
Extensible and modular abstract syntax for feature modeling
based on language constructs

Jose-Miguel Horcas

CAOSD group, ITIS, Univ. de Málaga

Andalucía Tech, Spain

horcas@lcc.uma.es

Mónica Pinto

CAOSD group, ITIS, Univ. de Málaga

Andalucía Tech, Spain

pinto@lcc.uma.es

Lidia Fuentes

CAOSD group, ITIS, Univ. de Málaga

Andalucía Tech, Spain

lff@lcc.uma.es

ABSTRACT

Since the definition of feature models in 1990, a large number of
language constructs have emerged. Each language construct usu-
ally comes with its own abstract and concrete syntax, its semantics,
and even its complete language dialect and tool support. Nowadays,
there is a consensus in the Software Product Line community about
a need for defining a common variability modeling language. But
the fact of the matter is that it is very complex to achieve a good
compromise between how expressive the language should be and
the effort of developing practical tools for a language with all pos-
sible language constructs. In this paper, we propose an extensible
model-driven engineering approach for defining the abstract syntax
of feature modeling language constructs that could be tailored to
different needs and domains. We formalize our approach as a set
of modular and reusable metamodels that allows practitioners to
decide which subset of language constructs to use through: (1) gen-
erating a new variability language; and (2) managing feature models
with different level of expressiveness. We provide an instantiation
and implementation of our approach.

KEYWORDS

Abstract syntax, feature modeling, language construct, language
level, metamodeling, model-driven engineering, SPL

1 INTRODUCTION

Feature models stand out as the de-facto standard for specifying
variability in Software Product Lines (SPLs) [47].

Since the introduction of featuremodels 30 years ago [38], numer-

ous language constructs have been proposed to increase their ex-

pressiveness [13], for example, cardinality-based variability [25, 42],

multi-features [25]; numerical features [43] or non-Boolean features;
attributed feature models [14]; and complex constraints [4]. Each of

those language constructs usually comes with its syntax and seman-

tics, and often coincides with the definition of a completely new

modeling language or a new tool to support it [60]. This plethora

of extensions, notations, and tools for feature models have brought

forward a growing interest in the SPL community about the neces-

sity of defining a single feature modeling language [15]. However,

the complexity of defining such a common language resides on

reaching a compromise between, (1) its applicability to several do-

mains with different requirements [62], i.e., the expressiveness of
its abstract syntax; and (2) the effort of building practical tools that

can support all language constructs [36].

To tackle this problem, recent studies [60, 62] are proposing

the use of extensible and modular language designs in terms of

language levels that allow deciding what part of the language we

want to keep and use. In domain-specific languages (DSLs) (e.g.,
MontiCore [21], NIVEL [6]), language constructs are defined in sep-

arated models with extension points. Then, a language is defined

as the composition of several language constructs. Nevertheless,

for feature modeling, there is a lack of actionable solutions apply-

ing those design concepts with existing development practices, as

concluded in [47]. The question that arises at this point is how
can the principles of extensible DSLs be applied to feature model-
ing languages? (RQ1). Moreover, what specific language constructs
should be considered in the definition of a feature modeling language?
(RQ2). This paper answers RQ1 by proposing an approach based

on model-driven engineering (MDE) and metamodeling [8] that ap-

plies the concepts of language levels and modular language design

to specifying the abstract syntax of different language constructs

for feature modeling. We formalize our approach as a set of reusable

and modular metamodels that allows practitioners to decide which

language constructs they would like to use through: (1) defining a

language for variability modeling; and (2) managing feature mod-

els with different levels of expressiveness. To answer RQ2, we
provide a concrete instantiation of our approach implemented in

EMF/Ecore [57] (https://github.com/CAOSD-group/splc2020). We

decompose well-known language constructs from existing feature

modeling languages in a set of metamodels making explicit the re-

lationships between the language constructs and the metamodels.

The paper is structured as follows. Section 2 motivates our ap-

proach by discussing recent work about feature modeling. Section 3

formalizes our approach, while in Section 4 we instantiate and

implement it. Finally, Section 5 concludes the paper.

https://doi.org/10.1145/3382025.3414959
https://doi.org/10.1145/3382025.3414959
https://github.com/CAOSD-group/splc2020
https://www.acm.org/publications/policies/artifact-review-and-badging-current

2 RELATED WORK AND MOTIVATION
This section reviews related work about feature modeling, it exposes
its limitations and compares it with our approach.
2.1 Recent advances in feature modeling
Since the introduction of feature models in 1990 [38], none suc-
cessful standard has emerged. Despite some attempts of standard-
ization were proposed such as EMF Feature Model [45], CVL [34],
and VEL [46], they did not jell for several reasons (e.g., lack of tool
support, monolithic solutions, legal and patent-related issues,. . .).
Also, in 2017, the ISO/IEC 26558:2017 was released as a family of in-
dustrial standards for variability modeling, but the SPL community
still misses a single common variability modeling language [15].

In the last two years, numerous studies have been published
pointing to a definition o f s uch unified la nguage (s ee Table 1).
Most of these works focus on studying the requirements of the
intended common language from different viewpoints: language
constructs [60], language levels of expressiveness [40, 62], best prac-
tices for feature modeling [44], usage scenarios [18], constraints
modeling [11], and a repository for feature models exchange [30].
Moreover, several reviews and systematic studies have been pub-
lished covering language constructs of textual variability modeling
languages [28, 60], automated analysis of feature models [31], tool
support [9, 36], metrics for analyzing variability [29], feature inter-
action [55], and evolution of feature models [20, 41]. Table 1 details
the most relevant works and explains how we take into account
these advances to lay the foundation of our approach.
2.2 Language constructs and language levels
There are lots of language constructs for feature modeling which
have been extensively reviewed in [16, 28, 31, 36, 51, 60]. In [51]
numerous language constructs are formalized; in [28, 60] a complete
review of constructs for textual variability modeling languages is
presented; tool support for the language constructs is available
in [36]; and their analysis capability can be found in [16, 31].

In order to organize the language constructs and differentiate
their expressiveness, researchers are proposing different classifica-
tions (see Figure 1). Eichelberger et al. [27] propose a comprehensive
classification based on two dimensions: expressiveness and analyz-
ability. Recently, other informal classifications have appeared. For
instance, Galindo and Benavides [30] distinguish up to five abstract
syntax/model levels based on two groups of relationships: hierar-
chical relationships and cross-tree constraints. Alférez et al. [4, 5]
divide the language constructs of a new variability modeling lan-
guage (VM) into basic, extended, and extra variability. Thüm et
al. [62] define, at least, two major levels for feature modeling nota-
tions based on the applicable solvers; and for each major level, they
define minor levels driven by requirements of real-world domains,
and by constructs of existing languages. They also propose the
use of orthogonal levels, which do not influence the expressive-
ness of the feature model, for example, to achieve modularity and
evolution.

As summarized in Figure 1, these classifications and levels al-
low us to make explicit the trade-offs between the expressiveness
and the current tool support and analysis capability of the solvers.
However, it is not clear if they are enough since they do not pro-
vide enough details to be applied in practice. Moreover, there are
disagreements about the nomenclature of the levels and the specific

Table 1: Recent work in feature modeling.
Study: Raatikainen et al. [47]. Topic: SPLs and variability modeling (tertiary study). Year: 2019
Description: Authors identify a need for actionable solutions for practical applicability with exist-

ing development practices, instead of novel solutions in any topic of SPLs and variability modeling.

They also argue that feature models stand out clearly as the most popular variability models despite

a large number of variability models that exist (e.g., decision models, OVM,. . .).

Our approach:We put in practice the main ideas of the state-of-the-art variability modeling to face

the problems of defining a common language. We use well-known and consolidated technologies

such as feature-orientation and MDE metamodeling (see Section 3). MDE provides several practical

advantages such as applying model transformations to support interoperability between feature

models notations, straightforward serialization of models, or code generation.

