
Green Configurations of Functional �ality A�ributes

Jose-Miguel Horcas
Universidad de Málaga

Andalucía Tech, Málaga, Spain
horcas@lcc.uma.es

Mónica Pinto
Universidad de Málaga

Andalucía Tech, Málaga, Spain
pinto@lcc.uma.es

Lidia Fuentes
Universidad de Málaga

Andalucía Tech, Málaga, Spain
l�@lcc.uma.es

ABSTRACT

Functional quality attributes (FQAs) are those quality attributes 
that, to be satis�ed, require the incorporation of additional func-
tionality into the application architecture. By adding an FQA (e.g., 
security) we can improve the quality of the �nal product, but there 
is also an increase in energy consumption. This paper proposes a 
solution to help the software architect to generate con�gurations 
of FQAs whilst keeping the energy consumed by the application 
as low as possible. For this, a usage model is de�ned for each FQA, 
taking into account the variables that a�ect the energy consump-
tion, and that the values of these variables change according to 
the part of the application where the FQA is required. We extend a 
Software Product Line that models a family of FQAs to incorporate 
the variability of the usage model and the existing frameworks that 
implement FQAs. We generate the most eco-e�cient con�gura-
tion of FQAs by selecting the framework with the most suitable 
characteristics according to the requirements of the application.

KEYWORDS

Quality Attributes, Energy Consumption, FQA, SPL, Variability

1 INTRODUCTION

Quality Attributes (QAs), or non-functional properties of an applica-
tion (e.g., security, usability,. . . ), can be improved by appropriately 
modifying the software architecture of the application. For instance, 
the performance of a web application can be improved by adding a 
caching component that serves stored data faster. This additional 
functionality, which is incorporated into the software architecture 
to satisfy or improve the application’s quality is known as a Func-
tional Quality Attribute (FQA) [3, 4, 8]. By adding an FQA like

security we can improve the quality of the �nal product, but there
is also an increase in energy consumption [5].

Each application requires a customized con�guration of each
FQA. For instance, an application may require integrity and encryp-
tion to satisfy security, while another may require only encryption,
or may require a di�erent encryption algorithm. Moreover, there
are several frameworks and third party libraries that provide di�er-
ent implementations of FQAs ready to be reused, such as the Java
Security package, the Apache Commons library, and the Spring
Framework. Although there is much variability in FQAs, not all
variants and implementations ful�ll the system’s quality require-
ments in the same way. Each framework provides di�erent degrees
of quality, at the expense of a higher or lower use of resources, and
therefore di�erent energy consumptions.

The software architecture should not only guarantee a certain
quality but also that the generated software product is energy-
e�cient. However, analyzing relationships between FQAs and en-
ergy consumption has still not received enough attention [5]. In
this paper, we focus on enhancing the energy e�ciency of the FQAs
added to applications, so the main goal is to generate the most eco-
e�cient FQA con�gurations (i.e., that consume the least energy),
which ful�ll the application’s requirements.

Since software architects are not normally aware of the energy
consumption of architectural solutions [10], our approach will auto-
matically generate the FQA con�gurations taking into account the
energy consumption of the di�erent variants. We also consider that
the same FQA can be injected into di�erent places of the application,
which can have di�erent usage models. Our usage model de�nes
the variables and parameters that a�ect the energy consumption of
the FQA, whose values will depend on the part of the application
where the FQA is injected.

In previous work, we de�ned WeaFQAs [4], a Software Product
Line (SPL) process that models an FQA family, and generates and
injects FQA customized con�gurations into the application archi-
tecture. However, when customizing the FQAs it is recommendable
to also consider the in�uence of the new components on other
non-functional QAs, like the energy e�ciency in this case.

In this paper, we extend the WeaFQAs approach to: (1) de�ne
each FQA as a clonable characteristic, to allow di�erent con�g-
urations of the same FQA to be added to di�erent parts of the
application architecture; (2) add the usage model of each FQA to
the variability model, to allow the software architect to instantiate
it according to the necessities of the application point where it is
injected; (3) extend the WeaFQAs variability model with the frame-
works and libraries that implement the FQAs modeled, explicitly
specifying the con�gurability degree allowed by each of them, and
(4) generate the most eco-e�cient con�guration by selecting the
most appropriate framework for each FQA and customizing it to
the application’s requirements.



