
Extending the Common Variability Language (CVL) Engine:
A practical tool

Jose-Miguel Horcas
Universidad de Málaga

Andalucía Tech, Málaga, Spain
horcas@lcc.uma.es

Mónica Pinto
Universidad de Málaga

Andalucía Tech, Málaga, Spain
pinto@lcc.uma.es

Lidia Fuentes
Universidad de Málaga

Andalucía Tech, Málaga, Spain
l�@lcc.uma.es

 ABSTRACT

The Common Variability Language (CVL) has become a reference in
the speci�cation and resolution of variability in the last few years.
Despite the multiple advantages of CVL (orthogonal variability,
architecture variability resolution, MOF-compliant, standard pro-
posed,. . .), several approaches require extending and/or modifying
the CVL approach in di�erent ways in order to ful�ll the industrial
needs for variability modeling in Software Product Lines. However,
the community lacks a tool that would enable proposed extensions
and the integration of novel approaches to be put into practice.
Existing tools that provide support for CVL are incomplete or are
mainly focused on the variability model’s editor, instead of execut-
ing the resolution of the variability over the base models. Moreover,
there is no API that allows direct interaction with the CVL engine
to extend or use it in an independent application. In this paper,
we identify the extension points of the CVL approach with the
goal of making the CVL engine more �exible, and to help software
architects in the task of resolving the variability of their products.
The practical tool presented here is a working implementation of
the CVL engine, that can be extended through a proposed API.

 KEYWORDS

CVL, Software Product Line, Variability

1 INTRODUCTION

The Common Variability Language (CVL) [6] has become one of
the most used languages for specifying and resolving architecture

variability in the last few years. CVL has displaced traditional fea-
ture modeling for managing the variability in Software Product
Lines (SPLs) approaches [10], especially for architecture-centric
approaches. This is partly due to several advantages that CVL has
over other variability modeling languages (e.g., orthogonal vari-
ability, architecture variability resolution, MOF compliant, several
levels of abstraction, units of modularization, complete de�nition
of clonable and variable features).

Despite the great �exibility of the CVL language, several ap-
proaches [4, 7, 9, 11] have had to extend and/or modify CVL in
di�erent ways to ful�ll the industrial needs of variability modeling
in SPLs. For instance, CVL has been upgraded to the BVR (Base,
Variability, Resolution models) language [7] by modifying the CVL
metamodel, where some constructs have been removed for the sake
of simplicity and other new constructs have been added for better
and more suitable expressiveness. Other approaches have changed
the materialization of the variation points to model the variability
directly over code (e.g., Java programs) [4]; or have de�ned new
semantics for the variation points to apply more complex model
transformations to the products [9]. Moreover, some approaches
may require having to modify the CVL execution engine to include
additional steps before the materialization process, for example, to
include an identi�cation process of the points in the base models
where the variation points can be safety applied [11].

However, the CVL community lacks tools that �rst, fully support
the CVL standard1, and second, allow the di�erent extensions of the
language to be integrated. Although new CVL tools have recently
appeared [2, 13], they do not provide the �exibility required by
the di�erent approaches that use CVL. For example, the new BVR
Tool [13] implements and provides support for the BVR language
(an evolution of CVL), enabling feature modeling, resolution, real-
ization and derivation of products, among other features. However,
the tool only allows the materialization of the variability through
substitutions of parts of the base models (i.e., fragments substi-
tutions), and custom transformations de�ned by the user are not
supported. Moreover, there is no API for CVL that allows direct in-
teraction with the CVL engine to use or extend it in an independent
application.

In this paper, we identify the points in the CVL approach where
it can be extended without losing the main principles of the CVL
standard for specifying and resolving variability. This is done with
the goal of increasing the language’s �exibility and helping its users
in the task of resolving the variability in their products. To illustrate
this, we provide a practical tool as a real implementation of the CVL
engine, that can be easily extended with di�erent execution engines

1CVL was approved by the OMG for standardization, but the process is currently
frozen by legal issues.

