For all the examples we include simula-
tions, showing blow up in open loop, and stabilization
for large initial conditions in closed loop.

In a companion paper [31] we study the properties of
the transformation, showing global convergence of the
transformation and control law nonlinear Volterra op-
erators, and including an explicit construction of the
inverse of the feedback linearizing Volterra transforma-
tion for both the general case and the analytical exam-
ple; this, in turn, allows us to prove local L2 and H1

exponential stability (with an estimate of the region of
attraction where possible) and explicitly construct the
exponentially decaying closed loop solutions.

This paper solves the open problem 5.1 in the Unsolved
Problems volume [2].

2 Class of Systems Under Study

We study the following class of parabolic systems,

ut(t, x) = uxx(t, x) + λ(x)u(t, x) + F [u](t, x)

+uH[u](t, x), (1)

for x ∈ (0, 1), with the following boundary conditions

ux(t, 0) = qu(t, 0), u(t, 1) = U(t), (2)

where U(t) is the control input and F [u] and H[u] are
Volterra series nonlinearities as explained below. In (2),
q is a number that can take any value. The particular
cases q = 0 and q = ∞ can be used to model, respec-
tively, Neumann and Dirichlet boundary conditions at
x = 0. For simplicity we consider a Dirichlet boundary
condition at x = 1, but different boundary conditions at
the controlled end can be accommodated in our design.
In the sequel, we will omit time and space dependency
of the state when possible.

Define ξ0 = x and for any i ≤ n, ξ̂ni = (ξi, . . . , ξn).

Let Tn(x, ξ) =
{
ξ̂n1 : 0 ≤ ξn ≤ . . . ≤ ξ1 ≤ x

}
and Tn =

Tn(1, ξ). Define also

i∏
u=

i∏
j=1

u(t, ξj),

i,k∏
u =

i∏
j=1
j 6=k

u(t, ξj), (3)

∫
Tn(x,ξ)

f(ξ̂n0 )dξ̂n1 =

∫ x

0

∫ ξ1

0

· · ·
∫ ξn−1

0

f(ξ̂n0 )dξn . . . dξ1.(4)

A Volterra series is defined as a functional (i.e., a func-
tion that depends on another function), and has the form

F [u](t, x) =

∞∑
n=1

Fn[u](t, x), (5)

where the notation Fn[u](t, x) emphasizes the fact that
each Fn[u] is defined as a functional of u(t, x) and also
depends on t and x. The precise definition of each term
is, using the notation of (3)–(4),

Fn[u](t, x) =

∫
Tn(x,ξ)

fn(ξ̂n0 )

i∏
u dξ̂n1 , (6)

where fn is called the n-th Volterra (triangular) kernel.

Volterra series [32] are widely known and studied in the
control literature [6,14,20,25]. They are causal function-
als [12] that represent the general solution for nonlinear
equations, generalizing the convolution solution for lin-
ear systems. An excellent exposition on Volterra series
can be found in [24].

In the sequel, we will omit time and/or space dependency
of the state when possible.

3 Motivating Examples

We give two examples of nonlinear plants that fall into
the class of systems of Section 2.

3.1 Coupled nonlinear plant

Consider the following nonlinear plant

ut = uxx + µv, (7)

0 = vxx + ω2v + uv + u, (8)

where µ and ω are plant parameters, with boundary
conditions

u(0) = v(0) = 0, (9)

u(1) =U, v(1) = V, (10)
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where U(t) and V (t) are actuation variables.

This kind of plant structure, consisting of an evolution
equation (Equation (7), parabolic in this case) coupled
with an static equation (Equation (8), elliptic in this
case), arises in some relevant applications, for example
fluid mechanics [30], structural problems [18], or singu-
larly perturbed problems in thermal fluid convection [29]
or chemical reactors [4].

To obtain a plant equation in the class of (1), we solve
for v in terms of u from (8). Define

v =

∞∑
n=1

vn, V =

∞∑
n=1

Vn, (11)

where v1 verifies

0 = v1xx + ω2v1 + u, (12)

and for n > 1, vn verifies

0 = vnxx + ω2vn + uvn−1, (13)

with boundary conditions, for each n,

vn(0) = 0, vn(1) = Vn. (14)

Since V in (10) is one of our two control inputs, we are
free to choose Vn in any meaningful way if the series for
V in (11) converges and the solution for (12)–(14) also
makes the series for v in (11) convergent.

In this case, it is possible to solve (12)–(13) explicitly.
Denoting v0 = 1, we get the following recursive solution
for n ≥ 1

vn =−
∫ x

0

sin (ω(x− ξ))
ω

vn−1(ξ)u(ξ)dξ +
sin (ωx)

sinω

×
(
Vn +

∫ 1

0

sin (ω(1− ξ))
ω

vn−1u(ξ)dξ

)
. (15)

Set the control law V as follows.

Vn = −
∫ 1

0

sin (ω(1− ξ))
ω

vn−1u(ξ)dξ. (16)

The reason to choose this particular control law is to get
a spatially strict-feedback [16] solution, i.e., a solution
that is causal in space, meaning that v(x) only depends
on values of u(ξ) for 0 ≤ ξ ≤ x. This is a requirement of
the backstepping method and was used in [18,29,30] to
control linear plants structurally similar to (7)–(8).

With this control law the solution to the equation (12)–
(13) is

vn = −
∫ x

0

sin (ω(x− ξ))
ω

vn−1(ξ)u(ξ)dξ. (17)

We can solve the recursion in (17), getting

vn =
(−1)n

ωn

∫
Tn(x,ξ)

n∏
j=1

[sin (ω(ξj−1 − ξj))u(ξj)] dξ̂
n
1 .(18)

Plugging (18) into (16), we obtain a general formula for
Vn as follows:

Vn =
(−1)n

ωn

∫
Tn

sin (ω(1− ξ1))u(ξ1)

×
n−1∏
j=1

[
sin (ω(ξj − ξj+1))u(ξj+1)

]
dξ̂n1 . (19)

Assuming that u(t, x) ∈ L2(0, 1), both series in (11)
converge in L2 since using that | sin(ω)/ω| ≤ 1, one can
bound ‖vn‖2L2 as follows.

‖vn‖2L2 =

∫ 1

0

v2
n(x)dx

≤
∣∣∣∣ sin(ω)

ω

∣∣∣∣2n ∫ 1

0

(∫
Tn(x,ξ)

i∏
udξ̂n1

)2

dx

≤
∣∣∣∣ sin(ω)

ω

∣∣∣∣2n 1

n!2

∫ 1

0

(∫ x

0

u2(ξ1)dξ1

)n
dx

≤
‖u‖2nL2

n!2
. (20)

Hence, using the Cauchy-Schwartz inequality in `2,

‖v‖2L2 =

∫ 1

0

( ∞∑
n=1

vn(x)

)2

dx ≤

( ∞∑
n=1

n2‖vn‖2L2

)

×

( ∞∑
n=1

1

n2

)
≤ 2

∞∑
n=1

‖u‖2nL2

(n− 1)!2
, (21)

where we used
∑∞
n=1

1
n2 = π2/6 ≤ 2. Thus, ‖v‖2L2 ≤

2‖u‖2L2e‖u‖
2

L2 . Similarly |V | ≤ 2‖u‖2L2 exp
(
‖u‖2L2

)
.