Study: H. ter Beek et al. [60]. Topic: Textual variability modeling languages. Year: 2019
Description: Review of textual variability modeling languages (based on [28]) where the language

characteristics are classified in five dimensions: configurable elements, constraints, configuration

support, scalability support, and language characteristics. Authors also discuss relevant aspects for

the design of a future variability modeling language such as an extensible and modular design.

Our approach: We use most of those language constructs to instantiate our approach and rely on

the proposed dimensions to classify our metamodels (see Section 4.1).

Study: Thüm et al [62]. Topic: Language levels for feature modeling notations. Year: 2019
Description:Authors propose the use of language levels with different expressiveness to handle the
problems of defining a common language. Twomajor levels are concretized based on their capability

analysis with solvers, but no detailed definition of minor levels are provided.

Our approach: Practitioners can easily defined language levels based on their needs (e.g., domain

requirements, tool support, analysis capability), by selecting the required constructs.

Study: Nešić et al. [44]. Topic: Best practices for feature modeling. Year: 2019
Description: 34 principles for feature modeling with best practices to be taken into account when

defining a modeling methodology or process for feature modeling.

Our approach: The principles may help (1) language designers to instantiate our approach by

deciding the decomposition of language constructs (Section 4.1); and (2) practitioners to use our

approach when deciding which constructs to use in their languages and tools.

Study: Horcas et al. [36]. Topic: SPLs and variability modeling tools. Year: 2019
Description: Practical review about tool support for variability modeling and SPLs. It concludes

that most of the current tools only support basic constructs, while the support for more complex

variability is scarce and with too many limitations (see Figure 1). They also define roadmaps for tool

interoperability based on different activities (e.g., modeling, analysis, configuration, derivation,. . .).

Our approach: It enables model transformations for feature models (e.g., refactorings [59, 61]) to
close the gap between high expressive language constructs and the existing tool support as well as

to facilitate the implementation of interoperability roadmaps between different tools [36].

Study: Galindo et al. [31]. Topic: Automated analysis of feature models. Year: 2019
Description: A systematic mapping study to overview the field of automated analysis. They argue

that analysis techniques are in general mature enough and we need to find practical applications

closer to industry. However, existing efficient solvers (e.g., SAT, #SAT, BDD) [58] only support fea-

ture models with a low level of expressiveness (e.g., propositional logic) while solvers capable of

analyzing complex variability such as numerical features (e.g., SMT, CSP) [56] offer a poor perfor-

mance with specific operations such as for counting configurations of feature models (see Figure 1).

Our approach: It can be used to handle the mismatch that exists between the languages’ expres-

siveness and the capability analysis of the solvers, by defining appropriate model transformations.

Study: Batory [11]. Topic: Constraints modeling. Year: 2019
Description: Discussion about the language that should be used to express constraints in a future

variability modeling language. He exposes the problems about using the Object Constraints Lan-

guage (OCL) standard which is tied to MDE [26] and bets for simplicity and reusing in the definition

of the constraints expressions, as in the new𝐴𝑂𝐶𝐿 [12] constraint language for MDE.

Our approach: Language designers can freely decide how to model the constraints as an indepen-

dent module, without forcing the use of OCL. We advocate for separating constraints based on their

expressiveness i.e., propositional logic, first-order logic, arithmetic expressions, etc. (Section 4).

Study: Galindo and Benavides [30]. Topic: Repository for feature model exchange. Year: 2019
Description: Authors discuss up to 12 characteristics that a future feature model repository should

have. They also list dependencies with language elements that will affect the development of the

repository such as the concrete and abstract syntax of the models and their level of expressiveness.

Our approach: It can lead the format of the feature models to be used in the repository, storing

the models in a generic standard format (e.g., .xmi) and downloading them in the desired notation

through the use of model-to-text transformations.

Study: Villota et al. [64]. Topic: A unified variability modeling language. Year: 2019
Description: It introduces the High-Level Variability Language (HLVL), a unified variability lan-

guage that follows an orthogonal approach and serves as an intermediate language for variability.

Our approach: It keeps clear of the drawbacks regarding the expressiveness trade-offs that a unified
language brings forward. Our metamodels, as the HLVL language, can also act as an intermediate

language to support interoperability between different notations by using model transformations.

Study: Seidl et al. [54]. Topic: SPL of feature modeling notations and constraints. Year: 2016
Description: Authors define an SPL to generate different variants of feature modeling notations

and cross-tree constraint languages. They use a hyper feature model [52] to specify the variability

of the notations; and implement that variability by defining delta languages [49] for both Ecore

metamodels and concrete syntax files using DeltaEcore [53].

Our approach: It relies on basic Ecore metamodels which can be directly composed by the re-

lations already defined in the Ecore standard (Section 4.2), without the need of introducing addi-

tional variability mechanisms (e.g., delta modeling [49]) or specific generation frameworks (e.g.,
DeltaEcore [53]). Our approach also allows having multiple abstract syntaxes for the same language

construct in separate metamodels, so practitioners can choose the most appropriate definition to

their needs. This is prevented when using a hyper feature model where the features are mapped,

ideally one-to-one, to the delta modules. In any case, the work of Seidl et al. [54] complements our

approach and can be seen as a good starting point for instantiating our approach (Section 4.1) and

then incorporating our approach into the solution space of their SPL.

constructs each level should support. In conclusion, language levels,
as well as modular language designs, are considered relevant and

good choices to build a future variability modeling language [60, 62],

and in this paper, to guide the design of our approach.

-

+

Ex
p

re
ss

iv
en

es
s

[3
6,

60
]

- +Tools Usability [9,36]

-

+

A
na

ly
za

b
ili

ty
 [

16
,3

1]

- +
Solvers

performance [56,58]

SAT

#SAT

SMT

CSP

Basic Variability Modeling
(mandatory, optional, or, xor, cardinality-

based groups, requires, excludes)

Extended Variability Modeling

(multi-features, attributes, typed features,

default values)

Extra variability modeling
(ranges and deltas, attached information,

complex constraints,...)

Alférez et al. [4,5]

Basic FMs
(mandatory, optional, or, xor,

requires, excludes)

Cardinality-based FMs
(group cardinalities)

Complex-constraints FMs
(any complex cross-tree

constraint)

Attributed FMs
(attributes)

Non-traditional FMs
(multi-features, complex

variability,...)

Galindo and Benavides [30]

Major level 1
(SAT encoding)

[Minor level 1,

Minor level 2,...]

Major level 2
(SMT encoding)

[Minor level 1,

Minor level 2,...]

Basic Variability Modeling
(pure boolean features, propositional logic)

Cardinality-based Variability Modeling
(feature and group cardinalities, quantifiers)

Non-boolean Variability Modeling
(typed features, type-specific operators)

Configurations References
(referencing model elements, type

operators)

SPLOT

Glencoe

FeatureIDE

Clafer

FaMa

Pure::variants

BDD

Thüm et al. [62]Eichelberger et al. [27]

Figure 1: Relations and the trade-off between expressiveness, analyzability, tools support, and solvers, for language constructs.
3 EXTENSIBLE AND MODULAR

METAMODELS FOR FEATURE MODELING
We first introduce the concepts used throughout the paper about

the formalization of feature models and metamodeling (Section 3.1).

Then, we present and formalize our approach (Section 3.2).