Variability

Model

Base

Models

Base

Models
Base

Models
Resolution

Models

Base

Models
Base

Models
Resolved

Models

CVL
execution

engine

configuration

refers
conforms to

CVL

metamodel
MOF

conforms to

refers

delegation
M2M
Engine

materialization

Figure 1: CVL approach.

— e.g., using general purpose model transformation languages such
as the ATL Transformation Language.

The remainder of the paper is organized as follows. Section 2
introduces the CVL approach and motivates our proposed tool. In
Section 3 we identify the extension points in the CVL approach
and the existing approaches that use these points for their own
purposes. Section 4 presents our proposed API of the CVL engine.
Finally, Section 5 presents the conclusions and future work.

2 BACKGROUND AND MOTIVATION
In this section we present the CVL approach and motivate our
proposal comparing our proposed tool with existing CVL tools.

2.1 The CVL approach
An overview of the CVL approach can be seen in Fig. 1. CVL speci-
�es, in separate models, the variability that can be applied to a base
model. The base model is a model in the domain language that can
be de�ned using a MOF-based metamodel and does not contain
any information about variability. The variability information is
separately speci�ed in a variability model, according to the CVL
metamodel. How the variability model can be resolved to produce a
con�gured new model from the base model is described in the reso-
lution models (or “con�guration models” in the SPL terminology).
CVL provides an executable engine to automatically (materialize) a
resolved model. The resolved model is a fully con�gured product
model with the variability resolved.

In CVL, the variability model consists of two main parts: (1) an
abstract level with variability speci�cations (VSpecs tree), and (2) a
concrete level with variation points (VPs). VSpecs are tree structures
representing choices (“features” in most SPL terminologies) and can
include logical constraints de�ned in a subset of the Object Con-
straint Language (OCL). There are di�erent types of VSpec: Choices
(yes/no decision), Variables (attributes), VClassi�ers (clonable fea-
tures), Composite VSpecs (modularization units). Variation points
de�ne the points of the base model that are variable and can be
modi�ed during the materialization process. Variation points also
specify how the elements of the base model are modi�ed by de�ning
speci�c modi�cations to be applied by means of model-to-model
(M2M) transformations. The semantics of these transformations is
speci�c to the kind of variation point. Some of the variation points

Table 1: Comparative between the existing CVL tools.

Characteristic MoSIS CVL CVL 2 BVR KCVL Our tool

Graphical editors for the variability model � � � � �
Support OCL cross-tree constraints � � � � �
Materialization process � � � � �
Support for custom transformations (OVPs) � � � � �
CVL metamodel available � � � � �
CVL Engine API � � � � �

� It supports the characteristic. � It does not support the characteristic.

supported by CVL are the existence of elements of the base model
(ObjectExistence) or the links between them (LinkExistence), the
assignment of an attribute’s value (ParametricSlotAssignment), or
the replacement of a set of elements with another set of elements
(FragmentSubstitution). An important type of variation point is the
Opaque Variation Point (OVP) that enables de�ning new custom
model transformations that are not pre-de�ned in CVL.2 During
CVL’s execution, the CVL engine delegates its control to an M2M
engine in charge of executing the transformations de�ned by the
variation points (as shown in Fig. 1).

2.2 Motivation
Some approaches concentrate on the evolution of the CVL models
to automatize the management of the models, or on improving the
CVL language or extending it to their needs. For example, in [5]
the semantics of the CVL’s variation points is customized, using
Kermeta, according to the semantics of the base model domain.
In [4], the variation points of CVL are implemented as source code
transformations to apply them directly to Java source code. In [8]
and [9], the authors de�ne custom model transformations to weave
functionality related to quality attributes (e.g., security) into soft-
ware architectures. Finally, Degueule et al. [2] present a variability
solution, connected to the pattern technology and based on an
extension of CVL, to support the derivation of model-based archi-
tectural variants. They have also developed KCVL, a custom-made
implementation of CVL augmented with speci�c concepts needed
for realizing patterns.