C1 C2 C3

C4

Logging Usage Model 1
- Message size (MB) = [0.001..0.01]
- Frequency (calls/s) = [5..10]
- Handler: -
- Format: Plain text
- Level: Trace
- Encrypted messages: No

Logging Usage Model 2
- Message size (MB) = [1..10]
- Frequency (calls/s) = [1..10]
- Handler: File
- Format: XML
- Level: Warning
- Encrypted messages: No

Logging Usage Model 3
- Message size (MB) = [100..1000]
- Frequency (calls/s) = [1..2]
- Handler: -
- Format: -
- Level: Info
- Encrypted messages: Yes

Figure 1: Examples of usage models for the logging FQA.
The remainder of this paper is structured as follows. In Section 2

we characterize the FQAs and de�ne the usage model for the FQAs.
Section 3 extends our previous work with the usage models and the
FQA frameworks. Section 4 explains how to generate eco-e�cient
con�gurations from the experimentation results. Section 5 evaluates
and discusses our proposal. Section 6 presents the related work,
and Section 7 concludes the paper.

2 FQAS AND ENERGY EFFICIENCY
Before analyzing and selecting the most eco-e�cient con�gura-
tions of the FQAs, we �rst need to characterize how FQAs in�uence
energy consumption. For each functionality of the FQAs, for ex-
ample encryption, hashing, or logging, we identify the variables
that a�ect the energy consumption, and the possible values. For
instance, the logging functionality of the usability FQA has a high
degree of variability. Messages can be logged in di�erent formats
(e.g., plain text and XML), or can be sent to di�erent outputs or
handlers such as console, �le, or database. Messages can have also
di�erent levels of severity (e.g., trace, debug, and warning), and
can be encrypted if necessary. Thus, the usage model of an FQA is
de�ned as the set of variables that a�ect the energy consumption
of that FQA, and the values that each variable can take [1, 10].

The energy consumption of an FQA in a particular application
is determined by the usage model of the FQA in the di�erent places
of the application architecture where the FQA has to be injected.
The characterization of the FQAs allows us to build a generic usage
model that can be instantiated by the software architect multiple
times in an application, in di�erent parts. To illustrate this, Fig-
ure 1 shows the usage model of the logging functionality for three
di�erent component interactions.

Assigning concrete values to the usage model variables can be
a di�cult task, since the values can be unknown to the software
architect. Moreover, the software architect may want to analyze
the energy consumption of all possible variants of the usage model.
In those cases, our proposal will support the partial instantiation
of the usage model, as shown in Logging Usage Model 1 and
Logging Usage Model 3 in Figure 1, where the handler of the
message (i.e., console or �le) is not provided in the former case, or
the format (i.e., plain text, XML) in the latter.

The e�ect of each variable of the usage model in the energy
e�ciency of the FQA is pre-calculated through experimentation.
As part of our proposal we measure the energy consumption of
the frameworks implementing FQAs, for the di�erent values (treat-
ments) of each variable (factor) [11]. An example of this experimen-
tation is presented in Section 4.1, where we show the results of

Usability

1..*

Caching Persistence

Hashing [1..*]

ConsoleFile

java.util.loggingLog4J

LogBack Simple

Handler

����

Format

����

TXT XML

MessageSize: Integer

Frequency: Integer

EncryptedMessages

Logging [1..*]

ErrorHandling

ContextualHelp [1..*]

...

Security.Encryption NOT LoggingFrameworks.Simple

LoggingUsageModel

WeaFQAs

1..*

Cache [1..*]

LoggingFrameworks

����

Encryption [1..*]

...