3.1 Formal definition of feature models
There exist multiple formalizations for feature models [10, 33, 35,

51]. In this paper, we will use the following definitions:

Definition 3.1 (Feature, feature model, configuration, product, soft-
ware product line). A feature 𝑓 is a characteristic or end-user-visible
behavior of a software system. A feature model𝑚 is a set of features

(𝐹) and their relationships (or dependencies), where a subset 𝑃 ⊆ 𝐹

is the set of features that are mapped to artifacts (i.e., concrete fea-
tures). A configuration 𝑐 of a feature model𝑚 is a set of its features,

i.e., 𝑐 ∈ P(𝐹). A configuration is valid if and only if it fulfills all the

feature dependencies of𝑚. The set of all valid configurations of𝑚

is denoted by 𝐶𝑚 . A product 𝑝 is a configuration that contains only

concrete features, i.e., 𝑝 ∈ P(𝑃). A software product line 𝑠𝑝𝑙 is a set
of products, i.e., 𝑠𝑝𝑙 ∈ P(P(𝑃)).

Formal languages for featuremodels. Anymodeling language

must consist of three elements [33]: a syntactic domain (L), a seman-
tic domain (S), and a semantic function (M). In feature modeling,

the syntactic domain (L) is the set of all feature models that comply

with a given abstract syntax. The abstract syntax is a representation

of the feature model, which is independent of its physical represen-

tation (i.e., the concrete syntax). The semantic domain (S) specifies
the set of all existing product lines, defined as S = P(P(𝑃)). The
semantic function M : L → S maps a feature model𝑚 ∈ L to its

software product line 𝑠𝑝𝑙 ∈ S, denoted by M⟦𝑚⟧.
Definition 3.2 (Semantics of feature models). The semantics of

a feature model 𝑚 is its set of valid products, defined by ⟦𝑚⟧ :=

{𝑐 ∩ 𝑃 | 𝑐 ∈ 𝐶𝑚}. That is, its software product line.
Expressiveness. The semantic functionM is total and is defined

for all the elements in L. That means that each feature model in

L represents at least one software product line in S. The inverse
function is partial and defines the expressiveness of the language as
the part of the semantic domain that its syntax can express.

Definition 3.3 (Expressiveness). The expressiveness of a language
L is the set 𝐸 (L) = {M⟦𝑚⟧ | 𝑚 ∈ L}, also noted M⟦L⟧. A
language L with semantic domain S is expressively complete if

𝐸 (L) = S, otherwise, L is expressively incomplete. A language L1

is more expressive than a language L2 if 𝐸 (L2) ⊂ 𝐸 (L1).

Model-Driven Engineering metamodeling. A metamodel [6,
8] specifies the abstract syntax (L) of a modeling language, e.g.,
the feature modeling language. Therefore, a feature model is an

instance of the metamodel used to specify the language L. The

semantics of the valid expressions (feature models) produced by

the metamodel is given by Definition 3.2.

Definition 3.4 (Well-formed feature model). A feature model𝑚

is well-formed (aka, correct, well-defined) if𝑚 is defined conform

to its metamodel and𝑚 represents at least one software product

line, that may be empty (i.e.,𝑚 is a void feature model). That is,

𝑚 is an instance of its metamodel respecting all expressions and

relationships defined in the metamodel, and M⟦𝑚⟧ ≠ ∅.

3.2 Formalization of our approach
Our approach consists of the definition of extensible and modular

metamodels to describe the abstract syntax of the features models.

The language constructs and their relationships are encapsulated

in different metamodels with dependencies between them. Given

a feature model𝑚 we denote 𝑀 as its corresponding metamodel.

The metamodel defines the abstract syntactic domain (L) of the

feature models. The set of all feature models that can be specified

using the metamodel 𝑀 is denoted by L𝑀 . That is, the feature

model 𝑚 is a model instance of the metamodel 𝑀 , denoted by

𝑚 ∈ L𝑀 . A metamodel𝑀 is defined as a non-empty set ofmodeling
constructs (or language constructs), i.e., 𝑀 = {𝑙1, 𝑙2, . . . , 𝑙𝑡 }, where
each language construct 𝑙𝑖 ∈ 𝑀 specifies the abstract syntax of a

specific variability modeling concept (e.g., optional feature, group
feature, requires constraint, multi-feature, attributed feature):

Definition 3.5 (Language construct). A language construct 𝑙 ∈ 𝑀

is the abstract syntax of a specific variability modeling concept.

Examples of language constructs are Feature to represent the
concept of a feature, Root to represent the root feature of the feature
model, OptionalFeature and MandatoryFeature to represent op-
tional and mandatory features, respectively, AlternativeGroup
for “xor” and OrGroup for “or” feature groups, Multi-Feature for

clonable features [25], NumericalFeature for non-Boolean numer-

ical features [43], or FeatureAttribute for attributed features [14].
Here, we also define a special language construct for feature models:

Definition 3.6 (Feature model construct). A feature model con-

struct 𝑙𝑚 ∈ 𝑀 is a language construct that represents the concept

of a feature model as a container of other variability modeling

concepts such as features and constraints. That is, 𝑙𝑚 is the main

containment element in the metamodel (aka, the root element).
1

1
Do not confuse with the Root feature language construct of the feature model.

Examples of feature model constructs are Feature Model to
represent the most generic feature model, Cardinality-Based FM
to represent feature models with cardinalities [25], Attributed FM
for models that support features with attributes [14], Numerical
FM for models with numerical features [43], etc.

Our approach can be seen as a set of modular metamodels that
we call FM and define as follows:

Definition 3.7 (FM). FM is a set of inter-related metamodels, i.e.,
FM = {𝑀0, 𝑀1, 𝑀2, . . . , 𝑀𝑛 }, where each metamodel 𝑀𝑖 ∈ FM
is a different n on-empty s et o f l anguage c onstructs, i .e., 𝑀 𝑖 =
{𝑙1, 𝑙2, . . . , 𝑙𝑡 } and 𝑀𝑖 ∩ 𝑀𝑗 = ∅, ∀𝑀𝑖 , 𝑀𝑗 ∈ FM, 𝑖 ≠ 𝑗 .

In FM, we define two kinds of relations between language con-
structs (extension and composition), and a dependency relation
between metamodels:

Definition 3.8 (Extension, Composition, D ependency). A language
construct 𝑙𝑖 ∈ 𝑀𝑖 extends another language construct 𝑙 𝑗 ∈ 𝑀𝑗 ,
noted 𝑙𝑖 <: 𝑙 𝑗 , if 𝑙𝑖 is a subtype of 𝑙 𝑗 . A language construct 𝑙𝑖 ∈ 𝑀𝑖
is composed by another language construct 𝑙 𝑗 ∈ 𝑀𝑗 , noted 𝑙𝑖 |= 𝑙 𝑗 ,
if 𝑙𝑖 uses or refers to 𝑙 𝑗 as part of the definition of 𝑙𝑖 . A metamodel
𝑀𝑖 ∈ FM depends on another metamodel 𝑀𝑗 ∈ FM, noted 𝑀𝑖 ⇒
𝑀𝑗 , if ∃ 𝑙𝑖 ∈ 𝑀𝑖 , 𝑙 𝑗 ∈ 𝑀𝑗 | 𝑙𝑖 <: 𝑙 𝑗 ∨ 𝑙𝑖 |= 𝑙 𝑗 .

The subtype establishes an is-a relationship between the lan-
guage constructs (including multiple inheritance). The composition
relation establishes a usage or reference relationship between the
language constructs (including multiple composition). Finally, two
metamodels have a dependency between them if there is a construct
that extends or uses a construct defined in the other metamodel.

To complete the definition of FM let us define an initial meta-

model 𝑀0 ∈ FM with, at least, a feature model construct 𝑙𝑚 ∈
𝑀0 which describes the generic concept of feature model (Defini-
tion 3.6).2

The combination of language constructs, that includes
𝑙𝑚 ∈ 𝑀0, allows us to specify well-formed feature models, the
semantics of which is defined according to Definition 3.2.

Theorem 3.9. The language specified by the metamodel 𝑀 0 ∈ FM,
noted by L𝑀0 , allows defining, at least, one feature model. That is,
|𝐸 (L𝑀0) | > 0.