In [3], the authors present a usability evaluation of CVL applied
to a modeling tool for �rmware code. They conclude that model
con�guration in terms of model fragment substitutions is intuitive
enough to materialize the variability. However, as discussed, there
are several approaches for which the substitution of fragments alone
is not enough to cover their needs [2, 5, 8, 9]. All these approaches
have in common the need for a tool that fully supports the CVL
standard and that allows customizing/extending the CVL approach
to their needs, in order to make the approaches viable.

There have been several attempts to implement a complete CVL
tool. Most of the existing tools belong to the SINTEF3 research
organization:
MoSIS CVL Tool [12]. It is a prototype implementation of the

CVL speci�cation based on Eclipse Modeling Framework (EMF)
and supports any DSL de�ned through EMF. However, this tool
is out-of-date and is no longer under active development.4

2The complete taxonomy of variation points of CVL is available in [1].
3http://www.sintef.no/
4http://www.omgwiki.org/variability/doku.php?id=cvl_tool_from_sintef

http://www.sintef.no/
http://www.omgwiki.org/variability/doku.php?id=cvl_tool_from_sintef

CVL 2 Tool. It is also a prototype tool for the CVL standard that
is in its infancy, released as an early demo. The tool is an inde-
pendent Java application, but only supports the speci�cation of
the variability and resolution models, and does not support the
de�nition of variation points nor the materialization process.5

BVR Tool Bundle [13]. It is a prototype tool which implements
and provides support for the BVR language. It consists of a set
of Eclipse plug-ins that enable feature modeling, resolution, re-
alization and derivation of products, their testing and analysis.
Although this tool is up to date and despite the great support
provided for both BVR and CVL, the tool still does not support
the de�nition of custom transformations through the use of
Opaque Variation Points (OVPs). In fact, the materialization of
the variability is done only through the de�nition of Fragment
Substitution variation points.6

KCVL [2]. KCVL is another prototype implementation of CVL,
released as a set of Eclipse plugins. KCVL comes with a textual
editor for expressing variability abstraction models, variability
realization models and resolution models. Like the other tools,
KCVL does not support all the taxonomy of variation points
de�ned in the CVL standard, as for example the OVPs for custom
transformations.7
A comparison of CVL existing tools is summarized in Table 1.

The comparison focuses on those features that facilitate the use or
extension of the CVL approach by software architects. As shown
in Table 1, existing tools focus on the variability abstraction by
providing graphical tools for the de�nition of the variability and
resolution models. In our case, we do not provide a graphical editor
for the models, but they can be created by using the CVL mod-
eling tools in Eclipse like Sirius.8 Regarding the materialization
process, almost all tools (except the CVL 2 tool), implement it in
order to resolve the variability. However, only our tool supports
the customization of the variation points semantics, in addition to
the de�nition of custom transformations using Opaque Variation
Points. Another important motivation for implementing a tool able
to extend CVL is making available the CVL metamodel, so that
architects and developers can modify it according to their needs.
Our tool provides a CVL metamodel as an ecore �le speci�ed in
EMF. This metamodel allows creating instances of the variability
and resolution models that include custom transformations for the
variation points. Finally, we also provide a working implementation
of the CVL Engine that can be used in third party applications (e.g.,
at runtime to implement Dynamic SPLs), independently from the
CVL tools, and an API to extend our CVL engine.

3 EXTENSION POINTS OF CVL
In Figure 2 we identify the points in the CVL approach where CVL
can be potentially extended, and include examples of these exten-
sions. Basically, there are three ways in which the CVL approach
can be naturally extended — i.e., extended without losing the main
principles of the CVL standard for specifying and resolving variabil-
ity. These are (1) extending the CVL metamodel, (2) extending the
materialization process, and (3) extending the delegation engine.
5http://modelbased.net/tools/cvl-2-tool/
6http://modelbased.net/tools/bvr-tool/
7https://diverse-project.github.io/kcvl/
8https://eclipse.org/sirius/

checkPreconditions()