NOT Format.XML

Security

1..*

Figure 2: Variability model extended.
assessing the energy consumption of the logging functionality for
several Java frameworks. Note that the speci�c values of energy
consumption are not relevant for the characterization of FQAs, but
they are relevant for the energy consumption trends of the FQA
when the values of the variables change. For this reason, in this
paper we assume that the FQA characterization and the analysis
of the energy consumption can be performed independently of a
speci�c application. Note, that any experimental measure of energy
consumption must be considered as an estimation only, since the
power consumed by an application will be di�erent in successive ex-
ecutions. This is because there are many uncontrollable factors that
a�ect power consumption (e.g., temperature, garbage collection),
so identifying power consumption tendencies is enough.

The next section details how we have extended the variability
model of WeaFQAs to include the information of usage models, the
frameworks that implement the functionalities of the FQAs, and
the clonable features of the FQAs.

3 EXTENDING THE VARIABILITY MODEL OF
WEAFQAS

The extended WeaFQAs variability model is shown in Figure 2.
The variability model speci�es a complete family of FQAs (e.g.,
security and usability) and the functionalities of each of them (e.g.,
encryption and logging). First, we have modi�ed the features of the
variability model that represent the functionalities of the FQAs to
make them clonable, as, for example the Logging [1..*] feature. A
clonable feature (features with cardinality [1..*]) allows that feature
to be instantiated multiple times, and all its sub-features can be
con�gured di�erently for each instance [2]. Second, we extend the
variability model by adding, for each functionality of the FQAs,
one feature to model the usage model (LoggingUsageModel) and
another that models the frameworks and libraries that implement
the functionalities of the FQAs (LoggingFrameworks). Children of
any usage model feature are those variables of the FQA that a�ect
the energy consumption. For example, for logging, the usage model
is composed by the variables message size, frequency, format,
and handler.

Note that some variables of the usage model are not supported
for all frameworks, so in those cases we de�ne cross-tree con-
straints in the variability model to limit the possible selections. For
example, not all frameworks provide the possibility of logging the
message in XML format, such as the simple implementation of SLF4J



(Simple), and thus, we specify the constraint Format.XML implies 
NOT LoggingFrameworks.Simple to prevent that framework from 
being selected when the format is XML. Similarly, we explicitly 
de�ne the dependency with the encryption functionality when the 
log messages need to be encrypted (EncryptedMessages implies 
Security.Encryption). This creates an additional instance of the 
encryption functionality to be con�gured.

4 GENERATION OF ECO-EFFICIENT
CONFIGURATIONS

Using the WeaFQAs variability model, the software architect can
generate a complete or partial con�guration of the FQAs according
to the application’s requirements. In this paper, the goal is to help
the software architect to generate the most eco-e�cient con�gura-
tions. To do so, �rst we need to evaluate how the variables of the
usage models a�ect the energy consumption, independently of the
application (Section 4.1). Second, we need to integrate the energy in-
formation gathered with the variability model (Section 4.2). Finally,
the most eco-e�cient con�gurations are automatically selected
based on the energy information (Section 4.3).

4.1 Experimentation: energy consumption
To illustrate the details of our proposal, we show the results of
evaluating the energy consumption of the logging functionality
of the usability FQA with di�erent Java frameworks, based on the
characterization described in Section 2.

The experiments were conducted on a desktop computer with
Intel Core i7-4770, 3.40 GHz, 16 GB of memory, Windows 10 64
bits with the high performance option activated, and Java JDK
1.8. Measurements of energy were obtained using the IPPET (Intel
Platform Power Estimation Tool)1 tool that estimates the energy
consumption of the CPU at the process level.

Experiments to characterize the logging functionality consisted
in delivering a set of log messages using four di�erent implementa-
tions of the SLF4J (Simple Logging Facade for Java)2 logging API,
the java.util.logging package directly provided by the Java JDK, the
Log4J3 and the LogBack4 frameworks, and a simple implementa-
tion of SLF4J5. We logged plain text messages varying the message
size from 100 Bytes to 1 GByte in powers of 10. Each variable or
characteristic from the usage model was evaluated independently,
the other variables remained �xed. Each experiment was performed
ten times, and we took the average value.