Plugging the solution for v into (7), we reach

ut = uxx +

∞∑
n=1

∫
Tn(x,ξ)

fn(ξ̂n0 )

i∏
u dξ̂n1 , (22)

where fn = µ (−1)n

ωn

∏n
j=1 sin (ω(ξj−1 − ξj)), an au-

tonomous system in u with boundary conditions

u(0) = 0, u(1) = U, (23)

and now the problem is reduced to designing U such
that the above system is guaranteed to be stable in L2.
Equation (22) is a particular example of (1) with λ =
H = 0, and q =∞.
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3.2 Parabolic semilinear equation

Consider the plant

vt = vxx + f(v), (24)

where f(v) is a nonlinear function analytic at the origin,
verifying f(0) = 0, with boundary conditions

v(0) = 0, vx(1) = U, (25)

where U is the actuation variable.

To cast (24) into the form of (1) we differentiate (24) in
x, getting

vxt = vxxx + f ′(v)vx. (26)

Call u = vx. Then, v =
∫ x

0
u(ξ)dξ and (26) yields

ut = uxx + uf ′
(∫ x

0

u(ξ)dξ

)
, (27)

with boundary conditions

ux(0) = 0, u(1) = U. (28)

The boundary condition at 0 was obtained evaluating
(24) at x = 0 and using (25) and f(0) = 0. Expanding
f ′ in its Taylor series at the origin, and calling

λ= f ′(0), (29)

hn = f (n+1)(0), n ≥ 1, (30)

we can write (27) as

ut = uxx + λu+ u

∞∑
n=1

hn
n!

(∫ x

0

u(ξ)dξ

)n
, (31)

and since(∫ x

0

u(ξ)dξ

)n
= n!

∫
Tn(x,ξ)

i∏
u dξ̂n1 , (32)

we get

ut = uxx + λu+ u

∞∑
n=1

∫
Tn(x,ξ)

hn

i∏
u dξ̂n1 , (33)

with boundary conditions (28). Equation (33) falls in
the class of (1) with F = 0, q = 0, and λ and H given
by (29)–(30). Note that stability of u in the L2 norm
implies stability of v in the H1 norm, as u(0) = 0.

Remark 1 For the open-loop plant (24), finite-time
blow up instabilities are likely to occur when f(u) is

superlinear. This was first studied in a classical pa-
per [13] for power-like nonlinearities, and has been the
subject of systematic study in subsequent years (see
the reviews [10, 21]). More recently the question of
controllability of this kind of equations has been consid-
ered. For superlinear functions which grow faster than
|u| log2(1 + |u|) lack of global controllability is proved
in [11]. Therefore, for many nonlinearities f(v) only
local or restricted results can be achieved; for example
in [8] boundary control is used to move between sets of
steady states for plants with superlinear nonlinearities.

4 Control Strategy

The objective is to find a Volterra feedback law U(t), so
the controlled system (1)–(2) is stable. To achieve that,
a new target system PDE is introduced in the form

wt = wxx, (34)

with homogeneous boundary conditions

wx(0) = q̄w(0), w(1) = 0, (35)

where q̄ = max{0, q}. The plant (34)–(35) is an L2 and
H1 exponentially stable system by standard results from
linear PDE theory.

The idea of the method is to transform (1) into (34).
For this we use a change of variables based on a Volterra
series,

w = u−K[u] = u−
∞∑
n=1

Kn[u]. (36)

Evaluating (36) at x = 1 and using (2) and (35), we
arrive at the control law

U =

∞∑
n=1

Kn[u](1). (37)

Therefore, the control is computed from the the Volterra
kernels that define (36).

Remark 2 Some of the right hand side terms in (1)
might be helpful for stability, for instance, a negative
reaction term, i.e., λ(x) ≤ 0 for all x, or the Volterra
nonlinearity resulting from −v3 in (24). Those terms
could be kept in the target system (34), with only minor
modifications in the kernel equations that follows.

We assume the series in (36) can be differentiated term
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by term. 1 Substituing (36) into (34) we get

∂

∂t

(
u−

∞∑
n=1

Kn[u]

)
=

∂2

∂x2

(
u−

∞∑
n=1

Kn[u]

)
. (38)

Using (1) for ut in (38) the following equation is ob-
tained:

λ(x)u+

∞∑
n=1

Fn[u] + u

∞∑
n=1

Hn[u]

=

∞∑
n=1

(
∂

∂t
Kn[u]− ∂2

∂x2
Kn[u]

)
. (39)

From (39), we can obtain a set of of partial integro-
differential equations (PIDEs) for the kernels ki that de-
fine the control (37). While the details of the derivation
are presented in the Appendix, the PIDE verified by the
n-th order kernel is given by

∂xxkn =

n∑
i=1

(∂ξiξikn + λ(ξi)kn) +

n−1∑
m=1

Cmn [kn−m, hm]

−fn + In[kn, f1] +

n∑
m=2

Bmn [kn−m+1, fm]. (40)

The functions Bmn , Cmn and In in (40) have an involved
definition that requires additional notation and the in-
troduction of some intermediate functions. Hence for
clarity we first finish stating and discussing the kernel
equations and then introduce the concepts towards the
precise definition of Bmn , Cmn and In, which is given re-
spectively in (54), (55) and (56).

The solution to the PIDE (40) needs to satisfy the fol-
lowing boundary conditions. For n = 1,

k1(x, x) = q̂ − 1

2

∫ x

0

λ(s)ds, (41)

k1ξ1(x, 0) = qk1(x, 0), (42)

where q̂ = min{0, q}, while for n ≥ 2,

kn(x, x, ξ̂n2 ) =−1

2

∫ x

ξ2

hn−1(s, ξ̂n2 )ds, (43)

knx(x, x, ξ̂n2 ) =−1

4

(
3hn−1(ξ2, ξ̂

n
2 ) + hn−1(x, ξ̂n2 )

)
+

1

2

∫ x

ξ2

φn(s, ξ̂n2 )ds, (44)

knξi−1
(ξ̂n0 )

∣∣∣
ξi−1=ξi

= knξi(ξ̂
n
0 )
∣∣∣
ξi−1=ξi

, i = 2, .., n, (45)

knξn(ξ̂n−1
0 , 0) = qkn(ξ̂n−1

0 , 0), (46)

1 This assumption requires uniform convergence of the
transformation Volterra series which is shown in [31, Theo-
rem 2].

which are of mixed kind. In (44), the function φn is de-
fined as

φn =

[
n∑
i=2

∂ξiξikn +

n∑
i=1

λ(ξi)kn +

n−1∑
m=1

Cmn [kn−m, hm]

+

n∑
m=2

Bmn [kn−m+1, fm] + In[kn, f1]− fn

]
x=ξ1

. (47)