...

materialize()

...

checkPostconditions()

Variability
Model

Base
Models

Base
Models

Base
Models

Base
Models

Base
Models

Base
Models

Base
Models

Base
Models

Resolution
Models

Base
Models

Base
Models

Resolution
Models

Base
Models

Base
Models
Resolved
Models

Base
Models

Base
Models
Resolved
Models

CVL
execution

engine

CVL
execution

engine

conforms to refers

delegation

materialization

CVL
metamodel

configuration

MOF

conforms toExample:
BVR (evolution

of CVL) [7]

Example:
Identification of target points in

the base model with Henshin [11]

Example:
Weaving models by using

ATL through the OVPs
[9,10]

refers
Extension points of the CVL approachExtension points of the CVL approach

semantic as
model

transformations

Specific
Execution

Engine

M2M
Engine

JVM
Engine

ATL
Engine

QVT
Engine

...

...

semantic
as

Java code

Figure 2: Extension points of CVL.

3.1 Extending the metamodel
Extending the CVL metamodel means the CVL language can be
modi�ed directly. More speci�cally, this allows modifying the vari-
ability and the resolution models by de�ning new constructs to
specify more complex variability relationships, and adding new
kinds of variation points. An example of this kind of extension is
BVR [7] where some constructs have been removed to improve
the simplicity of the variability model and some new constructs
have been added for better and more suitable expressiveness such
as the concepts of targets, resolution literals, and staged variation
points [7].

3.2 Extending the materialization process
Another point of extension in CVL is the process of transforming a
base model into a con�gured product model. This implies having
to modify the CVL engine to extend or adapt the materialization
process to the SPL Engineer’s needs. For example, as Figure 2 shows,
it is possible to include additional steps before and/or after the
materialization of the variability to check the validity of references
to the base model, or to include a process that identi�es points in
base models where the variation points can be safety applied, as is
done in [11] for weaving patterns using the Henshin language.

3.3 Extending the delegation engine
When CVL is executed, it delegates its control to an M2M engine
in charge of executing the transformations de�ned by the variation
points. By extending this delegation mechanism it is possible to
modify the way variation points are realized over the base model.
The most basic modi�cation is to use a new M2M transformation
engine that supports di�erent transformation languages such as
ATL [8, 10], QVT (Query/View/Transformation), or Epsilon Trans-
formation Language (ETL). However, it is also possible to execute
code instead of model transformations to resolve variability [4].

4 CUSTOMIZABLE CVL EXECUTION ENGINE
Using the extension points identi�ed in Section 3, we have devel-
oped a customizable execution engine of CVL that fully supports
the materialization process, including the delegation engine.

http://modelbased.net/tools/cvl-2-tool/
http://modelbased.net/tools/bvr-tool/
https://diverse-project.github.io/kcvl/
https://eclipse.org/sirius/

operations
+materialize(vm : VariabilityModel, rm : ResolutionModel, bm : List<BaseModel>)

CVLEngine

operations
+CVLEngine(ee : ExecutionEngine)
+materialize(vm : VariabilityModel, rm : ResolutionModel, bm : List<BaseModel>)

CVLEngine

operations
+execute(semantic : URL, bm : List<BaseModel>) : URL

ExecutionEngine

operations
+runTransformation(transformation : URL) : URL
+compileTransformation(transformation : URL) : URL

...

M2MEngine

operations
+execute(semantic : URL, bm : List<BaseModel>)
+runTransformation(transformation : URL) : URL
+compileTransformation(transformation : URL) : URL
+activateRefineMode()
+loadModel(model : URL, metamodel : URL)