Figure 3 shows the results of the energy measurements (in Joules)
of the logging functionality for di�erent message sizes, using two
di�erent handlers: console and �le. On the one hand, we can observe
that the most eco-e�cient framework is, in general, the simple
implementation of the SLF4J API, while LogBack is the framework
with the most energy consumption in all cases (except for messages
of 1 GB). We also observe in Figure 3 that for messages of a huge
size (1 GB) it is more eco-e�cient to send the messages to �le and
not to the console. Log messages of this size are not common in
desktop or mobile applications, but in larger-scale applications such
1https://goo.gl/noZsYk
2https://www.slf4j.org/
3http://logging.apache.org/log4j/1.2/index.html
4https://logback.qos.ch/
5https://www.slf4j.org/apidocs/org/slf4j/impl/SimpleLogger.html

0

200

400

600

800

1000

1200

10 100 1000

En
er

gy
 (

J)

Message size (MB)

Energy Consumption
(Logging)

java.util.logging (console)
java.util.logging (file)
Log4J (console)
Log4J (file)
LogBack (console)
LogBack (file)
Simple Implementation (console)
Simple Implementation (file)

0

2

4

6

8

10

12

14

16

0,0001 0,001 0,01 0,1 1 10

En
er

gy
 (

J)

Message size (MB)

Energy Consumption
(Logging)

java.util.logging (console)
java.util.logging (file)
Log4J (console)
Log4J (file)
LogBack (console)
LogBack (file)
Simple Implementation (console)
Simple Implementation (file)

Logging Usage Model 1

Logging Usage Model 2

Logging Usage Model 3

Figure 3: Energy consumption of the logging FQA.
as Google farms6 and CERN data centers7, where the complete
status of applications must be logged frequently, they are more
common. In these data centers the energy e�ciency is even more
important. Log4J and LogBack frameworks consume more than
others because their purpose is to provide full functionality and a
great performance regardless of energy consumption.

4.2 Integrating the energy information in
WeaFQAs

In order to integrate the energy information with the variability
model, we formalize the variability model as a Constraints Satisfac-
tion Problem (CSP).

A CSP problem is de�ned by a triplet (X ,D,C), whereX is the set
of variables, D is a set of domains for the variables, and C is the set
of constraints that must be satis�ed. We map the variability model
to these concepts. X variables are the features of the variability
model. To integrate the information of the energy consumptions,
we de�ne an additional variable for each di�erent con�guration that
represents its energy consumption value. Domain D is {0, 1} for
the variability model’s features to indicate whether the feature has
been selected or not in a con�guration. The domain of the variables
that represent energy consumption values is the set of real numbers
R. The constraints include the tree and cross-tree constraints of the
variability model. Additionally, we also de�ne as constraints the
selections made by the software architect in a con�guration of the
variability model. Each constraint that represents a con�guration
is associated with an energy consumption value. By resolving the
CSP for each partial con�guration of each FQA, we can obtain the
most eco-e�cient con�guration of each FQA.

4.3 Eco-e�cient con�gurations
From the results obtained in the experimentation and the informa-
tion formalized in the previous section, our proposal is able to select
the most eco-e�cient global con�guration of the FQAs adapted
to the application’s requirements. First, for each FQA required by
the application, the software architect needs to identify the join
points (or interactions) in the application architecture where the

6https://www.google.com/about/datacenters/
7http://information-technology.web.cern.ch/about/computer-centre

https://goo.gl/noZsYk
https://www.slf4j.org/
http://logging.apache.org/log4j/1.2/index.html
https://logback.qos.ch/
https://www.slf4j.org/apidocs/org/slf4j/impl/SimpleLogger.html
https://www.google.com/about/datacenters/
http://information-technology.web.cern.ch/about/computer-centre


Logging_1

MessageSize = 
[0.001..0.01]

TXT

Format

java.util.logging

Log4J

LogBack

Simple

Console File

Handler

����

Logging_2

MessageSize = [1..10]

Frequency = [1..10] XML

Format

java.util.logging

Log4J

LogBack

Simple

Logging
Frameworks

����

File

Handler

Logging_3

MessageSize = 
[100..1000]

Frequency = [1..2]

LogBack

Logging
Frameworks

Usability

EncryptedMessages

Logging
UsageModel

Logging
Frameworks

����

Logging
UsageModel

Logging
UsageModel

Console File

Handler

����

Format

����

TXT XML

Frequency = [5..10]

Manual selections

Automatic selections

Figure 4: Con�guration of the logging FQA instances.