Equation (40) is a hyperbolic PIDE, for each kn, evolving
in the interior of the domain Tn+1, which is a “hyper-
pyramid” of dimension n + 1 (in particular, a triangle
for n = 1, and a pyramid for n = 2). Note that, by (32),
the volume of Tn+1 decreases rapidly as the dimension
n increases, as given by the following formula:

Vol (Tn+1) =
1

(n+ 1)!
. (48)

Remark 3 The domain Tn+1 has n+ 2 “sides” (which
belong to n-dimensional hyperplanes) on its boundary.
These are

R0 = {ξ̂n0 : 0 < ξn < . . . < ξ1 < x = 1}, (49)

R1 = {ξ̂n0 : 0 < ξn < . . . < ξ1 = x < 1}, (50)

Ri = {ξ̂n0 : 0 < ξn < . . . < ξi = ξi−1

< . . . < ξ1 < x < 1}, i = 2, . . . , n (51)

Rn+1 = {ξ̂n0 : 0 = ξn < . . . < ξ1 < x < 1}. (52)

The boundary conditions (43)–(44) are non-homogeneous
and given on R1. Note that the bracket in the definition
of φn in (47), which is needed for (44), is evaluated at
x = ξ1 and thus can be computed from (43), without
needing to know the kernel kn a priori (this is explicitly
illustrated next with the formula for φ2 in (68) ). The
boundary condition (45) is given on Ri, for i = 2, . . . , n
and represents the value of the normal derivative of kn
in the boundary Ri, hence it is of Neumann type. The
boundary condition (46) is of Robin type and given on
Rn+1. The value of the function kn on R0 is what needs
to be found for the control law (37).

Remark 4 Equation (40) with its boundary conditions
can be reinterpreted as a wave equation in spacetime.
If one thinks of x as time (time-like variable) and the
other variables ξ1, ξ2, . . . , ξn as space coordinates (space-
like variables), then the domain can be seen as a n-
dimensional hyper-pyramid in Rn that grows (linearly in
“time” x), with boundaries R1,R2, . . . ,Rn+1 that are
also growing in time. In particular, it can be seen that
the boundaries R2, . . . ,Rn+1 are time-like (they grow
slower than the characteristic speed of wave propagation,
lying inside the “causality” cone), but the boundary R1

is space-like, i.e., it grows faster than the characteristic
speed of wave propagation (and lies outside the causality
cone). For a wave equation to be well-posed [9], it is nec-
essary that it has exactly one boundary condition on its
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time-like boundaries and two boundary conditions (ini-
tial data) on its space-like boundaries. That is the rea-
son why the boundaryR1 has two boundary conditions.
The only exception is k1, for which R1 is characteris-
tic (i.e., the boundary condition is of Goursat type) and
thus only needs one boundary condition, which is (41).

The term In[kn, f1] is the homogenous integral term of
the PIDE , while Bmn [kn−m+1, fm] and Cmn [kn−m, hm]
are forcing terms, where only terms including previous
kernels km with m < n appear. This means the set of
PIDE’s can be solved recursively up to any desired order
n, beginning with k1.

We introduce now some additional definitions needed
for writing the expressions for Bmn [kn−m+1, fm],
Cmn [kn−m, hm] and I[kn, f1] in (40).

Definition 4.1 Given a set S = {a1, a2, . . . , ak} of k
ordered variables and given m such that 0 ≤ m ≤ k, we
define Pm(S) as the set of all possible ordered k-tuples
that can be formed in the following way. The first m
elements of the k-tuple are any m members of S ordered
by their indices. The last k −m elements of the k-tuple
are all the remaining members of S, also ordered by their
indices.

Example 4.1 If S = {a1, a2, a3, a4}, then:

P0(S) = {(a1, a2, a3, a4)},
P1(S) = {(a1, a2, a3, a4), (a2, a1, a3, a4), (a3, a1, a2, a4),

(a4, a1, a2, a3)},
P2(S) = {(a1, a2, a3, a4), (a1, a3, a2, a4), (a1, a4, a2, a3),

(a2, a3, a1, a4), (a2, a4, a1, a3), (a3, a4, a1, a2)},
P3(S) = {(a1, a2, a3, a4), (a1, a2, a4, a3), (a1, a3, a4, a2),

(a2, a3, a4, a1)},
P4(S) = {(a1, a2, a3, a4)}.

Remark 5 If S has k elements, the number of elements

of Pm(S) is

(
k

m

)
= k!

m!(k−m)! .

We finally get to defining Bmn , Cmn and In. Given a func-

tion g(ξ̂n+m
0 ), and 1 ≤ j ≤ n, let Dn,m

j [g(ξ̂n+m
0 )] denote

Dn,m
j [g(ξ̂n+m

0 )] =
∑

γ̂n−j+m
1 ∈Pn−j(ξ̂n+m

j+1
)

g(ξ̂j0, γ̂
n−j+m
1 ).

(53)
Then, the term Bmn [kn−m+1, fm] is defined as

Bmn =

n−m+1∑
j=1

∫ ξj−1

ξj

Dn−m+1,m
j

[
kn−m+1(ξ̂j−1

0 , s, ξ̂n−mj )

× fm(s, ξ̂nn−m+1)
]
ds, (54)

and the term Cmn [kn−m, hm] is defined as

Cmn [kn−m, hm] =

n−m∑
j=1

Dn−m,m
j

[
kn−m(ξ̂n−m0 )

× hm(ξj , ξ̂
n
n−m+1)

]
. (55)

The definition of In[kn, f1] is, using (54),

In[kn, f1] = B1
n[kn, f1]. (56)

Remark 6 The number of terms ofBmn [kn−m+1, fm] is,
using Remark 5,

n−m+1∑
j=1

(
n− j + 1

n− j −m+ 1

)
. (57)

The number of terms of In[kn, f1] is

n∑
j=1

(
n− j + 1

n− j

)
=

n∑
j=1

(n− j + 1) = n(n+ 1)/2. (58)

Hence in the PIDE for kn, the total number of integrals
in In and Bmn is

n∑
m=1

n−m+1∑
j=1

(
n− j + 1

n− j −m+ 1

)

=

n∑
j=1

n−j+1∑
m=1

(
n− j + 1

n− j −m+ 1

)

=

n∑
j=1

n−j∑
m=0

(
n− j + 1

m

)

=

n∑
j=1

(2n−j+1 − 1)

= 2n+1
n∑
j=1

2−j − n

= 2n+1(2(1− 2−n−1)− 1)− n
= 2n+1 − n− 2. (59)

Similarly, the number of terms in Cmn is 2n − n− 1.

We next show, as an illustration of the general case, the
PIDE equations that the first two kernels, k1, k2, satisfy.