ATLEngine

ETLEngine

C++Engine

JVMEngine

QVTEngine

executionEngine

�����������

���	
�����������������	
���	�����	����

�������������������	
������

�����������	������������	������	����������

�����	
�������������������	����

��������	����������	��� �������!���
������"���	��
���#�	 ��

$���������������!%�!�������&���	��'������&���	����������	�(�#��

Figure 3: Class diagram of the proposed API of CVL.
Figure 3 represents the main classes and interfaces of the pro-

posed API of our customizable CVL engine.9 The CVLEngine class
de�nes the skeleton of the materialization process in an opera-
tion (materialize), deferring some additional steps to subclasses
following the Template Method design pattern. The materialize
method completely resolves the variability as speci�ed in the CVL
standard, and lets subclasses de�ne certain steps such as the check-
ing of pre and post-conditions [11] without changing the algo-
rithm’s structure, as Figure 2 shows at the materialization point.
The CVLEngine delegates its execution to an execution engine
(ExecutionEngine interface) in charge of executing the seman-
tics speci�ed in the variation points. This ExecutionEngine can
be an M2M transformation engine (M2MEngine) or any other imple-
mentation (e.g., JVMEngine for Java [4], C++Engine for C++, etc.)
that performs the modi�cations de�ned in the variation points over
the base model.

The custom semantics of the variation points is speci�ed in
independent �les according to the speci�c M2M transformation
language, and are introduced into the CVL Engine as part of the
variability model by using references. This means that we can
change the semantics of any variation point if necessary, in addition
to de�ning custom semantics through the use of the OVP variation
points.

Additionally, the materialization process has been improved to
allow executing variation points with negative variability (line 5 in
the materialize method). This means that those variation points
with negative variability will be executed when the variability spec-
i�cation bound to the variation point is resolved negatively — i.e.,
it is not selected in a con�guration of the resolution model. This
depends on the semantics of the variation point and its implemen-
tation. For instance, the ObjectExistence variation point de�nes
that a speci�c element in the base model will exist or not. In the
case that the core base model includes all possible variations, the el-
ement that is associated with the ObjectExistence variation point
needs to be deleted from the model if it is not positively resolved
in the resolution model. So, the ObjectExistence variation point
needs to be executed in order to delete the associated element in
the base model. Figure 4 shows an example of M2M transformation
in ATL with the semantics of the ObjectExistence variation point.
The ‘target’ element in the base model will be deleted when the
variation point is executed. The M2M transformation is parameteri-
zable by using a third binding model and allows providing external
parameters to the transformation rules independently from the
input model (line 9 in Figure 4).
9The complete code can be found in http://150.214.108.91/code/cvl-umatool

�����������	
������������
����������������������������������	����
��� ��������
�!����������"���
���"���
����
	#������$%�"���
���	�
�&
� ��������'()��*+��������,
�-��	�
���'�.�������	�������/������0�"1�1�2���"���
�,
�3
�4����/�

�5������	������*�
��/�
���2��������"���
�6�'7�8���������������9:�;��<9�=��><���?�����?:�@���,
��
���	����#��*�
���A
������	��
�!�������������6/�
#*�
���9���
�������������*�
��/�
:
�&�����
� ��������	��
�-�B

Figure 4: ATL semantics: ObjectExistence variation point.

5 CONCLUSIONS AND FUTUREWORK
We have proposed an implementation of the CVL execution engine,
including an API to resolve the variability through custom model
transformations. The API is an stand-alone library that can be
used in any application that needs to resolve the variability of CVL
models. In comparison with existing CVL tools, our tool can be
extended to meet the needs of architects and developers through
the extension points identi�ed in the CVL approach.

As future work, we are completing the API of the CVL engine in
order to make it fully compatible with existing CVL tools and take
advantage of the graphical editor for the CVL models.

ACKNOWLEDGMENTS
This work is supported by the projects Magic P12-TIC1814 and
HADAS TIN2015-64841-R (co-�nanced by FEDER funds).

REFERENCES
[1] CVL Submission Team. 2012. Common Variability Language (CVL), OMG revised

submission. http://www.omgwiki.org/variability/. (2012).
[2] Thomas Degueule, Joao Bosco Ferreira Filho, Olivier Barais, Mathieu Acher,

Jérôme Le Noir, Sébastien Madelénat, Grégory Gailliard, Godefroy Burlot, and
Olivier Constant. 2015. Tooling Support for Variability and Architectural Patterns
in Systems Engineering. In International Conference on Software Product Line
(SPLC). 361–364.