Proof. 𝑀0 specifies the feature model construct 𝑙𝑚 for the con-
cept of the most basic feature model (with no features at all), and
therefore, L𝑀0 defines, at least, the empty product (∅). □

Corollary 3.10. An independent metamodel 𝑀𝑖 ∈ FM, 𝑖 > 0
is not enough expressive by itself to specify any feature model (i.e.,
|𝐸 (L𝑀𝑖) | = 0) unless a construct 𝑙𝑖 ∈ 𝑀𝑖 extends directly the feature
model construct 𝑙𝑚 ∈ 𝑀0, or another construct 𝑙 𝑗 ∈ 𝑀𝑗 | 𝑙 𝑗 <: 𝑙𝑚 .

Corollary 3.11. In FM, each other metamodel 𝑀𝑖 ∈ FM, 𝑖 > 0,
is related, by the dependency relation (⇒) with, at least, another
metamodel 𝑀𝑗 ∈ FM. That is ∀𝑀𝑖 , 𝑖 > 0, ∃𝑀𝑗 , 𝑗 ≠ 𝑖 |𝑀𝑖 ⇒ 𝑀𝑗 .

Theorem 3.9 and Corollaries 3.10 and 3.11 mean that, in order
to define well-formed feature models in FM, we need at least an
initial metamodel defining a feature model construct 𝑙𝑚 (Defini-
tion 3.6), and the rest of language constructs can be decomposed
in any number of metamodels related somehow with such initial
metamodel. However, the use of independent metamodels in isola-
tion cannot define well-formed feature models except they define
a feature model construct or extend the feature model construct
2𝑀0 may also define any other language construct as shown in Table 2.

defined in the initial metamodel (𝑙𝑚). Because of this, the definition

of the different language constructs can be completely modularized

in separate but related metamodels.

4 INSTANTIATING AND IMPLEMENTING FM
4.1 Instantiation of FM
Table 2 presents the instance we propose for FM. First, we con-

sider modeling concepts gathered in the literature (see Section 2.2).

Second, we classify the language constructs based on the type of

variability they model. For instance, metamodel 𝑀0 contains the

FODA [38] concepts for modeling basic variability (excluding con-

straints).𝑀2 to𝑀5 define different types of feature groups.𝑀6 and

𝑀7 model parent-child relationships.𝑀8 to𝑀10 model non-Boolean

feature models [23] such as numerical features [43], attributes [14],

or additional information [4]. Third, we put together in the same

metamodel those language constructs whose definition directly

depend on other constructs (Definition 3.8). However, this is not

a strict rule as explained below for the Group Cardinality and

Multi-Feature constructs. Finally, we classify the constructs fol-

lowing four of the dimensions proposed in [60]: configurable ele-

ments (metamodels𝑀0 to𝑀14), constraints support (𝑀15 to𝑀22),

scalability support (𝑀23 to𝑀32), and configurations (𝑀33 and𝑀34).

The instance exposes more than 50 language constructs over

more than 30 metamodels. Despite the high number of metamod-

els and language constructs, the modular design of FM allows

practitioners to use just the parts they are interested on. Some

metamodels only contain one language construct and it may seem

better to group several related language constructs in the same

metamodel to reduce the number of metamodels. However, select-

ing a metamodel implies the inclusion of the abstract syntax of

all the language constructs that are part of that metamodel. For

this reason, if two language constructs are related among them but

there may exist languages that include only one of them it is always

better to define them in separated metamodels and then explicitly

specify their dependencies. For instance, the Group Cardinality
and Multi-Feature constructs are defined in separate metamodels

(𝑀4 and𝑀7 respectively) since they are different concepts that lan-

guages may not support together. However, both constructs require

a Multiplicity construct (𝑀3) to specify a lower and upper bound

to define its cardinality. Making explicit the dependencies between

the metamodels, as shown in Table 2, allows the automatic selection

of the appropriate language constructs to define a specific language

with the desired modeling concepts.

4.2 Implementation of FM
To demonstrate the viability of our approach we propose to imple-

ment FM3
in EMF/Ecore [57] (Figure 2 and Figure 3).

The feature model construct (Definition 3.6) is always defined

as a class because it serves as a container of features and con-

straints. For example, the FeatureModel class in the metamodel

𝑀0 specifies the most generic type of feature model, while the

NonBooleanFM and the NumericalFM classes, in𝑀8 and𝑀9 respec-

tively (Figure 3), model specializations of the feature model by

extending the FeatureModel class of𝑀0. Language constructs (Def-

inition 3.5) can be defined as classes, attributes, or relations. For in-

stance, the Feature, Feature Group, Or Group and Alternative
Group language constructs of 𝑀0 are defined as classes. But, the

3
The implementation is available in https://github.com/CAOSD-group/splc2020.

https://github.com/CAOSD-group/splc2020

Table 2: An instantiation of FMwith its metamodels (𝑀) classified according to the dimensions (D) proposed in [60], the set of
language constructs (modeling concepts), their relationships and dependencies, and examples of languages including them.
D 𝑀 Language constructs Extends Dependencies Description Examples

C
on

fi
gu

ra
bl
e
el
em

en
ts

𝑀0 Feature Model The top element of the metamodel.
FODA [38], and basically

almost all variability modeling

languages and tools support

the constructs of𝑀0 .

Feature The unit of variability. A feature can be optional or mandatory.
Root Feature The root feature 𝑟 ∈ 𝐹 of the feature model. 𝑟 is always mandatory.

Optional Feature Feature It represents an optional feature.
Mandatory Feature Feature It represents a mandatory feature.

Parent-Child Relationship Features decomposition. A child can be selected only when its parent is selected.

Feature Group Feature Children of a feature 𝑓 ∈ 𝐹 can be grouped.

Alternative Group Feature Group It defines a one-out-of-many choice, i.e., an xor group <1..1>.
Or Group Feature Group It defines a some-out-of-many choice, i.e., an or group <1..*>.
Cross-Tree Constraint The generic concept of a constraint.

𝑀1 Abstract Feature Feature 𝑀0 Distinction between concrete and abstract features in leaf features. Relaxed FMs [40].

𝑀2 Mutex-Group Feature Group 𝑀0 Feature groups where at most one feature can be selected. KConfig [19], CDL [19].

𝑀3 Cardinality-Based FM Feature Model 𝑀0 It allows defining cardinalities for features and groups. Cardinality-based FMs [25].

Multiplicity It defines lower and upper bounds.

𝑀4 Group Cardinality Feature Group 𝑀0, 𝑀3 Arbitrary multiplicities <n..m> for group features, bounded and unbounded (*). Cardinality-based FMs [25].

𝑀5 Multiple Decomposition Type Parent-Child Relationship 𝑀0 Different group features (e.g., or and xor), below the same feature. Generative Programming [24].

𝑀6 Directed Acyclic Graph Parent-Child Relationship 𝑀0 Features with multiple parents. FORM [39], FeatuRSEB [32].

𝑀7 Multi-Feature Feature 𝑀0, 𝑀3 Features with cardinalities (aka, clonable features). Cardinality-based FMs [25].

𝑀8 Non-Boolean FM Feature Model 𝑀0 Definition of arbitrary data types for features and/or attributes.
VM [4], Clafer [37], CVL [34],

PyFML [3].

Data Type Primitive (e.g., Boolean, Integer, Float, String,. . .), and user-defined types.

Value Assignment It allows providing a value to a specific data type.

Typed Feature Feature Arbitrary data types for features.

Attached Information Additional information (e.g., attributes, meta-attributes) for configurable elements.

𝑀9 Numerical FM Non-Boolean FM 𝑀0, 𝑀8 Feature model with numerical features.
Numerical FMs [43].Numerical Feature Typed Feature Non-Boolean numerical features (e.g., Natural, Integer, Real,. . .).

𝑀10 Attributed FM Non-Boolean FM 𝑀0, 𝑀8 Feature models with attributes.
TVL [22], FaMa [17].Feature Attribute Attached Information Features with attributes (e.g., cost, performance).