The PIDE equation for k1 is

∂xxk1 = ∂ξ1ξ1k1 + λ(ξ1)k1 − f1(x, ξ1)

+

∫ x

ξ1

k1(x, s)f1(s, ξ1)ds, (60)
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x

ξ1

1

x1

ξ1
ξ2

Fig. 1. Top: The domain T2. Boundary conditions are given

at ξ1 = 0 and x = ξ1 (lower and diagonal lines, respectively).
The feedback law requires to compute the kernel k1 at the
boundary x = 1 (the vertical bold line). Bottom: The do-
main T3 shown in perspective. Robin boundary conditions
are given at ξ2 = 0 (the ground surface), while at x = ξ1 (nor-
mal to the ground and hidden behind the figure due to the
perspective) we have both Dirichlet and Neumann bound-
ary conditions (initial-like conditions). A Neumann bound-
ary condition is given at ξ1 = ξ2 (the surface that lies in
front of a viewer looking in the ξ1 direction). The feedback
law requires to compute the kernel k2 at the boundary x = 1
(the shaded surface).

with boundary conditions

k1(x, x) = q̂ − 1

2

∫ x

0

λ(s)ds, (61)

k1ξ1(x, 0) = qk1(x, 0). (62)

This equation evolves on the triangle T2 = {(x, ξ1) : 0 ≤
ξ1 ≤ x ≤ 1}, which is drawn in Fig. 1(top).

Remark 7 Equation (60) is an autonomous equation
in k1. It is a particular case of the kernel equation for
backstepping control of linear parabolic PDEs. Its well-
posedness is already established [27], where symbolic and
numerical methods of solution are proposed.

The PIDE equation verified by k2 is

∂xxk2 = ∂ξ1ξ1k2 + ∂ξ2ξ2k2 + (λ(ξ1) + λ(ξ2)) k2 − f2

+k1(x, ξ1)h1(ξ1, ξ2) +

∫ x

ξ1

k1(x, s)f2(s, ξ1, ξ2)ds

+

∫ ξ1

ξ2

k2(x, ξ1, s)f1(s, ξ2)ds

+

∫ x

ξ1

k2(x, s, ξ1)f1(s, ξ2)ds

+

∫ x

ξ1

k2(x, s, ξ2)f1(s, ξ1)ds, (63)

with boundary conditions

k2(x, x, ξ2) =−1

2

∫ x

ξ2

h1(s, ξ2)ds, (64)

k2x(x, x, ξ2) =−1

4
(3h1(ξ2, ξ2) + h1(x, ξ2))

+
1

2

∫ x

ξ2

φ2(s, ξ2)ds, (65)

k2ξ2(x, ξ1, 0) = qk2(x, ξ1, 0), (66)

k2ξ1(x, ξ1, ξ2)
∣∣∣
ξ2=ξ1

= k2ξ2(x, ξ1, ξ2)
∣∣∣
ξ2=ξ1

, (67)

where

φ2 =−
∫ x

ξ2

h1ξ2ξ2(s, ξ2)

2
ds− h1ξ2(ξ2, ξ2)− h1ξ1(ξ2, ξ2)

2

−λ(x) + λ(ξ2)

2

∫ x

ξ2

h1(s, ξ2)ds− f2(x, x, ξ2)

−
∫ x

ξ2

∫ x

s

h1(σ, s)f1(s, ξ2)

2
dσds

−h1(x, ξ2)

∫ x

0

λ(s)

2
ds. (68)

This equation evolves on the pyramid T3 = {(x, ξ1, ξ2) :
0 ≤ ξ2 ≤ ξ1 ≤ x ≤ 1}, which is shown in Fig. 1(bottom).
Once k1 is solved from (60), it can be plugged into (63)
which becomes an autonomous equation for k2.

Note the increasing complexity of the kernel PIDEs but
also the common recursive structure that underlies all
the equations.

5 An Example of a Stabilizable Super-Linear
System

In Section 6 we discuss a numerical approach that would
be used for solving for the controller gain kernels in a gen-
eral case. However, in this section we consider a partic-
ularly “simple” example which is tractable analytically
because it is formulated in an “inverse” manner—we
choose a simple Volterra nonlinear controller and then
derive a plant for which this controller is stabilizing. To
be precise, for λ = 0, H = 0, and q = ∞ (Dirichlet
boundary conditions for the plant), instead of solving
for the k-kernels with the f -kernels as given, we solve
for the f -kernels with the k-kernels as given. This is not
possible in general, however, in the case where f1 = 0,
i.e., the “purely nonlinear” case where the plant doesn’t
have a linear term in its Volterra series, it is possible to
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find the f -kernels when the k-kernels are given, i.e., it
is possible to find the plant that is stabilized by a pre-
assigned controller. This is easy to see by examining the
equations (60)–(67). First, when f1 = 0, then k1 = 0.
Second, for any k2 that satisfies the boundary conditions
(64)–(67), the kernel f2 is obtained by direct evaluation
of the derivatives of k2 from (63). And so on for f3, f4, . . .

So, starting with a controller as simple as possible—yet
nonlinear—in this section we illustrate how it is possible
to solve (40)–(46) to find the (nonlinear) plant which is
stabilized by the preassigned controller

The simplest possible (nonlinear) controller we can think
of comes from a single second order control kernel, k2 =
σ1σ2(x − σ1)(x − σ2), whose particular form is chosen
to satisfy (64)–(67). All other control kernels are set to
zero, i.e., k1 = k3 = . . . = kn = . . . = 0. Then the
control input, U(t) = K[u](t, 1), is:

U =K[u](1)

=

∫ 1

0

∫ ξ1

0

ξ1ξ2(x− ξ1)(x− ξ2)u(ξ1)u(ξ2)dξ2dξ1, (69)

which can be written shorter thanks to the symmetry of
the kernel:

U =
1

2

(∫ 1

0

ξ(x− ξ)u(ξ)dξ

)2

. (70)

The plant kernels derived from (40) are f1 = 0,

f2 = 2ξ2ξ1 + 2ξ2x− 2ξ2
2 + 2ξ1x− 2ξ2

1 , (71)

fn =Bn−1
n [k2, fn−1], n ≥ 3 (72)

where we can write (72) using definition (54) as

fn =

∫ x

ξ1

∑
γ̂n
1 ∈P1(ξ̂n1 )

k2(x, s, γ1)fn−1(s, γ2, . . . , γn)ds

+

∫ ξ1

ξ2

k2(x, ξ1, s)fn−1(s, ξ2, . . . , ξn)ds. (73)

Using this definition and employing a symbolic calcu-
lation program, it is possible to get all the kernels up
to a desired order. Higher order kernels get smaller and
smaller, and their influence becomes negligible. This is
stated in the following lemma, that guarantees conver-
gence of the Volterra series of the plant defined by (71)–
(72).

Proposition 5.1 The kernels f2, . . . , fn, . . . defined by
(71)–(72) verify the following bound.

|fn(x, ξ1, . . . , ξn)| ≤ 3x5n−8. (74)

Hence, the Volterra series defined by
∑∞
i=2 Fi[u](t, x)

converges for u ∈ L2(0, 1).