[3] Jorge Echeverria, Jaime Font, Oscar Pastor, and Carlos Cetina. 2015. Usability
Evaluation of Variability Modeling by means of Common Variability Language.
Complex Systems Informatics and Modeling Quarterly 5 (2015), 61–81.

[4] João Bosco Ferreira Filho, Simon Allier, Olivier Barais, Mathieu Acher, and Benoit
Baudry. 2015. Assessing Product Line Derivation Operators Applied to Java
Source Code: An Empirical Study. In International Conference on Software Product
Line (SPLC). 36–45.

[5] João Bosco Ferreira Filho, Olivier Barais, Jérôme Le Noir, and Jean-Marc Jézéquel.
2012. Customizing the Common Variability Language Semantics for Your Domain
Models. In VARiability for You Workshop (VARY). 3–8.

[6] Ø Haugen, B. Møller-Pedersen, J. Oldevik, G. K. Olsen, and A. Svendsen. 2008.
Adding Standardized Variability to Domain Speci�c Languages. In International
Software Product Line Conference (SPLC). 139–148.

[7] Øystein Haugen and Ommund Øgård. 2014. BVR — Better Variability Results.
In System Analysis and Modeling: Models and Reusability. Springer, 1–15.

[8] J. M. Horcas, M. Pinto, and L. Fuentes. 2014. An Aspect-Oriented Model transfor-
mation to weave security using CVL. In International Conference on Model-Driven
Engineering and Software Development (MODELSWARD). 138–150.

[9] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2014. Injecting Quality
Attributes into Software Architectures with the Common Variability Language.
In International Symposium on Component Based Software Engineering. 35–44.

[10] Jose-Miguel Horcas, Mónica Pinto, and Lidia Fuentes. 2016. An automatic process
for weaving functional quality attributes using a software product line approach.
Journal of Systems and Software 112 (2016), 78–95.

[11] Jose-Miguel Horcas, Mónica Pinto, Lidia Fuentes, and Ste�en Zschaler. 2016.
Towards Contractual Interfaces for Reusable Functional Quality Attribute Oper-
ationalisations. In International Conference on Modularity. 201–205.

[12] Andreas Svendsen, Xiaorui Zhang, Franck Fleurey, Øystein Haugen, Gøran K
Olsen, and Birger Møller-Pedersen. 2010. Modeling Variability in SPLs. In Soft-
ware Product Line Conference. 299.

[13] Anatoly Vasilevskiy, Øystein Haugen, Franck Chauvel, Martin Fagereng Jo-
hansen, and Daisuke Shimbara. 2015. The BVR Tool Bundle to Support Product
Line Engineering. In International Conference on Software Product Line (SPLC).
380–384.

http://150.214.108.91/code/cvl-umatool

Figure 5: Our CVL execution engine tool.

A TOOL DEMONSTRATION
Figure 5 shows the GUI of the current version of our tool that imple-
ments the CVL engine using the API presented in Section 4.10 It is
released as an independent Java application, and allows integrating
and executing the CVL approach both at design time in SPLs and
at runtime for Dynamic SPLs. The CVL engine receives as input
the variability model, the resolution model, the base models and
their metamodels; and resolves the variability generating a resolved
model. The variability and resolution models conform to the CVL
metamodel.11 The base models include (1) the core models over
which the variability will be resolved, and (2) the models, if needed,
that will be used as third-party libraries to be used during materi-
alization (e.g., for the FragmentSubstitution variation point). By
default, we provide the UML metamodel for base models conformed
to UML, but the use of any other DSL is possible by providing its
own metamodel. We provide an implementation of the M2M engine
in ATL that allows performing any model transformation speci�ed
in ATL.