FQA will be incorporated. Second, for each join point the architect
creates an instance of the usage model for the injected FQA. This
implies having to provide the values of the variables that compose
the usage model — i.e., specifying how the FQA will be used in that
speci�c part of the application.

When the software architect provides a complete con�gura-
tion for an FQA (i.e., they provide all values for the usage model
and select a particular framework according to the application’s
requirements), the con�guration generated may not be the most
eco-e�cient. So, in our approach it is more useful to partially instan-
tiate the usage models, so we can then automatically complete the
most eco-e�cient con�guration. Our approach will automatically
select those features that were not selected by the software architect
with the values that minimize the energy consumption (e.g., select
the most eco-e�cient framework for that usage model). It may
be the case that the software architect may want to use a speci�c
framework, but they do not know how to con�gure the internal
characteristics of it. In this case, our approach generates the most
eco-e�cient con�guration taking into account the characteristics
and variables of that particular framework.

To select the most eco-e�cient con�guration, we minimize Equa-
tion 1. The energy consumption of a global con�guration of the
FQAs is the sum of the di�erent con�gurations (config) of each in-
stance (i) of the FQA functionalities (f ). The energy consumption of
each instance is calculated from the usage model of the FQAs, using
the values obtained in the experimentation (Section 4.1). The solu-
tion of the objective function can be obtained using any optimiza-
tion technique such as programming constraints or evolutionary
algorithms.

Energy_consumption(FQAs) =
∑

f ∈FQAs

N∑
i=1

Energy_consumption(conf iдi (f )) (1)

Figure 4 shows a con�guration of the variability model with
three instances for the logging functionality customized with the
values of the usage models shown in Figure 1. In the �rst interaction
(Logging Usage Model 1), the software architect has de�ned the
message size as between 0.001 MB and 0.01 MB, and a frequency of
5 to 10 messages per second. Messages will be logged at trace level
in plain text and without encryption. However, the architect has not
speci�ed the handler (console or �le) nor the framework to be used,
so our proposal will automatically select the most eco-e�cient han-
dler (i.e., console) for the values provided, and the most eco-e�cient
framework that provides the chosen characteristics: the simple im-
plementation of SLF4J. In the second instance (Logging Usage
Model 2), the architect has provided a complete con�guration, but
has not selected the framework to be used. In this case our proposal

will select the library java.util.logging because this is the most eco-
e�cient option that ful�lls the constraints of the variability model
— i.e., it is the most eco-e�cient framework that allows logging
messages of between 1 and 10 MB to �le in XML (see constraint in
Figure 2). Finally, the architect has provided a partial con�guration
for the third instance (Logging Usage Model 3), selecting the op-
tion for encrypting the message and a speci�c framework: LogBack.
In this case, our proposal will select the console handler and the
plain text format (TXT) that is the most eco-e�cient con�guration
when the LogBack framework has been selected.

5 EVALUATION
In this section we evaluate our proposal. First, we demonstrate that
the generated con�gurations are correct and the most eco-e�cient
for each usage model. Then, we discuss the lessons learnt from our
proposal and how the validity of our evaluation could be threatened.

5.1 Correctness Evaluation
We can resolve the CSP problem de�ned in Section 4.2 using a CSP
solver to guarantee that our proposal generates the same valid con-
�guration and that those con�gurations are the most eco-e�cients.
To do so, we complete the CSP problem by de�ning an objective
function that minimizes the energy consumption of the FQAs’ con-
�gurations, satisfying all the constraints de�ned in the variability
model. To resolve the problem, we have used Choco8, a Java library
for constraint programming. Con�gurations generated by Choco
satisfy the usage models introduced by the software architect, guar-
anteeing that the con�gurations generated by our proposal are the
most eco-e�cients.