Proof For every n one has that ξn ≤ ξn−1 ≤ . . . ≤ ξ1 ≤
x. Note that

|k2| = |ξ1ξ2(x− ξ1)(x− ξ2)| ≤ x4

16
. (75)

For n = 2,

|f2|=
∣∣2ξ2ξ1 + 2ξ2x− 2ξ2

2 + 2ξ1x− 2ξ2
1

∣∣
= |2ξ2ξ1 + 2ξ2(x− ξ2) + 2ξ1(x− ξ1)|
≤ x2(2 + 1/2 + 1/2) = 3x2. (76)

Assume now the claim of the theorem is true for n− 1.
Then, for n,

|fn|=

∣∣∣∣∣
∫ ξ1

ξ2

k2(x, ξ1, s)fn−1(s, ξ2, . . . , ξn)ds

+

∫ x

ξ1

∑
γ̂n
1 ∈P1(ξ̂n1 )

k2(x, s, γ1)fn−1(s, γ2, . . . , γn)ds

∣∣∣∣∣∣
≤ x4

16

∫ ξ1

ξ2

3s5n−13ds+

∫ x

ξ1

∑
γ̂n
1 ∈P1(ξ̂n1 )

3s5n−13ds


=
x4

16

(
3
n+ 1

5n− 12
x5n−12

)
= 3x5n−8 n+ 1

16(5n− 12)
≤ 3x5n−8, (77)

since for n ≥ 3, n+1
16(5n−12) ≤ 1. This gives us (74).

Since x ∈ (0, 1), we have that |fn| ≤ 3. Hence if u ∈
L2(0, 1),

∫ 1

0

( ∞∑
n=2

Fn[u]

)2

dx

=

∫ 1

0

( ∞∑
n=2

∫ x

0

∫ ξ1

0

· · ·
∫ ξn−1

0

fn(x, ξ1, . . . , ξn)

×

 n∏
j=1

u(ξj)

 dξn . . . dξ1

2

dx

≤ 9

∫ 1

0

( ∞∑
n=2

(∫ x
0
u(ξ)dξ

)n
n!

)2

≤ 18‖u‖2L2exp
(
‖u‖2L2 − 1

)
, (78)

where we have followed similar steps as in (20). This
completes the proof. 2
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F[u](x) 

20K[u](x)  

Fig. 2. Effect of K and F on u(x) = 100 sin(2πx)

For the purpose of illustrating the effect of the functional
operators K and F , we plot the effect of both of them on
an example function, u(t, x) = 100 sin(2πx), in Figure 2.
The order of magnitude of K is much less than the order
of magnitude of F , so we plot 20K for the sake of clarity.

6 Numerical Simulations

Before we consider some challenging numerical demon-
strations of solving the gain kernel PIDEs, we present
numerical simulations of the nonlinear plant introduced
in Section 5. Starting with a large enough initial condi-
tion (of the order of 200), the uncontrolled system di-
verges to infinity in finite time, as seen in Figure 3. With
the controller (69), this behavior is suppressed and the
system is stabilized, as shown in Figure 3.

Next we discuss numerical techniques for computing the
Volterra kernels kn. The first-order kernel k1 is computed
with a finite differences scheme from [27]. Using a simi-
lar finite difference scheme, we are able to compute the
second-order kernel k2 for the examples of Sections 3.1
and 3.2. We then use the k1 and k2 kernels to approxi-
mate 2 control law (37) to do closed-loop simulations of
the systems. For computing k2, we have to use the extra
boundary condition (65) and use a smaller discretization
step for x than for the ξ variables, which is essential for
numerical stability [22].

6.1 Coupled nonlinear plant

Consider the example plant given in Section 3.1. Its
Volterra nonlinearity is explicitly written in Equa-
tion (22). We set the numerical values for the parameters
of the plant as µ = 50, ω = 2.5. A simple linear stabil-
ity analysis shows that the equilibrium at the origin is
unstable for these values.

2 Since the Volterra series for the control law is conver-
gent [31, Theorem 2], truncation yields a good approxima-
tion if “sufficiently many” terms are used. In the examples,
Volterra series are rapidly convergent and two terms suffice.

0

0.5

1 0
0.1

0.2

0

1000

t
x

u(x,t)

0

0.5

1 0
0.1

0.2

−400

−200

0

200

t

u(x,t)

x

Fig. 3. Uncontrolled (left) and controlled system (right) for
the example of Section 5. The solution of the uncontrolled
system blows up in finite time. The trayectory of the control
input (right) is u(t, 1). The size of the control effort (-400)
is reasonable given the size of the initial condition (with a
peak about 200).

To find a control law to stabilize the system, we apply
the design method outlined in Section 4, and numeri-
cally solve for the kernels. In Fig. 4 we show the numer-
ical value of the first two kernels, k1 and k2, at x = 1,
which is the value appearing in the control formula (37).
We find that using just the linear kernel k1 in the feed-
back law (37) 3 , stabilizes the system for a wide range of
initial conditions. However, for initial conditions of large
enough size (with a peak of the order of 1000), the lin-
ear controller fails to stabilize the system, as shown in
Fig. 5. In Fig. 6 we show how the same initial condition
is stabilized when the second-order kernel is used in (37),
i.e., truncating the control law to second order is enough
for stabilization for that size of initial conditions.

3 This is equivalent to applying the result of [27] to the
linearized system.
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Fig. 4. Control kernels k1(1, ξ1) (left) and k2(1, ξ1, ξ2) (right)
for the example of Section 3.1, with µ = 50, ω = 2.5. Note
that the kernel k2(1, ξ1, ξ2) is only defined for ξ2 ≤ ξ1.
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Fig. 5. Closed-loop simulation for u(t, x) using only the first
(linear) order kernel k1, in the example of Section 3.1.
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Fig. 6. Closed-loop simulation for u(t, x) (left) and v(t, x)
(right) in the example of Section 3.1. The control law is
approximated to second order using control kernels k1 and
k2.

6.2 Quadratic nonlinearity

Consider the plant

ut = uxx + u2, (79)

with boundary conditions

u(0) = 0, ux(1) = U. (80)

This plant is in the class of the example of Section 3.2,
with f(u) = u2. Then, in (33), λ = 0, h1 = 2, and for
n > 1, hn = 0. In this case, k1 = 0 as the plant does
not have linear terms. In Fig 7 we show the numerical
value of the second order control kernel k2. We tested
numerically the control law (37) using only k2. We found
that, for initial conditions of size large enough (with a
peak value approximately more than 4), the open-loop
system blows up (in finite time), as shown in Fig. 8
(left). In Fig. 8 (right), we show how the second-order
controller is able to prevent the blow-up and stabilize
the system for the same initial conditions. However, the
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Fig. 7. Second-order control kernel k2(1, ξ1, ξ2) for the exam-
ple of Section 3.2 with f(u) = u2 (quadratic nonlinearity).
Note that the kernel k2(1, ξ1, ξ2) is only defined for ξ2 ≤ ξ1.

same controller fails to stabilize u for larger initial con-
ditions (with peaks over 8). This restricted local result
is not only due to truncation of (37), but to the fact that
(79) is not globally stabilizable (see Remark 1). Thus
increasing the order of the controller may enlarge the
basin of attraction of the equilibrium at the origin for
the closed-loop system, but only up to a certain limit.