𝑀11 Binding time Attached Information 𝑀0, 𝑀8 Point time when the variability decision must be made. IVML [50].

𝑀12 Default Value Value Assignment 𝑀0, 𝑀8 It allows establishing a default value to a typed feature or attribute. PyFML [3].

𝑀13 Delta Value Value Assignment 𝑀0, 𝑀8, 𝑀9, 𝑀18 It reduces the number of acceptable numeric values. VM [4].

𝑀14 Range Value Assignment 𝑀0, 𝑀8, 𝑀9, 𝑀18 It allows defining ranges of values for numerical features or attributes. VM [4].

C
on

st
ra
in
ts

𝑀15 Simple dependency Cross-Tree Constraint 𝑀0 Requires and excludes constraints. FODA [38], FDL [63].

𝑀16 Propositional logic constraint Cross-Tree Constraint 𝑀0 Arbitrary propositional formulas over the features (¬, ∧, ∨,⇒,⇔). Almost all languages.

𝑀17 First-order logic constraint Cross-Tree Constraint 𝑀0, 𝑀3, 𝑀7 Quantifiers (∀, ∃), predicates, functions, and constants. Forfamel [7], Clafer [37].

𝑀18 Relational expressions Cross-Tree Constraint 𝑀0, 𝑀8 Operators for comparing features or attributes (==, <, <=, >, >=, ≠, !). Clafer [37], PyFML [3].

𝑀19 Arithmetic expressions Cross-Tree Constraint 𝑀0, 𝑀8 Arithmetic formulas, functions, and operators (+, −, ×, /, %,. . .). Clafer [37], PyFML [3].

𝑀20 Cardinalities expressions Cross-Tree Constraint 𝑀0, 𝑀3, 𝑀4 Cardinalities expressed in terms of constraints. Clafer [37].

𝑀21 Type restrictions Cross-Tree Constraint 𝑀0, 𝑀8 Type-specific operators for constraints (e.g., String operators, regular expressions). CVL (OCL) [34].

𝑀22 Default constraints Cross-Tree Constraint 𝑀0 Constraints that can be altered as part of the constraint-resolution process. IVML [50].

Sc
al
ab

il
it
y

𝑀23 Compositional FM Feature Model 𝑀0, 𝑀8 Mechanisms for composition and inheritance for large feature models.
Clafer [37], FAMILIAR [2],

CVL [34], VELVET [48].

Interface The concept of interface of feature model for modularization.

Scope Support for declaring scopes (e.g., scoped import of models).

𝑀24 Configuration Reference Interface 𝑀0, 𝑀23 It defines links between models and configurable elements. CVL [34], VSL [1].

𝑀25 Containment Feature Interface 𝑀0, 𝑀23 Composition on type level (aka, composite units). CVL [34], Clafer [37].

𝑀26 Imports 𝑀0, 𝑀23 Import of models. IVML [50], VM [4].

𝑀27 Merge 𝑀0, 𝑀23 Operator for overlapping. FAMILIAR [2].

𝑀28 Aggregate 𝑀0, 𝑀23 Operator for disjoint models. FAMILIAR [2].

𝑀29 Include 𝑀0, 𝑀23 Models can be composed of a model of a larger scale. PyFML [3], TVL [22].

𝑀30 Model Version Non-Boolean FM 𝑀0, 𝑀8 Support for managing versions of the models. IVML [50].

𝑀31 Visibility Non-Boolean FM 𝑀0, 𝑀8 Visibility (e.g., public, private) for configurable elements. VSL [1].

𝑀32 View-Points Non-Boolean FM 𝑀0, 𝑀8 Multiple view-points for feature models. VELVET [48].

C
. 𝑀33 FM Configuration 𝑀0 A full configuration of a feature model as a selection (and assignment) of features. Almost all languages.

𝑀34 FM Partial Configuration Configuration 𝑀0 ,𝑀33 A partial configuration of a feature model. Clafer [37], VM [4].

FeatureModel

name : EString
getFeature(id EString) : Feature

Feature

id : EString
name : EString
mandatory : EBoolean = false
selected : EBoolean = false
isLeaf() : EBoolean
isRoot() : EBoolean

CrossTreeConstraint

AlternativeGroup OrGroupFeatureGroup

[0..1] root [0..*] features

[0..*] crossTreeConstraints

[0..1] parent

[0..*] children

(a) Metamodel𝑀0.

BasicConstraint

 leftFeature : Feature
 rightFeature : Feature

Requires Excludes

(b) Metamodel𝑀15.
Figure 2: FMmetamodels for Basic Feature Models.

DataType
PrimitiveTypeEnum

Boolean
Natural
Integer
Real
String

PrimitiveType

type : PrimitiveTypeEnum
= Boolean

TypedFeature

 children : Feature
 parent : Feature

Value

ObjectType

type : Object

Object

java.lang.Object

NonTraditionalFM

 root : Feature
 features : Feature
 crossTreeConstraints : CrossTreeConstraint

[1..1] type

[1..1] type

[0..*] value

[0..*] typedfeatures

(a) Metamodel𝑀8.

NumericalFM

 root : Feature
 features : Feature
 crossTreeConstraints : CrossTreeConstraint

NumericalFeature

children : Feature
parent : Feature
type : DataType
value : Value

[0..*] numericalfeatures

(b) Metamodel𝑀9.
Figure 3: FMmetamodels for Numerical Feature Models.

Optional Feature and Mandatory Feature language constructs

are implemented as a unique attribute of the Feature class, while

the Root and Parent-Child Relationship constructs are defined
as composition references. Finally, the FeatureModel class in𝑀0

exposes the CrossTreeConstraint abstract class using the com-

position relation that enables specifying constraints in separate

metamodels as in 𝑀15 where BasicConstraint extends it, and

Requires and Excludes extend BasicConstraint, all of them us-

ing the Super Type relation. The same design is used in 𝑀8 and

𝑀9 to define generic concepts for non-Boolean features (𝑀8), and

specializing them for numerical features (𝑀9).

5 CONCLUSIONS AND ONGOINGWORK
Our approach advocates for a modular and extensible design that

allows practitioners to decide which language levels support based

on their needs. Using just the needed language constructs may

lead to better performance and analysis capabilities that are not

available for a full language with all possible constructs.

Our ongoing work includes taking advantages of MDE tech-

niques (e.g., model transformations) at the language construct level

to support and automatize activities such as the interoperability

between existing languages, tools, and solvers with different level of

expressiveness and analyzability, language analysis (e.g., expressive-
ness, succinctness, embeddability), the evolution of feature models

(e.g., edits and refactorings), and benchmarking (e.g., automated

tests). We also plan to evaluate the applicability and usefulness of

our approach by covering the usage scenarios for a common feature

modeling language identified in the SPL community [18].

ACKNOWLEDGMENTS
Work supported by Magic P12-TIC1814, MEDEA RTI2018-099213-B-I00 (co-

financed by FEDER), Rhea P18-FR-1081 (MCI/AEI/FEDER, UE), LEIAUMA18-

FEDERIA-157, and TASOVA MCIU-AEI TIN2017-90644-REDT.

 REFERENCES

[1] Andreas Abele, Yiannis Papadopoulos, David Servat, Martin Törngren, and

Matthias Weber. 2010. The CVM Framework - A Prototype Tool for Composi-

tional Variability Management. In Fourth International Workshop on Variability
Modelling of Software-Intensive Systems (ICB-Research Report), Vol. 37. Univer-
sität Duisburg-Essen, 101–105. http://www.vamos-workshop.net/proceedings/

VaMoS_2010_Proceedings.pdf

[2] Mathieu Acher, Philippe Collet, Philippe Lahire, and Robert B. France. 2013.