A.1 Demonstration roadmap
To illustrate the feasibility of our customizable CVL execution en-
gine, we present the current available capabilities of our CVL engine
prototype. The demonstration shows the materialization process
of UML software architectures (i.e., the base models) based on the
selection made by a software architect in a variability model — i.e.,
based on the resolution/con�guration model. During the demon-
stration we present several examples that de�ne di�erent variability
models, di�erent variation points and di�erent transformations. Ex-
amples of the items that we use in the demonstration are shown in
Figure 6.

The example consists of a variability model that speci�es the vari-
ability of two security concerns: Encryption and Authentication.
Encryption allows choosing between the RSA and the AES algo-
rithms. Authentication provides two di�erent mechanisms: PIN-
based and User + Password authentication (PIN and UserPassword
features in the variability model). The base model is a library of
security components that will be used in a speci�c application. To
simplify the software architecture we only show the components

10The tool is available in http://150.214.108.91/code/cvl-umatool
11CVL metamodel is available in http://150.214.108.91/code/cvl-metamodel

related to the authentication concern. In order to customize the
library to the application’s needs, we link the variation points of the
variability model with the software components of the architecture.
Only one authentication mechanism is available in the application,
so we use the Object Existence variation point, whose semantics is
speci�ed as a model transformation (implemented in ATL). In this
case, we have implemented the Object Existence variation point as
a negative variability variation point that means it will only be exe-
cuted when the associated feature is not selected in the resolution
model. The application developer selects the desired con�guration
for the authentication mechanism, providing a resolution model.

In our tool, when all the models have been successfully loaded
and the CVL execution engine is executed, the execution is dele-
gated to the ATL Transformation Engine that performs the trans-
formations. In the example used to illustrate part of the demo, the
feature PIN (child of Authentication) has not been selected and
thus its associated variation point will be executed, removing the
components from the base model. As a result, we obtained the
Resolved Model with the Authentication component correctly
con�gured with the User + Password mechanism.

http://150.214.108.91/code/cvl-umatool
http://150.214.108.91/code/cvl-metamodel

ATL Model Transformation: Object Existence

 1 -- @atlcompiler atl2010
 2 -- @nsURI UML=http://www.eclipse.org/uml2/5.0.0/UML
 3 -- @path Params=/ParamsMetamodel/src/CVLParams.ecore
 4
 5 module ObjectExistenceUML;
 6 create OUT : UML refining IN : UML, PARAMS : Params;
 7
 8 -- Name
 9 helper def: ElementName : String = Params!MOFReference.allInstances()->any(e | e.key = 'target').value;
10
11 rule deleteElement {
12 from
13 e : UML!NamedElement (e.name = thisModule.ElementName)
14 to
15 drop
16 }

Security

Encryption

1..1

RSA AES

Authentication

1..1

PIN UserPassword

1..*

Resolution ModelResolution Model

Security

Encryption

1..1

RSA AES

Authentication

1..1

PIN UserPassword

1..*

Resolution Model

Variability ModelVariability Model

Security

Encryption

1..1

RSA AES

Authentication

1..1

PIN UserPassword

1..*

Security

Encryption

1..1

RSA AES

Authentication

1..1

PIN UserPassword

1..*

:ObjectExistence :ObjectExistence

Variability Model

Security

Encryption

1..1

RSA AES

Authentication

1..1

PIN UserPassword

1..*

:ObjectExistence :ObjectExistence

AuthenticationAuthentication

PINPIN UserPasswordUserPassword

Base ModelBase Model

Authentication

PIN UserPassword

Base Model

AuthenticationAuthentication

UserPasswordUserPassword

Resolved ModelResolved Model

Authentication

UserPassword

Resolved Model

Figure 6: Demonstration scenario.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The CVL approach
	2.2 Motivation

	3 Extension Points of CVL
	3.1 Extending the metamodel
	3.2 Extending the materialization process
	3.3 Extending the delegation engine

	4 Customizable CVL Execution Engine
	5 Conclusions and Future Work
	Acknowledgments
	References
	A Tool Demonstration
	A.1 Demonstration roadmap