7 Conclusions

We have presented a new approach for stabilization of a
class of parabolic 1-D nonlinear partial differential equa-
tions based on feedback linearization methods for finite-
dimensional systems. For nonlinear ODEs, feedback lin-
earization recursively absorbs all the plant nonlineari-
ties into a feedback transformation. The resulting trans-
formation often involves nonlinearities of much higher
growth than the plant nonlinearities. For example, sys-
tems with n states and only quadratic nonlinearities lead
to feedback linearizing controllers of polynomial power
up to n+1. Intuitively, one would worry that an infinite-
step feedback linearization procedure may result in poly-
nomial powers that go to infinity. We handle this prob-
lem introducing a framework, based on Volterra series,
which allows to design feedback linearizing boundary
controllers with a well defined limit. The convergence of
our state transformation (36) and feedback (37) is proved
in a companion paper [31] by deriving norm estimates
of the solutions kn of the kernel equations (40)–(47).

The class of stabilizable systems is given by (1)–(2),
which are 1-D parabolic equations with Volterra non-
linearities. We provide examples of unstable nonlinear
plants commonly found in applications that can be
written in the form (1)–(2) or converted into this form
by an invertible transformation. For such systems, we
show closed-loop stabilization in simulations for large
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 u%t&#'
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1
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 x

 t

 u(t,x)

Fig. 8. Uncontrolled (left) and controlled system (right) for
the example of Section 3.2 with f(u) = u2 (quadratic non-
linearity). The control law is truncated to second order. The
solution of the uncontrolled system blows up in finite time,
while the controlled system converges to the origin.

initial conditions, where the controller is approximated
by truncating the series to only the first and second
order Volterra kernels. The kernels are numerically pre-
computed from the k1 and k2 equation, (60)–(62) and
(63)–(68) respectively.

In the companion paper [31] we also study closed-loop
system properties, deriving local L2 and H1 exponen-
tial stability using the inverse of the transformation.
Since the inverse of operators of the form “identity mi-
nus Volterra series” is, in general, only locally defined,
and since the class of systems considered includes sys-
tems that are not globally null controllable (Remark 1),
the form of stability achieved is not global but local, with
an estimate of the region of attraction in cases where the
inverse backstepping transformation can be quantified.

The development of feedback linearization/backstepping
designs for nonlinear PDEs still has a long way to go.
Coordinate-free tests of linearizability are needed, as
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well as methods for finding the “flat output” when the
input is not at a boundary but of “point-actuator” type.
We point out that in Section 3.2 we found a flat output
vx(0, t) and a pre-transformation of the type u = vx
that casts the system into the form with Volterra series
nonlinearities. Systematic procedures for achieving this
for broader classes of PDE systems would be welcome.
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A Appendix

Here we show the derivation of the general kernel PIDE
equation for any order n.

We first state a technical result.
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Lemma A.1 The following two identities hold.∫
Tn(x,ξ)

fn(ξ̂n0 )dξ̂n1

=

∫
Tn−1(x,ξ)

∫ ξm−1

ξm

fn(ξ̂m−1
0 , s, ξ̂n−1

m )dsdξ̂n−1
1 , (A.1)∫

Tn(x,ξ)

fn(ξ̂n0 )

∫
Tm(ξj ,σ)

gm(ξj , σ̂
m
1 )dσ̂m1 dξ̂

n
1

=

∫
Tn+m(x,ξ)

Dn,m
j [fn(ξ̂n0 )gm(ξj , ξ̂

n+m
n+1 )]dξ̂n+m

1 , (A.2)

where Dn,m
j is defined as in (53).

Proof Identity (A.1) is derived directly from Fubini’s
theorem. For (A.2), write

∫
Tn(x,ξ)

fn(ξ̂n0 )

(∫
Tm(ξj ,σ)

gm(ξj , σ̂
m
1 )dσ̂m1

)
dξ̂n1

=

∫
Ωm

j
(ξ̂n+m

1 )

fn(ξ̂n0 )gm(ξj , ξ̂
n+m
n+1 )dξ̂n+m

1 , (A.3)

where

Ωmj (ξ̂n+m
1 ) = {x ≥ ξ1 ≥ . . . ≥ ξn ≥ 0; ξj

≥ ξn+1 ≥ . . . ≥ ξn+m ≥ 0}. (A.4)

For any m and 1 ≤ j ≤ n, it holds that

Ωmj (ξ̂n+m
1 ) =

⋃
γ̂n−j+m
1 ∈Pn−j(ξ̂n+m

j+1
)

{ξ1 ≥ ξ2 ≥ . . . ≥ ξj

≥ γ1 ≥ . . . ≥ γn+m−j ≥ 0}. (A.5)

To prove (A.5), we first note that if j = n or m = 0,

Ωmj (ξ̂n+m
1 ) = Tn(x, ξ), while if j < n and m ≥ 1, since

{ξj ≥ ξj+1 ≥ 0}= {ξj ≥ ξj+1 ≥ ξn+1}
n−1⋃
l=2

{ξn+l ≥ ξj+1 ≥ ξn+l+1}

∪{ξn+m ≥ ξj+1 ≥ 0}, (A.6)

we get

Ωmj (ξ̂n+m
1 ) = Ωmj+1(ξ̂n+m

1 ) ∪ Ω0
j+1(ξ̂j1, ξ̂

n+m
n+1 , ξ̂

n
j+1)

m−1⋃
l=2

Ωm−lj+1 (ξ̂j1, ξ̂
n+l−1
n+1 , ξ̂nj+1, ξ̂

n+m
n+l ). (A.7)

Similarly, for j = n orm = 0, the symbol Pn−j(ξ̂n+m
j+1 ) =

{ξ̂n+m
j+1 }, and if j < n and m ≥ 1, verifies that

Pn−j(ξ̂n+m
j+1 )

= {ξj+1, Pn−j−1(ξ̂n+m
j+2 )}

∪

(
m−1⋃
l=2

{ξ̂n+l−1
n+1 , ξj+1, Pn−j−1(ξ̂nj+2, ξ̂

n+m
n+l )}

)
∪{ξ̂n+m

n+1 ξ̂
n
j+1}. (A.8)

Note (A.8) and (A.7) is essentially the same identity
(the former expressed as a combinatorial identity and
the later given as a geometric identity). This fact allows
to prove (A.5) by double induction on j and m.

With (A.5) established, we have that

∫
Tn(x,ξ)

fn(ξ̂n0 )

(∫
Tm(ξj ,σ)

gm(ξj , σ̂
m
1 )dσ̂m1

)
dξ̂n1

=
∑

γ̂n−j+1
1 ∈Pn−j(ξ̂n+m

j+1
)

∫
Tn+m(x,ξ)

fn(ξ̂j0, γ̂
n−j
1 )

×gm(ξj , γ̂
n−j+m
n−j+1 )dξ̂n+m

1

=

∫
Tn+m(x,ξ)

Dn,m
j [fn(ξ̂n0 )gm(ξj , ξ̂

n+m
n+1 )]dξ̂n+m

1 , (A.9)

where we have used (53). Then, (A.2) follows. 2

We next derive the general kernel equation for n ≥ 2
(the case n = 1 is covered in [27]). The idea is to, starting
from Equation (39),

0 = λ(x)u+

∞∑
n=1

(
u(x)

∫
Tn(x,ξ)

hn(ξ̂n0 )

n∏
udξ̂n1

+

∫
Tn(x,ξ)

fn(ξ̂n0 )

n∏
udξ̂n1

+

(
∂2

∂x2
− ∂

∂t

)∫
Tn(x,ξ)

kn(ξ̂n0 )

n∏
udξ̂n1

)
, (A.10)

evaluate the derivatives in (A.10) and apply integration
by parts to reach a formula that contains the least pos-
sible number of derivatives in u.