FAMILIAR: A domain-specific language for large scale management of feature

models. Sci. Comput. Program. 78, 6 (2013), 657–681. https://doi.org/10.1016/j.

scico.2012.12.004

[3] A. F. Al-Azzawi. 2018. PyFml - a Textual Language For Feature Modeling. Inter-
national Journal of Software Engineering Applications (IJSEA) 9, 1 (2018), 41–53.
https://doi.org/10.5121/ijsea.2018.9104

[4] Mauricio Alférez, Mathieu Acher, José A. Galindo, Benoit Baudry, and David

Benavides. 2019. Modeling variability in the video domain: language and

experience report. Software Quality Journal 27, 1 (2019), 307–347. https:

//doi.org/10.1007/s11219-017-9400-8

[5] Mauricio Alférez, José Angel Galindo Duarte, Mathieu Acher, and Benoit Baudry.

2014. Modeling Variability in the Video Domain: Language and Experience Report.
Research Report RR-8576. INRIA. https://hal.inria.fr/hal-01023159

[6] Timo Asikainen and Tomi Männistö. 2009. Nivel: a metamodelling language

with a formal semantics. Software and Systems Modeling 8, 4 (2009), 521–549.

https://doi.org/10.1007/s10270-008-0103-2

[7] Timo Asikainen, Tomi Männistö, and Timo Soininen. 2006. A Unified Conceptual

Foundation for Feature Modelling. In 10th International Software Product Line
Conference (SPLC 2006). IEEE Computer Society, 31–40. https://doi.org/10.1109/

SPLINE.2006.1691575

[8] C. Atkinson and T. Kuhne. 2003. Model-driven development: a metamodeling

foundation. IEEE Software 20, 5 (2003), 36–41.
[9] Rabih Bashroush, Muhammad Garba, Rick Rabiser, Iris Groher, and Goetz

Botterweck. 2017. CASE Tool Support for Variability Management in Soft-

ware Product Lines. ACM Comput. Surv. 50, 1 (2017), 14:1–14:45. https:

//doi.org/10.1145/3034827

[10] Don S. Batory. 2005. Feature Models, Grammars, and Propositional Formulas. In

9th International Software Product Line Conference (SPLC 2005) (Lecture Notes in
Computer Science), Vol. 3714. Springer, 7–20. https://doi.org/10.1007/11554844_3

[11] Don S. Batory. 2019. Should future variability modeling languages express

constraints in OCL?. In 23rd International Systems and Software Product Line
Conference (SPLC 2019), Volume B, Carlos Cetina, Oscar Díaz, Laurence Duchien,
Marianne Huchard, Rick Rabiser, Camille Salinesi, Christoph Seidl, Xhevahire

Tërnava, Leopoldo Teixeira, Thomas Thüm, and Tewfik Ziadi (Eds.). ACM, 87:1.

https://doi.org/10.1145/3307630.3342406

[12] Don S. Batory and Najd Altoyan. 2020. Aocl : A Pure-Java Constraint and Trans-

formation Language for MDE. In 8th International Conference on Model-Driven
Engineering and Software Development (MODELSWARD 2020). SCITEPRESS, 319–
327. https://doi.org/10.5220/0008942803190327

[13] David Benavides. 2019. Variability Modelling and Analysis During 30 Years. In

From Software Engineering to Formal Methods and Tools, and Back (Lecture Notes
in Computer Science), Vol. 11865. Springer, 365–373. https://doi.org/10.1007/978-

3-030-30985-5_21

[14] David Benavides, Pablo Trinidad Martín-Arroyo, and Antonio Ruiz Cortés. 2005.

Automated Reasoning on Feature Models. In 17th International Conference on Ad-
vanced Information Systems Engineering (CAiSE 2005) (Lecture Notes in Computer
Science), Vol. 3520. Springer, 491–503. https://doi.org/10.1007/11431855_34

[15] David Benavides, Rick Rabiser, Don S. Batory, and Mathieu Acher. 2019. First

international workshop on languages for modelling variability (MODEVAR 2019).

In 23rd International Systems and Software Product Line Conference (SPLC 2019),
Volume A. ACM, 46:1. https://doi.org/10.1145/3336294.3342364

[16] David Benavides, Sergio Segura, and Antonio Ruiz Cortés. 2010. Automated

analysis of feature models 20 years later: A literature review. Inf. Syst. 35, 6 (2010),
615–636. https://doi.org/10.1016/j.is.2010.01.001

[17] David Benavides, Sergio Segura, Pablo Trinidad, and Antonio Ruiz Cortés. 2007.

FAMA: Tooling a Framework for the Automated Analysis of Feature Models. In

First International Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS 2007). 129–134.

[18] Thorsten Berger and Philippe Collet. 2019. Usage scenarios for a common

feature modeling language. In 23rd International Systems and Software Product
Line Conference (SPLC 2019), Volume B. ACM, 86:1–86:8. https://doi.org/10.1145/

3307630.3342403

[19] Thorsten Berger, Steven She, Rafael Lotufo, Andrzej Wasowski, and Krzysztof

Czarnecki. 2013. A Study of Variability Models and Languages in the Systems

Software Domain. IEEE Trans. Software Eng. 39, 12 (2013), 1611–1640. https:

//doi.org/10.1109/TSE.2013.34

[20] Vinícius Bischoff, Kleinner Farias, Lucian José Gonçales, and Jorge Luis Victória

Barbosa. 2019. Integration of feature models: A systematic mapping study. Inf.
Softw. Technol. 105 (2019), 209–225. https://doi.org/10.1016/j.infsof.2018.08.016

[21] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas

Wortmann. 2018. Controlled and Extensible Variability of Concrete and Abstract

Syntax with Independent Language Features. In 12th International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS 2018), Rafael Capilla,
Malte Lochau, and Lidia Fuentes (Eds.). ACM, 75–82. https://doi.org/10.1145/

3168365.3168368

[22] Andreas Classen, Quentin Boucher, and Patrick Heymans. 2011. A text-based

approach to feature modelling: Syntax and semantics of TVL. Sci. Comput.
Program. 76, 12 (2011), 1130–1143. https://doi.org/10.1016/j.scico.2010.10.005

[23] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. 2013.

Beyond boolean product-line model checking: dealing with feature attributes

and multi-features. In 35th International Conference on Software Engineering, ICSE
’13, San Francisco, CA, USA, May 18-26, 2013, David Notkin, Betty H. C. Cheng,

and Klaus Pohl (Eds.). IEEE Computer Society, 472–481. https://doi.org/10.1109/

ICSE.2013.6606593

[24] Krzysztof Czarnecki and Ulrich W. Eisenecker. 2000. Generative programming -
methods, tools and applications. Addison-Wesley. http://www.addison-wesley.

de/main/main.asp?page=englisch/bookdetails&productid=99258

[25] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. 2005. Formaliz-

ing cardinality-based feature models and their specialization. Software Process:
Improvement and Practice 10, 1 (2005), 7–29. https://doi.org/10.1002/spip.213

[26] Krzysztof Czarnecki, Chang Hwan Peter Kim, and Karl Trygve Kalleberg. 2006.

Feature Models are Views on Ontologies. In 10th International Software Product
Line Conference (SPLC 2006). IEEE Computer Society, 41–51. https://doi.org/10.