5.2 Discussion
In this section we discuss the lessons learnt from our proposal and
how the validity of our evaluation could be threatened.

Measurement of the energy consumption in applications.
The real energy consumption of the generated FQA con�gurations
can vary due to several factors that are independent of the usage
model, for example, the load of the system in a particular moment,
or the degree of resource sharing (e.g., network usage, disk). The
e�ect of these external factors on the energy consumption of the
FQAs is unknown and sometimes unpredictable. However we think
it is possible to consider these external factors in our approach by
adding new external variables to our model, apart from the usage
model, and performing the experiments based on real or expected
execution contexts of the �nal application.
8http://choco-solver.org/

http://choco-solver.org/


Trade-o� between quality attributes. Although in this paper 
we focus on energy e�ciency, FQAs also a�ect other non-functional 
properties such as performance, level of security or usability. Our 
proposal can be used to generate those con�gurations that optimize 
other quality attributes, after characterizing the variables that a�ect 
the quality attribute and modifying the usage model accordingly. 
Moreover, our proposal can be extended to perform a trade-o� 
between some quality attributes [5].

Determinism of the proposal. Our proposal is based on the 
data obtained from the experimentation to generate the most eco-
e�cient con�guration. By performing the same experiments on 
another computer, the actual energy values may vary due to many 
factors (mainly hardware), but the comparative results should re-
main correct. In speci�c cases where the execution environment is 
very di�erent from a general-purpose computer, such as supercom-
puters or special-purpose computers, the experimentation results 
may be very di�erent and, therefore, our proposal will not generate 
the same con�gurations. However, our proposal will generate the 
most eco-e�cient con�gurations for a speci�c environment.

6 RELATED WORK
There are some existing approaches that have identi�ed the neces-
sity of managing FQAs [3, 4, 8, 9]. For instance, in [3], the authors 
argue that most of the so called non-functional requirements are 
not really non-functional since they describe part of the functional 
behavior of the system.

In [8], the authors apply an inductive research method to identify 
FQAs. They identify functionalities related to the usability FQA that 
a�ect the software architecture, and de�ne patterns to implement 
those functionalities in di�erent applications. However, the authors 
only focus on usability, and our approach is more generic since it 
supports any kind of FQA (e.g., security, persistence, usability,. . . ). 
In fact, usability functionalities identi�ed in [8] can be added to 
our approach to improve its variability model. In [9], the authors 
present CORE (Concern-Oriented REuse), a software development 
paradigm where every kind of software characteristic, from base 
application functionality to non-functional properties, are encap-
sulated in reusable units called concerns. Although they do not 
directly manage the concept of FQAs, they identify and encapsulate 
as concerns the functionality of the FQAs.

Finally, in [4], WeaFQAs is de�ned. WeaFQAs combines SPLs 
and aspect-orientation in a generic process to model, con�gure, 
and automatically inject the FQAs into the software architecture of 
the applications. However, in WeaFQAs the FQAs are customized 
just based on the functional requirements of the application, ad-
ditional information such as the energy consumption of di�erent 
con�gurations is not considered. In addition, WeaFQAs does not 
consider the possibility of con�guring the same FQAs di�erently 
in di�erent parts of the application — e.g., encrypting in di�erent 
places of the application but using a di�erent algorithm, key size, 
mode, padding, or any other parameter. Finally, WeaFQAs does not 
take into account existing frameworks that implement FQAs.

However, none of these approaches [3, 4, 8, 9] analyze the energy 
consumption of di�erent variations of the software architecture. 
This is because they include neither the support to represent the 
usage model, nor the con�gurable characteristics of the frameworks

that implement the FQAs. These are essential to analyze the energy
consumption of a given architectural con�guration.