We begin computing the second spatial derivative in
(A.10), which is

∂2

∂x2

∫
Tn(x,ξ)

kn(ξ̂n0 )

n∏
udξ̂n1

=

∫
Tn(x,ξ)

∂xxkn(ξ̂n0 )

n∏
udξ̂n1 + ux(x)

13



×
∫
Tn−1(x,ξ)

kn(x, ξ̂n−1
0 )

n−1∏
udξ̂n−1

1

+u(x)

∫
Tn−1(x,ξ)

(
2knx(x, ξ̂n−1

0 )

+knξ1(x, ξ̂n−1
0 )

) n−1∏
udξ̂n−1

1

+u(x)2

∫
Tn−2(x,ξ)

kn(x, x, ξ̂n−2
0 )

n−2∏
udξ̂n−2

1 . (A.11)

Next we compute the time derivative in (A.10), which
yields

∂

∂t

∫
Tn(x,ξ)

kn(ξ̂n0 )

n∏
udξ̂n1

=

n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂n0 )uxx(ξj)

n,j∏
udξ̂n1

+

n∑
j=1

∫
Tn(x,ξ)

λ(ξj)kn(ξ̂n0 )

n∏
udξ̂n1

+

n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂n0 )H[u](ξj)

n∏
udξ̂n1

+

n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂n0 )F [u](ξj)

n,j∏
udξ̂n1 . (A.12)

We need to simplify (A.12). We show how it can be done
for each line in the equation. Using (A.1) for the second
line in (A.12),

n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂n0 )uxx(ξj)

n,j∏
udξ̂n1

=

n−1∑
j=1

∫
Tn−1(x,ξ)

∫ ξj−1

ξj

kn(ξ̂j−1
0 , s, ξ̂n−1

j )

×uxx(s)

n−1∏
udsdξ̂n−1

1 +

∫
Tn−1(x,ξ)

∫ ξn−1

0

kn(ξ̂n−1
0 , s)

×uxx(s)

n−1∏
udsdξ̂n−1

1 , (A.13)

and integrating by parts,

n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂n0 )uxx(ξj)

n,j∏
udξ̂n1

=

n∑
j=1

∫
Tn(x,ξ)

∂ξjξjkn(ξ̂n0 )

n∏
udξ̂n1

+

n∑
j=1

∫
Tn−1(x,ξ)

kn(ξ̂j−1
0 , ξj−1, ξ̂

n−1
j )ux(ξj−1)

×
n−1∏

udξ̂n−1
1 −

n−1∑
j=1

∫
Tn−1(x,ξ)

kn(ξ̂j−1
0 , ξj , ξ̂

n−1
j )

×ux(ξj)

n−1∏
udξ̂n−1

1 −
n∑
j=1

∫
Tn−1(x,ξ)

n−1∏
u

×knξj (ξ̂j−1
0 , ξj−1, ξ̂

n−1
j )u(ξj−1)dξ̂n−1

1

+

n−1∑
j=1

∫
Tn−1(x,ξ)

knξj (ξ̂j−1
0 , ξj , ξ̂

n−1
j )u(ξj)

×
n−1∏

udξ̂n−1
1 − ux(0)

∫
Tn−1(x,ξ)

kn(ξ̂n−1
0 , 0)

×
n−1∏

udξ̂n−1
1

+u(0)

∫
Tn−1(x,ξ)

knξn(ξ̂n−1
0 , 0)

n−1∏
udξ̂n−1

1 . (A.14)

Since (ξ̂j−1
0 , ξj , ξ̂

n−1
j ) = (ξ̂j , ξ̂n−1

j ) and (ξ̂j−1
0 , ξj−1, ξ̂

n−1
j ) =

(ξ̂j−1
0 , ξ̂n−1

j−1 ), the fourth to sixth lines in (A.14) summed
over j simplify as

n∑
j=1

∫
Tn−1(x,ξ)

kn(ξ̂j−1
0 , ξj−1, ξ̂

n−1
j )ux(ξj−1)

n−1∏
udξ̂n−1

1

−
n−1∑
j=1

∫
Tn−1(x,ξ)

kn(ξ̂j−1
0 , ξj , ξ̂

n−1
j )ux(ξj)

n−1∏
udξ̂n−1

1

= ux(x)

∫
Tn−1(x,ξ)

kn(x, x, ξ̂n−1
1 )

n−1∏
udξ̂n−1

1 . (A.15)

Hence (A.14) can be simplified as

n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂n0 )uxx(ξj)

n,j∏
udξ̂n1

= u(0)

∫
Tn−1(x,ξ)

(
knξn(ξ̂n−1

0 , 0)− qkn(ξ̂n−1
0 , 0)

)
×
n−1∏

udξ̂n−1
1 +

n∑
j=1

∫
Tn(x,ξ)

∂ξjξjkn(ξ̂n0 )

n∏
udξ̂n1

+ux(x)

∫
Tn−1(x,ξ)

kn(x, x, ξ̂n−1
1 )

n−1∏
udξ̂n−1

1

−u(x)

∫
Tn−1(x,ξ)

knξ1(x, x, ξ̂n−1
1 )

n−1∏
udξ̂n−1

1

+

n−1∑
j=1

∫
Tn−1(x,ξ)

(
knξj (ξ̂j−1

0 , ξj , ξ̂
n−1
j )

−knξj+1
(ξ̂j−1

0 , ξj , ξ̂
n−1
j )

)
u(ξj)

n−1∏
udξ̂n−1

1 . (A.16)

In the second line of (A.16) we have used the Robin

14



boundary condition for u at x = 0.