1109/SPLINE.2006.1691576

[27] Holger Eichelberger, Christian Kröher, and Klaus Schmid. 2013. An Analysis

of Variability Modeling Concepts: Expressiveness vs. Analyzability. In 13th In-
ternational Conference on Software Reuse (ICSR 2013) (Lecture Notes in Computer
Science), Vol. 7925. Springer, 32–48. https://doi.org/10.1007/978-3-642-38977-1_3

[28] Holger Eichelberger and Klaus Schmid. 2015. Mapping the design-space of textual

variability modeling languages: a refined analysis. STTT 17, 5 (2015), 559–584.

https://doi.org/10.1007/s10009-014-0362-x

[29] Sascha El-Sharkawy, Nozomi Yamagishi-Eichler, and Klaus Schmid. 2019. Metrics

for analyzing variability and its implementation in software product lines: A

systematic literature review. Inf. Softw. Technol. 106 (2019), 1–30. https://doi.org/

10.1016/j.infsof.2018.08.015

[30] José A. Galindo and David Benavides. 2019. Towards a new repository for

feature model exchange. In 23rd International Systems and Software Product Line
Conference (SPLC 2019), Volume B. ACM, 85:1–85:4. https://doi.org/10.1145/

3307630.3342405

[31] José A. Galindo, David Benavides, Pablo Trinidad, Antonio Manuel Gutiérrez-

Fernández, and Antonio Ruiz-Cortés. 2019. Automated analysis of feature models:

Quo vadis? Computing 101, 5 (2019), 387–433. https://doi.org/10.1007/s00607-

018-0646-1

[32] Martin L. Griss, John M. Favaro, and Massimo D’Alessandro. 1998. Integrating

feature modeling with the RSEB. In 5th International Conference on Software Reuse
(ICSR 1998). IEEE Computer Society, 76–85. https://doi.org/10.1109/ICSR.1998.

685732

[33] David Harel and Bernhard Rumpe. 2004. Meaningful Modeling: What’s the

Semantics of "Semantics"? IEEE Computer 37, 10 (2004), 64–72. https://doi.org/

10.1109/MC.2004.172

[34] Øystein Haugen, Birger Møller-Pedersen, Jon Oldevik, Gøran K. Olsen, and

Andreas Svendsen. 2008. Adding Standardized Variability to Domain Specific

Languages. In 12th International Software Product Line Conference (SPLC 2008).
IEEE Computer Society, 139–148. https://doi.org/10.1109/SPLC.2008.25

[35] Patrick Heymans, Pierre-Yves Schobbens, Jean-Christophe Trigaux, Raimundas

Matulevicius, Andreas Classen, and Yves Bontemps. 2007. Towards the compara-

tive evaluation of feature diagram languages. In Software and Services Variability
Management Workshop Concepts, Models and Tools (SVM 2007).

[36] José-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2019. Software product line

engineering: a practical experience. In 23rd International Systems and Software
Product Line Conference (SPLC 2019), Volume A. ACM, 25:1–25:13. https://doi.

org/10.1145/3336294.3336304

[37] Paulius Juodisius, Atrisha Sarkar, Raghava Rao Mukkamala, Michal Antkiewicz,

Krzysztof Czarnecki, and Andrzej Wasowski. 2019. Clafer: Lightweight Modeling

of Structure, Behaviour, and Variability. Programming Journal 3, 1 (2019), 2.

https://doi.org/10.22152/programming-journal.org/2019/3/2

[38] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and A Spencer

Peterson. 1990. Feature-oriented domain analysis (FODA) feasibility study. Tech-
nical Report. Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst.

Technical Report CMU/SEI-90-TR-21.

[39] Kyo Chul Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim, Euiseob Shin, and Moon-

hang Huh. 1998. FORM: A Feature-Oriented Reuse Method with Domain-

Specific Reference Architectures. Ann. Software Eng. 5 (1998), 143–168. https:

//doi.org/10.1023/A:1018980625587

[40] Alexander Knüppel, Thomas Thüm, Stephan Mennicke, Jens Meinicke, and Ina

Schaefer. 2017. Is there a mismatch between real-world feature models and

http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
http://www.vamos-workshop.net/proceedings/VaMoS_2010_Proceedings.pdf
https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.1016/j.scico.2012.12.004
https://doi.org/10.5121/ijsea.2018.9104
https://doi.org/10.1007/s11219-017-9400-8
https://doi.org/10.1007/s11219-017-9400-8
https://hal.inria.fr/hal-01023159
https://doi.org/10.1007/s10270-008-0103-2
https://doi.org/10.1109/SPLINE.2006.1691575
https://doi.org/10.1109/SPLINE.2006.1691575
https://doi.org/10.1145/3034827
https://doi.org/10.1145/3034827
https://doi.org/10.1007/11554844_3
https://doi.org/10.1145/3307630.3342406
https://doi.org/10.5220/0008942803190327
https://doi.org/10.1007/978-3-030-30985-5_21
https://doi.org/10.1007/978-3-030-30985-5_21
https://doi.org/10.1007/11431855_34
https://doi.org/10.1145/3336294.3342364
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1145/3307630.3342403
https://doi.org/10.1145/3307630.3342403
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1109/TSE.2013.34
https://doi.org/10.1016/j.infsof.2018.08.016
https://doi.org/10.1145/3168365.3168368
https://doi.org/10.1145/3168365.3168368
https://doi.org/10.1016/j.scico.2010.10.005
https://doi.org/10.1109/ICSE.2013.6606593
https://doi.org/10.1109/ICSE.2013.6606593
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258
http://www.addison-wesley.de/main/main.asp?page=englisch/bookdetails&productid=99258
https://doi.org/10.1002/spip.213
https://doi.org/10.1109/SPLINE.2006.1691576
https://doi.org/10.1109/SPLINE.2006.1691576
https://doi.org/10.1007/978-3-642-38977-1_3
https://doi.org/10.1007/s10009-014-0362-x
https://doi.org/10.1016/j.infsof.2018.08.015
https://doi.org/10.1016/j.infsof.2018.08.015
https://doi.org/10.1145/3307630.3342405
https://doi.org/10.1145/3307630.3342405
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1007/s00607-018-0646-1
https://doi.org/10.1109/ICSR.1998.685732
https://doi.org/10.1109/ICSR.1998.685732
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/MC.2004.172
https://doi.org/10.1109/SPLC.2008.25
https://doi.org/10.1145/3336294.3336304
https://doi.org/10.1145/3336294.3336304
https://doi.org/10.22152/programming-journal.org/2019/3/2
https://doi.org/10.1023/A:1018980625587
https://doi.org/10.1023/A:1018980625587

product-line research?. In 11th Joint Meeting on Foundations of Software Engineer-
ing (ESEC/FSE 2017). ACM, 291–302. https://doi.org/10.1145/3106237.3106252

[41] Maira Marques, Jocelyn Simmonds, Pedro O. Rossel, and María Cecilia Bastarrica.

2019. Software product line evolution: A systematic literature review. Inf. Softw.
Technol. 105 (2019), 190–208. https://doi.org/10.1016/j.infsof.2018.08.014

[42] Raphaël Michel, Andreas Classen, Arnaud Hubaux, and Quentin Boucher. 2011.

A formal semantics for feature cardinalities in feature diagrams. In Fifth Interna-
tional Workshop on Variability Modelling of Software-Intensive Systems, Namur,
Belgium, January 27-29, 2011. Proceedings (ACM International Conference Proceed-
ings Series), Patrick Heymans, Krzysztof Czarnecki, and Ulrich W. Eisenecker

(Eds.). ACM, 82–89. https://doi.org/10.1145/1944892.1944902

[43] Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia Fuentes, and Don S. Batory.

2019. Uniform random sampling product configurations of feature models that

have numerical features. In 23rd International Systems and Software Product Line
Conference (SPLC 2019), Volume A. ACM, 39:1–39:13. https://doi.org/10.1145/

3336294.3336297

[44] Damir Nesic, Jacob Krüger, Stefan Stanciulescu, and Thorsten Berger. 2019. Prin-

ciples of feature modeling. In Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering (ESEC/SIGSOFT
FSE 2019). ACM, 62–73. https://doi.org/10.1145/3338906.3338974

[45] Holger Papajewski, Benjamin Klatt, Andreas Graf, and André Maaß. 2014. EMF

Feature Model. https://projects.eclipse.org/projects/modeling.emft.featuremodel.

[46] SPES_XT project. 2015. The Variability Exchange Language (VEL).

https://www.variability-exchange-language.org/.