The relevance of reasoning about energy e�ciency at the archi-
tectural level is to be able to compare the energy consumption of
the di�erent architectural con�gurations of the same applications
(architectural patterns, design variations, deployment, etc.). There
are some approaches which focus on the de�nition of architectural
tactics [5] and design patterns [6] driven by the energy. There are
also new architectural description languages (ADLs) that include
energy pro�les and analysis of energy consumption [7, 10]. In any
case, the experimentation consists of estimating the energy con-
sumption of the application code to analyze the e�ects of applying
a speci�c architectural pattern or design [5, 6].

7 CONCLUSIONS AND FUTURE WORK
In this paper, a proposal to generate eco-e�cient con�gurations of
functional quality attributes (FQAs) has been presented. The pro-
posal is useful because it helps the software architect to incorporate
the most appropriate con�guration of the FQAs at each part of the
application where the FQA is required, optimizing energy e�ciency
based on a usage model de�nition. We have evaluated the energy
consumption of di�erent frameworks that implement FQAs.

As future work we intend to extend the proposal to generate
FQA con�gurations with a trade-o� between energy e�ciency and
performance, among other quality attributes.

ACKNOWLEDGMENTS
This work is supported by the projects Magic P12-TIC1814 and
HADAS TIN2015-64841-R (co-�nanced by FEDER funds).

REFERENCES
[1] Ste�en Becker, Heiko Koziolek, and Ralf Reussner. 2009. The Palladio component

model for model-driven performance prediction. Journal of Systems and Software
82, 1 (2009), 3–22.

[2] Krzysztof Czarnecki and Chang Hwan Peter Kim. 2005. Cardinality-based fea-
ture modeling and constraints: a progress report. In International Workshop on
Software Factories at OOPSLA’05. ACM, ACM, San Diego, California, USA.

[3] Jonas Eckhardt, Andreas Vogelsang, and Daniel Méndez Fernández. 2016. Are
“Non-functional” Requirements Really Non-functional?: An Investigation of Non-
functional Requirements in Practice. In International Conference on Software
Engineering (ICSE). 832–842.

[4] Jose Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2016. An automatic process
for weaving functional quality attributes using a software product line approach.
Journal of Systems and Software 112 (2016), 78–95.

[5] Erik Jagroep, Jan Martijn van der Werf, Sjaak Brinkkemper, Leen Blom, and
Rob van Vliet. 2016. Extending software architecture views with an energy
consumption perspective. Computing (2016), 1–21.

[6] A. Noureddine and A. Rajan. 2015. Optimising Energy Consumption of Design
Patterns. In International Conference on Software Engineering, Vol. 2. 623–626.

[7] B. Ouni, H. Ben Rekhissa, and C. Belleudy. 2012. Inter-process communication
energy estimation through AADL modeling. In Synthesis, Modeling, Analysis and
Simulation Methods and Applications to Circuit Design (SMACD). 225–228.

[8] Francy D. Rodríguez, Silvia Teresita Acuña, and Natalia Juristo Juzgado. 2015.
Reusable Solutions for Implementing Usability Functionalities. International
Journal of Software Engineering and Knowledge Engineering 25, 4 (2015), 727–756.

[9] Matthias Schöttle, Omar Alam, Jörg Kienzle, and Gunter Mussbacher. 2016. On
the Modularization Provided by Concern-oriented Reuse. InModularity. 184–189.

[10] Christian Stier, Anne Koziolek, Henning Groenda, and Ralf H. Reussner. 2015.
Model-Based Energy E�ciency Analysis of Software Architectures. In European
Conference on Software Architecture (ECSA). 221–238.

[11] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in software engineering.


	Abstract
	1 Introduction
	2 FQAs and Energy Efficiency
	3 Extending the Variability Model of WeaFQAs
	4 Generation of Eco-Efficient Configurations
	4.1 Experimentation: energy consumption
	4.2 Integrating the energy information in WeaFQAs
	4.3 Eco-efficient configurations

	5 Evaluation
	5.1 Correctness Evaluation
	5.2 Discussion

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References