The fourth line in (A.12) can be written as

n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂n0 )H[u](ξj)

n∏
udξ̂n1

=

n∑
j=1

∞∑
m=1

∫
Tn(x,ξ)

kn(ξ̂n0 )

(∫
Ti(ξj ,σ)

hm(ξj , σ̂
m
1 )

×
m∏
udσ̂m1

)
n∏
udξ̂n1

=

n∑
j=1

∞∑
m=1

∫
Tn+m−1(x,ξ)

Dn,m
j [kn(ξ̂n0 )hm(ξj , ξ̂

m+n
n+1 )]

×
n+m∏

udξ̂n+m
1 , (A.17)

where we have applied (A.2). Then, since the time
derivative computed in (A.12) is summed from n = 1 to
infinity in (A.10), we consider the infinite sum for the
result in (A.17), which yields

∞∑
n=1

n∑
j=1

∞∑
m=1

∫
Tn+m(x,ξ)

Dn,m
j [kn(ξ̂n0 )hm(ξj , ξ̂

m+n
n+1 )]

×
n+m∏

udξ̂n+m
1

=

∞∑
n=1

n−1∑
m=1

n−m+1∑
j=1

∫
Tn(x,ξ)

Dn−m,m
j [kn−m(ξ̂n−m0 )

×hm(ξj , ξ̂
n
n−m+1)]

n∏
udξ̂n1

=

∞∑
n=1

∫
Tn(x,ξ)

n−1∑
m=1

Cmn [kn−m, hm]

n∏
udξ̂n1 , (A.18)

where we have used the definition of Cmn given in (55).
Similarly, the fifth line in (A.12) can be written as

n∑
j=1

∫
Tn(x,ξ)

kn(ξ̂n0 )F [u](ξj)

n,j∏
udξ̂n1

=

n∑
j=1

∞∑
m=1

∫
Tn+m(x,ξ)

Dn,m
j [kn(ξ̂n0 )fm(ξj , ξ̂

m+n
n+1 )]

×
n+m,j∏

udξ̂n+m
1

=

n∑
j=1

∞∑
m=1

∫
Tn+m−1(x,ξ)

∫ ξj−1

ξj

Dn,m
j [kn(ξ̂nj−1, s, ξ̂

n−1
j )

×fm(s, ξ̂m+n−1
n )]ds

n+m−1∏
udξ̂n+m−1

1 , (A.19)

where we have applied (A.2) and (A.1). Then, again

computing the infinite sum as in (A.18),

∞∑
n=1

n∑
j=1

∞∑
m=1

∫
Tn+m−1(x,ξ)

∫ ξj−1

ξj

Dn,m
j [fm(s, ξ̂m+n−1

n )

×kn(ξ̂nj−1, s, ξ̂
n−1
j )]ds

n+m−1∏
udξ̂n+m−1

1

=

∞∑
n=1

∫
Tn(x,ξ)

(
I[kn, f1] +

n∑
m=2

Bmn [kn−m+1, fm]

)

×
n∏
udξ̂n1 , (A.20)

where the definitions (56) and (54) of respectively I and
Bmn have been used.

Collecting all the terms (A.11), (A.16), (A.18) and
(A.20) into (A.10), we get

0 =

∞∑
n=1

∫
Tn(x,ξ)

∂xxkn − n∑
j=1

∂ξjξjkn −
n∑
j=1

λ(ξj)kn

+fn −
n∑

m=2

Bin[kn−m+1, fm]−
n−1∑
m=1

Cmn [kn−m, hm]

−I[kn, f1]

]
n∏
udξ̂n1 + u(0)×

∞∑
n=1

∫
Tn−1(x,ξ)

n−1∏
u

×
(
knξn(ξ̂n−1

0 , 0)− qkn(ξ̂n−1
0 , 0)

)
dξ̂n−1

1

+

∞∑
n=1

n−1∑
j=1

∫
Tn−1(x,ξ)

(
knξj (ξ̂j−1

0 , ξj , ξ̂
n−1
j )

−knξj+1
(ξ̂j−1

0 , ξj , ξ̂
n−1
j )

)
u(ξj)

n−1∏
udξ̂n−1

1

+u2(x)

∞∑
n=2

∫
Tn−2(x,ξ)

kn(x, x, x, ξ̂n−2
1 )

n−2∏
udξ̂n−2

1

+u(x)

[
λ(x) +

∞∑
n=1

∫
Tn−1(x,ξ)

(hn−1

+2
d

dx
kn(x, x, ξ̂n−1

1 )

) n−1∏
udξ̂n−1

1

]
, (A.21)

where we define the total derivative d
dxkn(x, x, ξ̂n−1

1 ) =

knx(x, x, ξ̂n−1
1 )+knξ1(x, x, ξ̂n−1

1 ). Since (A.21) has to be
verified for arbitrary u, we get that the terms inside the
integrals must be zero. Hence, we get from the first three
lines that

∂xxkn =

n∑
i=1

∂ξiξikn +

n∑
j=1

λ(ξj)kn +

n−1∑
m=1

Cmn [kn−m, hm]

+

n∑
m=2

Bmn [kn−m+1, fm]− fn + In[kn, f1],(A.22)

15



and from the rest of (A.21), we obtain

knξi−1
(ξ̂n0 )

∣∣∣
ξi−1=ξi

= knξi(ξ̂
n
0 )
∣∣∣
ξi−1=ξi

, i = 2, .., n, (A.23)

knξn(ξ̂n−1
0 , 0) = qkn(ξ̂n−1

0 , 0), (A.24)

d

dx
kn(x, x, ξ̂n2 ) =−1

2
hn−1(x, ξ̂n2 ), (A.25)

kn(x, x, x, ξ̂n3 ) = 0. (A.26)

Equations (A.22)–(A.26) are the general kernel equa-
tions, but we still need to derive boundary conditions
(43) and (44)

Integrating (A.25) and using (A.26) to determine the
constant of integration, we get (43):

kn(x, x, ξ̂n2 ) = −1

2

∫ x

ξ2

hn−1(s, ξ̂n2 )ds. (A.27)

Boundary condition (44) is built into (A.22). Defining
φn as in (47), when ξ1 = x (A.22) reduces to

∂xxkn

∣∣∣
x=ξ1

= ∂ξ1ξ1kn(x, x, ξ̂n2 ) + φn(x, ξ̂n2 ). (A.28)

Taking derivative with respect to x in (A.25),

(∂xxkn + ∂ξ1ξ1kn + 2∂xξ1kn)x=ξ1
= −1

2
∂xhn−1(x, ξ̂n2 ),

(A.29)
which substituted in (A.28) gives

2 (∂xxkn + ∂xξ1kn)x=ξ1
= −1

2
∂xhn−1(x, ξ̂n2 )+φn(x, ξ̂n2 ),

(A.30)
hence

d

dx
knx(x, x, ξ̂n2 ) = −1

4
∂xhn−1(x, ξ̂n2 ) +

1

2
φn(x, ξ̂n2 ).

(A.31)
From (A.23) at i = 2, ξ1 = x, we get that

knξ1(x, x, x, ξ̂n3 ) = knξ2(x, x, x, ξ̂n3 ) (A.32)

and since (A.26) implies

(knx + knξ1 + knξ2) (x, x, x, ξ̂n3 ) = 0, (A.33)

we get, from (A.25), that

knx(x, x, x, ξ̂n3 ) = −hn−1(x, ξ̂n2 ). (A.34)

Integrating (A.31) and using (A.34) to find the constant

of integration, we get

knx(x, x, ξ̂n2 ) =−1

4
hn−1(x, ξ̂n2 )− 3

4
hn−1(ξ2, ξ̂

n
2 )

+
1

2

∫ x

ξ2

φn(s, ξ̂n2 )ds, (A.35)

which was the remaining boundary condition (44).
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