[47] Mikko Raatikainen, Juha Tiihonen, and Tomi Männistö. 2019. Software product

lines and variability modeling: A tertiary study. J. Syst. Softw. 149 (2019), 485–510.
https://doi.org/10.1016/j.jss.2018.12.027

[48] Marko Rosenmüller, Norbert Siegmund, Thomas Thüm, and Gunter Saake. 2011.

Multi-dimensional variability modeling. In 5th International Workshop on Variabil-
ity Modelling of Software-Intensive Systems (VaMoS 2011) (ACM International Con-
ference Proceedings Series). ACM, 11–20. https://doi.org/10.1145/1944892.1944894

[49] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani, and Nico Tan-

zarella. 2010. Delta-Oriented Programming of Software Product Lines. In Soft-
ware Product Lines: Going Beyond - 14th International Conference, SPLC 2010,
Jeju Island, South Korea, September 13-17, 2010. Proceedings (Lecture Notes in
Computer Science), Jan Bosch and Jaejoon Lee (Eds.), Vol. 6287. Springer, 77–91.

https://doi.org/10.1007/978-3-642-15579-6_6

[50] Klaus Schmid, Christian Kröher, and Sascha El-Sharkawy. 2018. Variability

modeling with the integrated variability modeling language (IVML) and EASy-

producer. In 22nd International Systems and Software Product Line Conference
(SPLC 2018), Volume 1. ACM, 306. https://doi.org/10.1145/3233027.3233057

[51] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe Trigaux, and Yves

Bontemps. 2007. Generic semantics of feature diagrams. Comput. Networks 51, 2
(2007), 456–479. https://doi.org/10.1016/j.comnet.2006.08.008

[52] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. Capturing variability in

space and time with hyper feature models. In The Eighth International Workshop
on Variability Modelling of Software-intensive Systems, VaMoS ’14, Sophia Antipolis,
France, January 22-24, 2014, Philippe Collet, Andrzej Wasowski, and Thorsten

Weyer (Eds.). ACM, 6:1–6:8. https://doi.org/10.1145/2556624.2556625

[53] Christoph Seidl, Ina Schaefer, and Uwe Aßmann. 2014. DeltaEcore - A Model-

Based Delta Language Generation Framework. In Modellierung 2014, 19.-21. März
2014, Wien, Österreich (LNI), Hans-Georg Fill, Dimitris Karagiannis, and Ulrich

Reimer (Eds.), Vol. P-225. GI, 81–96. https://dl.gi.de/20.500.12116/17067

[54] Christoph Seidl, Tim Winkelmann, and Ina Schaefer. 2016. A Software Product

Line of Feature Modeling Notations and Cross-Tree Constraint Languages. In

Modellierung 2016, 2.-4. März 2016, Karlsruhe (LNI), Andreas Oberweis and Ralf H.
Reussner (Eds.), Vol. P-254. GI, 157–172. https://dl.gi.de/20.500.12116/821

[55] Larissa Rocha Soares, Pierre-Yves Schobbens, Ivan do Carmo Machado, and

Eduardo Santana de Almeida. 2018. Feature interaction in software product line

engineering: A systematic mapping study. Inf. Softw. Technol. 98 (2018), 44–58.
https://doi.org/10.1016/j.infsof.2018.01.016

[56] Joshua Sprey, Chico Sundermann, Sebastian Krieter, Michael Nieke, Jacopo

Mauro, Thomas Thüm, and Ina Schaefer. 2020. SMT-based variability anal-

yses in FeatureIDE. In 14th International Working Conference on Variability
Modelling of Software-Intensive Systems (VaMoS 2020). ACM, 6:1–6:9. https:

//doi.org/10.1145/3377024.3377036

[57] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. 2008. EMF:
eclipse modeling framework. Pearson Education.

[58] Chico Sundermann, Thomas Thüm, and Ina Schaefer. 2020. Evaluating #SAT

solvers on industrial feature models. In 14th International Working Conference
on Variability Modelling of Software-Intensive Systems (VaMoS 2020), Maxime

Cordy, Mathieu Acher, Danilo Beuche, and Gunter Saake (Eds.). ACM, 3:1–3:9.

https://doi.org/10.1145/3377024.3377025

[59] Mohammad Tanhaei, Jafar Habibi, and Seyed-Hassan Mirian-Hosseinabadi. 2016.

Automating feature model refactoring: A Model transformation approach. Inf.
Softw. Technol. 80 (2016), 138–157. https://doi.org/10.1016/j.infsof.2016.08.011

[60] Maurice H. ter Beek, Klaus Schmid, and Holger Eichelberger. 2019. Textual

variability modeling languages: an overview and considerations. In 23rd Interna-
tional Systems and Software Product Line Conference (SPLC 2019), Volume B. ACM,

82:1–82:7. https://doi.org/10.1145/3307630.3342398

[61] Thomas Thüm, Don S. Batory, and Christian Kästner. 2009. Reasoning about

edits to feature models. In 31st International Conference on Software Engineering
(ICSE 2009). IEEE, 254–264. https://doi.org/10.1109/ICSE.2009.5070526

[62] Thomas Thüm, Christoph Seidl, and Ina Schaefer. 2019. On language levels for

feature modeling notations. In 23rd International Systems and Software Product
Line Conference (SPLC 2019), Volume B. ACM, 83:1–83:4. https://doi.org/10.1145/

3307630.3342404

[63] Arie Van Deursen and Paul Klint. 2002. Domain-specific language design requires

feature descriptions. Journal of computing and information technology 10, 1 (2002),

1–17. https://doi.org/10.2498/cit.2002.01.01

[64] Ángela Villota, Raúl Mazo, and Camille Salinesi. 2019. The high-level variability

language: an ontological approach. In Proceedings of the 23rd International Sys-
tems and Software Product Line Conference, SPLC 2019, Volume B, Paris, France,
September 9-13, 2019, Carlos Cetina, Oscar Díaz, Laurence Duchien, Marianne

Huchard, Rick Rabiser, Camille Salinesi, Christoph Seidl, Xhevahire Tërnava,

Leopoldo Teixeira, Thomas Thüm, and Tewfik Ziadi (Eds.). ACM, 84:1–84:8.

https://doi.org/10.1145/3307630.3342401

https://doi.org/10.1145/3106237.3106252
https://doi.org/10.1016/j.infsof.2018.08.014
https://doi.org/10.1145/1944892.1944902
https://doi.org/10.1145/3336294.3336297
https://doi.org/10.1145/3336294.3336297
https://doi.org/10.1145/3338906.3338974
https://doi.org/10.1016/j.jss.2018.12.027
https://doi.org/10.1145/1944892.1944894
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1145/3233027.3233057
https://doi.org/10.1016/j.comnet.2006.08.008
https://doi.org/10.1145/2556624.2556625
https://dl.gi.de/20.500.12116/17067
https://dl.gi.de/20.500.12116/821
https://doi.org/10.1016/j.infsof.2018.01.016
https://doi.org/10.1145/3377024.3377036
https://doi.org/10.1145/3377024.3377036
https://doi.org/10.1145/3377024.3377025
https://doi.org/10.1016/j.infsof.2016.08.011
https://doi.org/10.1145/3307630.3342398
https://doi.org/10.1109/ICSE.2009.5070526
https://doi.org/10.1145/3307630.3342404
https://doi.org/10.1145/3307630.3342404
https://doi.org/10.2498/cit.2002.01.01
https://doi.org/10.1145/3307630.3342401

	Abstract
	1 Introduction
	2 Related work and Motivation
	2.1 Recent advances in feature modeling
	2.2 Language constructs and language levels

	3 Extensible and modular metamodels for feature modeling
	3.1 Formal definition of feature models
	3.2 Formalization of our approach

	4 Instantiating and implementing FM
	4.1 Instantiation of FM
	4.2 Implementation of FM

	5 Conclusions and Ongoing Work
	References

